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Abstract—A random testing strategy can be effective at
finding faults, but may leave some routines entirely untestif it
never gets to call them on objects satisfying their precontions.
This limitation is particularly frustrating if the object p ool does
contain some precondition-satisfying objects but the streegy,
which selects objects at random, does not use them.

The extension of random testing described in this article
addresses the problem. Experimentally, the resulting streegy
succeeds in testing 56% of the routines that the pure random
strategy missed; it tests hard routines 3.6 times more often
although it misses some of the faults detected by the origiha
strategy, it finds 9.5% more faults overall; and it causes no
noticeable overhead.

Keywords-random testing; precondition satisfaction; linear
constraint solving
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larly frustrating if the object pool, from which the strayeg
selects objects for routine callgpescontain objects that
satisfy certain preconditions, but they simply do not get
selected at the right time. To correct this problem, we have
developed an extension of random testing,dh&led object
selection strategyor satisfying preconditions (abbreviated
as ps-strategy. As testing proceeds, the ps-strategy keeps
track of precondition-satisfying objects; when a routise i
to be tested, the strategy selects those objects with atighe
probability.

Our results show that compared to the original random
strategy Or-strategy, the ps-strategy:

o tests 56% of the routines otherwise missed;

« tests hard routines 3.6 times more often;

« finds 9.5% more faults overall, although it misses some
of the faults detected by the original strategy;

program under test. Random strategies are popular because, causes no noticeable overhead.

they are easy to implement, widely applicable and have A packagé is available online containing the source code
small overhead in ghoosmg test Qata. Despite the INtUILIOR the ps-strategy, all the results presented here, and the
that random strategies are too naive compared to systemafi¢sirctions to reproduce the corresponding experiments.
strategies, studies [1]-[4] show that they are effective in g article is organized as follows: Section Il explains

detecting faults.

the ps-strategy; Section Il describes the experiments and

When applied to Object-Oriented (O-O) programs with ggcion v presents results; Section V discusses the fisging
contracts, however, a pure random strategy may leav@ection vi includes the related work; Section VII draws

routines with strong preconditions entirely untested. ISuc

conclusions.

routines are important because they often perform critical

tasks and failing to test them reduces the quality of the

generated test suite.

Il. GUIDED OBJECT SELECTION STRATEGY
The ps-strategy is an extension of the or-strategy. This

Many techniques have been proposed to address theciion first introduces the AutoTest [10], [11] tool im-

issue of generating precondition-satisfying tests. Atapt

plementing the or-strategy, then explains the guided objec

random testing [5], [6] produces test data that are evenlyg|action strategy.
spread over the input domain, increasing the chance to

select precondition-satisfying inputs. Model-based ingst

A. The AutoTest Tool

[7] builds up a model for the software embedding the aytoTest is an automatic testing tool implementing the
pre- and postconditions of every state transition, and On%r-strategy for Eiffel. It attempts to test every public tioe

generates tests conforming to that model. Mock objects [8]y 3 given set of classes within a given time frame. The
encapsulate the constraints required by preconditions anglg| is integrated into the EiffelStudio [12] development

only return values satisfying those constraints. Seaadeth

environment.

test case generation using evolutionary algorithms [9] has Figure 1(a) shows the workflow of the AutoTest tool

recently been applied to O-O programs as well.

with the or-strategy. Within a given time limit, AutoTest

For random testing, the problem of not being able to select

precondition-satisfying objects effectively can be parti

Lhttp://se.inf.ethz.ch/people/wei/download/package.zip
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Figure 1: AutoTest workflow

repeatedly performs the following three steps to generaté assertions, requiring validity of the cursor and existence
the next test case: of a position left to the cursor.

1) Select a routineAutoTest stores the number of times it  In  our experiments, AutoTest failed to satisfy
tries to test a routine, and randomly chooses one of the leastmove_left_cursor's precondition in 30 hours of testing,
tried routines. For AutoTest, a test case is always a singléeeaving the routine untested. There were, however, objects
routine call. in the object pool satisfying the precondition. In a randpml
2) Select objects randomlyAutoTest maintains an object selected test run, at the end of théth minute, there are
pool. All objects created for or returned by routine calls356 list objects andl92 cursor objects. But only out of

are put into the object pool for future use. When it needshe 356 x 192 = 68, 352 list-cursor combinations satisfied
an object as target or argument for the routine under testhe precondition. The probability that one such combimatio
AutoTest will either randomly select an object from the poolgets picked by random selection is orly)07%.

or create a new one.

3) Invoke the rc-)utine AutoTest iny0kes the routine Wlth |_|St|ng 1: Examp|e of unsatisfied preconditions
the sele_c_ted obje(_:ts. If t_hose o_bjects sat|§fy the rowtine’ o oveleft cursor (a_cursor: DS ARRAYEDLIST CURSOR
precondition, the invocation defines a valid test case fo —— Remove item to left of ‘acursor’ position .

that routine; otherwise the test case is invalid. After the —— Move any cursors at this position forth .

require
not_empty not is_empty
cursor_not_void: a_cursor /= Void

invocation, the whole cycle starts over again.

B. A Motivating Example valid_cursor: valid_cursor (a_cursor)
. - . . not_before: not a_cursor. before
The inability of random testing to select precondition- not first : not a_cursor. is_first

satisfying objects manifests itself in the object seletstep.

From time to time, there are objects in the object pool New.cursor DS ARRAYEDLIST CURSOR

—— New external cursor for traversal

satisfying specific preconditions, but they only consétut ensure
a very small proportion of all the possible combinations; cursor_not void: Result /= Void
AutoTest is unlikely to pick them out in pure random valid_cursor: valid_cursor (Resul)
selection. _ _ _
As an example, Listing 1 shows the interface of C- The Guided Object Selection Strategy
routine remowve_left_cursor and new_cursor in class One way to increase the likelihood of selecting

DS_ARRAYED_LIST from the Gobo [13] library. Given precondition-satisfying objects is to keep track of theecks

a cursor objectremove_left_cursor removes the list item which satisfy each precondition. Figure 1(b) shows the
to the left of the cursor’s position, antkw_cursor returns — workflow of the ps-strategy. Steps that differ from the or-
a newly created cursor object. The precondition consists oftrategy are highlighted:



« A heuristic function P, decides whether to turn on  Using the above example, suppose AutoTest generated a

precondition satisfaction for the selected routine. test case containing the following routine call:
« If precondition satisfaction is on, choose precondition-
satisfying objects from the predicate valuation pool. 07 := 05.new_cursor

« After test case execution, evaluate which precondition . . _
predicates hold for objects that were used in the tesf\fter executing this test case, the ps-strategy evaluaest-p

case and update the predicate valuation pool. cates including5 .valid_cursor(o7). Because the predicate
evaluates to true (can be seen from the postcondition of

new_cursor), the ps-strategy stores5, o7) in the predicate
valuation pool forvalid_cursor.

Linear constraint solving Preconditions with predicates
involing linear constraints occur often; Listing 2 shows a
typical example. The or-strategy is ineffective for tegtin
routines with such preconditions.

Precondition-satisfying object selectionThe ps-strategy
maintains, in addition to the object pool, a predicate valua
tion pool (V-poo). The V-pool keeps track of which objects
satisfy precondition predicate clauses: for a predipatéth
n arguments, the V-pool maintains a $gtof n-tuples, each
representing an object combination that satisfies

To map operandsfor a routine call to object combina-
tions in the V-pool, a functionl/, is introduced for every
predicatep: Listing 2: Linearly-constrained precondition

item (i: INTEGER32): G

M, :TUPLE,, - TUPLE, —— Item at index ‘i’
—— From class DSARRAYED_LIST

require

whereT'U PLE,; denotes a set aftuples of objects. Given a valid index: 1 <=i andi <= count

m-tuple T,,, representing the operands to a routine@nd a

precondition predicate with n arguments inr, M,(T;,) To solve a linear constraint, the ps-strategy translates th

gives an-tuple containing only the elements needed t0pecondition into a linear programming model and then
evaluatep, in the order as they appear 1. _ consults the Ipsolve [14] linear programming solver for
For example, for a list object and a cursor object,  gojutions. For a model, Iolve can generate a minimal and
Mnort_sirst({l, ¢)) for predicatenot_first returns(c) because 3 maximal solution, consisting of the smallest and largest
the predicate only mentions the cursor. integer satisfying the constraint, respectively. Thetpatsgy
To pick objects for a routine with m operands, the ps- yses these two boundary values to define an interval from
strategy searches the object combination sets associdted Wyyhich a single value is randomly chosen. Although the
r's precondition predicates for candidate objects to calstr chosen value is not necessarily a solution of the constraint
a m-tuple T,,,, such that for each predicate M,(T:n) €  our experiments showed that it works in most of the cases.
Sp- As long as the V-pool is consistent, a tuple constructeds the chosen value does not satisfy the constraint, thetresu
this way satisfies the routine’s precondition. If no sucHeup || be a precondition violation for the routine under test
exists, the ps-strategy resorts to random object seledfion without any further consequence.
there is more than one way to construct the tuple, the ps- The ps-strategy introduces two biases in choosing a value
strategy randomly chooses one construction. between the boundary values returned bystpve®:
Populating the V-pool After the execution of a passing | If potentially interesting values such s+1, +2, +10,
test case, the ps-strategy populates the V-pool by evafyati 4100 are in the interval, then with probability25 one
precondition predicates whose signature conforms to the of them will be selected randomly. Previous work [1]
relevantobjects and then adding the precondition-satisfying showed that AutoTest finds the most faults with this
combinations to the V-pool. Relevant objects consist of the setting.
operands provided to the last routine call and the returned |\ probability 0.125 a boundary value will be se-

value, if any. The ps-strategy only uses relevant objeats fo lected randomly, because experience in boundary test-
predicate evaluation because on one hand, those objects are ing [15] showed that boundary values are more likely

more likely to get changed during the last executed test to reveal faults.

case hence predicates might evaluate to a different trut _ . .
P 9 orrecting the V-pool As described earlier, the ps-strategy

value on them; on the other hand, evaluating predicate . . . T

on all objects entails a huge overhead which decreases t ds new predlcate-sat_|sfy|ng object combmf'mons to the

overall effectiveness of the strategy. The ps-strate@g tio 'pOOI. after. EVery passing test case. As tesiing proceeds,
populate the V-pool only after passing test cases becauseﬂae object'_s Itn thesbJ?thpON may c?_ange ltl)ecguse AUtOT?lSt
test case ending with an exception may leave relevant ijecl['euses existing objects for new routine cafls. Lonseqyen

In Inconsistent states. 3These probabilities are parameters of AutoTest. The vahsesl here

were the ones we empirically found to work best for our experits with
2QOperands of a routine call include its target and its arguméhany. no formal claim of optimality.



the information stored in the V-pool may become inconsis-consults the cache before sending a model tsdpe. If
tent, meaning that the V-pool indicates certain objectsfyat there is already a cached solution, it will skip the expemsiv
a predicate although this is no longer true. solving work.

Keeping track of all the objects affected by the last test These two optimizations combined decreased the over-
case and re-evaluating relevant predicates in the V-podiead dramatically to a mere 0.03% on average. For some
would dramatically slow down the testing process. Instead¢lasses, the ps-strategy even generates more tests than the
the ps-strategy always lazily assumes that the V-pool i®r-strategy in the same time period.
consistent. Only when the test case fails with a precon-
dition violation will the object combination in the V-pool
corresponding for that failure be removed. As long as the An experiment of 3420 hours of testing was conducted
ps-strategy can suggest precondition-satisfying obgicésn  to evaluate the performance of the ps-strategy. This sectio
acceptable success rate, the algorithm can still be eféecti describes the tested classes and the experiment setup.
Optimizations A straightforward implementation of the ps- Class selection92 classes with different semantics and
strategy suffers from a huge overhead. On one hand, searcbede structures were chosen from the EiffelBase [16] and
ing the V-pool for precondition-satisfying objects takes Gobo libraries. Both libraries are widely used in productio
time; and this process gradually slows down because theoftware. The classes cover common data structures such
pool size grows as testing proceeds. On the other hanas list, stack, queue, table, tree as well as a lexer based on
linear constraint solving is much slower than a lookup inregular expressions, and contain routines with precarthti
the V-pool. Always enforcing precondition satisfactiomca of various strength.
entail a50% ~ 70% overhead (measured as the number of Table | shows some metrics on these classes. In the table,
valid test cases generated in a fixed time period), leaving’re-routines means precondition-equipped routinésard
much less time for actual testing. Although the ps-strategyoutines means hard-to-test routines, for which oY%
can test hard routines more often by always enforcingdf the test cases generated by the or-strategy violate the
precondition satisfaction, the overall effectivenessheftest associated preconditions, abahtested routinesire routines
process decreases: far fewer faults are found in the santhat could not tested by the or-strategy.
time. Test runs The classes were arranged into 57 groups.

As a tradeoff, the ps-strategy turns on precondition satStrongly related classes (such as BRRAYED_LIST and
isfaction only from time to time. It applies the following DS _ARRAYED_LIST_CURSOR) were put into the same

IIl. EXPERIMENTAL SETUP

heuristic function to decide whether to turn it on: group and tested together. When given a class group, Au-
toTest will try to test all the routines in them, which may
P.(t,d) =C (1 _ f) result in a better object state diversification.
d Each class group was tested in 30 AutoTest runs with

where d is the duration in seconds of the test run so fardifferent seeds to the pseudo-random number generatbr, wit

(starting from 1) and is the time relative to the starting ©ach run 1 hour long, under both the ps-strategy and the or-

point of the test run whem was tested for the last time. Strategy, resulting in 3420 hours of testing in total.
If » has not been tested,is 0. C is a factor in the range  Since seeds provided to the pseudo-random number gener-

[0,1]. In our experiments, it was set @8. The value of ator influence the outcome [17], the results presented below

P,, also within[0, 1], is used as the probability to turn on are averaged out through the 30 runs of each class group
precondition satisfaction far. If r has not been tested for a Using the median. The median often better expresses the

long time, - becomes very small becauséeeps increasing common-run, unlike the mean, which is more affected by

testi ds whilest h It th the extreme high or low values.
as tesling proceeds whilestays the same, as a resull, eComputing infrastructure The ps-strategy is implemented

value of P, increases; if- has been tested quite recenﬁ/, on top of the AutoTest tool in EiffelStudio 6.4, which serves
is large, the value of’, decreases. as the reference or-strategy in the comparison benchmark.
The benefits of applying this heuristics are twofold: The experiment was conducted on 9 PCs with Pentium 4 at
1) Our experiments showed that the overhead dramaticallg.2GHz, 1GB of RAM, running Linux Red Hat Enterprise
decreased, but the ps-strategy could still test precamditi 4. AutoTest was the only CPU intensive program running
equipped routines quite often. 2) Precondition-equipped r  during testing.
tines are tested throughout the whole test run, making it
possible to test a routine in a more diversified (in the sense
of object states) object pool as testing proceeds. This section presents the results of our experiments. The
Another optimization addresses linear constraint solvingresults compare the performance between the ps-strategy an
the most time consuming part of the ps-strategy. Everythe or-strategy in the following ways: tested routines and
model as well as its solution are cached. The ps-strategtheir test frequency; detected faults; the test case geoera

IV. EVALUATION



Table |: Metrics for tested classes

Type Classes LOC Variations Pre-routines  Hard routines e&fat routines
Lexer 30 32,108 regular expression, NFA, DFA, lexer 1,290 949 296

List 24 15,482  array, single, double, bidirectional, sorte 913 252 81
Hashed 2 5,156  hash table 66 18 6

Queue 4 7,135  bounded, unbounded, priority 48 2 0

Set 11 15,471 binary tree based, array based, hashed, sorted 299 50 8

Stack 1 1,281  linked list based 15 2 0
String 1 4,815  array based 80 19 8

Tree 19 16,102  binary, n-nary, AVL, red black, search tree 144 144 10

Total 92 97,550 3,152 986 409

speed, followed by an analysis of the ps-strategy succeds total, there are986 hard routines; the or-strategy could

rate. test577 (58.5%) of them, and the ps-strategy could t&86g
) ) (81.3%) of them. The ps-strategy could test 231 (56%) out
A. Increase in the Number of Tested Routines of 409 routines that the or-strategy missed. However, the ps

The primary goal of the ps-strategy is to test morestrategy missed 61§o) routines that could be tested by the
routines. Figure 2 shows the number of test cases generated-strategy (Figure 2 is too small to show those 6 routines
for every hard routine by both strategies. In the figure, theclearly).
x-dimension enumerates all the hard routines, and the y- The figure also shows that the ps-strategy can generate
dimension shows the number of test cases for a hard routin@ore test cases (3.6 times more on average) for hard
under both strategies: every vertical line represents d harroutines, reflected by that the light section is higher than
routine. In each line, the height of the dark section represse the dark section. Since random testing cannot guarantee
the number of test cases generated by the or-strategy f@omplete state coverage, the more test cases for a routine,
that routine; and the height of the light section representshe higher the chance that the routine is tested in a differen
the number of test cases generated by the ps-strategy. Htate.
clearly reveal the test case generation trend, the routires In Figure 2, the peaks in the light part reveals that
first sorted by the number of test cases generated by the gpreconditions are much easier to satisfy for some routines
strategy, then by the number of test case generated by thban for others, so the ps-strategy can generate more test
ps-strategy. cases for the former category.

B. Increase in the Number of Detected Faults

200 The number of detected faultss the most important
ool e criterion to evaluate the performance of a testing strategy
Figure 3 shows the histogram of the percentage increase in
1601 i the number of faults found by the ps-strategy for all the
class groups. Compared with the or-strategy, out of the 57
groups, the ps-strategy found more fault@&groups, found
120 1 the same number of faults it groups, and found fewer
faults in 10 groups. In3 groups, the ps-strategy detected
over 30% more faults.

80| N

Number of test cases
=
o
o
L

C. Kinds of Faults Detected by the ps-strategy and the or-

60 N

strategy
0 | Previous work [17] of ours showed that random testing
20‘ i can find different faults with different seeds to the pseudo-
0 ‘ ‘ random number generator. In order to access the overall faul
0 100 2000 300 400 NS00 600 700 800 900 detection ability of these two strategies, we looked at the

actual faults that are found by the ps-strategy and the or-
Figure 2: Number of test cases for hard routines strategy in all 30 runs in a class group.
Figure 4 shows the number of group-wise distinct faults

Figure 2 shows that the ps-sirategy could test morguy 25 SEEVT TN R PSR B o
routines than the or-strategy: extending roughly frémf to 9y, y 9 group. P

. ) : : oL wise distinct faults are the set of faults that are deteated i
800 in the x-axis, only light sections appear, indicating only

the ps-strategy could generate test cases for those reutine “The faults are real faults in production software.
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in any group under a certain strategy, or a set of strategies.
18} . There were 1124 strategy-wise distinct faults detected by
the two strategies, out of which the or-strategy found 962 an
the ps-strategy found 1053, yielding a 9.5% increase. 891
141 8 (79.3%) faults were found by both strategies, 162 (14.4%)
were found only by the ps-strategy and 71 (6.3%) only by
the or-strategy.

16 N

12 N

10 1

D. Fault Detection Probability

Due to its nature, a random strategy may detect different
faults in different test runs. Fault detection probabilitga-
ar 8 sures how likely a random strategy detects a fault in a test
. | run. It has an important practical implication: the higher
H WH the probability, the less runs are needed to detect a fault.
i1 i1 M1 Ideally, a strategy can detect all the faults in any singtg ru
-20 -10 0 10 20 30 40 '

% increase in number of found faults then only one run is sufficient, which stands in contrast to
the common application of random testing today — test the
same program repeatedly with different seeds.

Our experiments contaiR = 30 runs per class group, the
detection probability for a group-wise distinct fayltunder
at least one run out of the 30 runs for that group. In thestrategys can be measured by:
figure, every vertical bar represents a class group. In each
bar, the height of each colored section represents the nrumbe D(f,s) = N(/.s)
of group-wise distinct faults that are detected by a paldicu R
strategy or by both strategies.

Number of class groups

Figure 3: Increase in number of faults

where N(f, s) is the number of runs in whiclfi is detected
: in that group undes.
polivine Figure 5 shows the histogram for group-wise distinct
I both fault detection probability distribution for both strates,
revealing that the two strategies are quite similar: around
35% of the faults were detected with probabiliyy and
80F 7 22% of the faults were detected with a probability below
0.1. If these two distributions are treated as two stochastic
] variables, the Pearson correlation coefficient betweemthe
is 0.99. This indicates that in the sense of fault detection
probability, the two strategies perform almost identigall
Since some faults were found only by a particular strategy,
it is interesting to know whether those faults can be detkecte
i with a high probability by that strategy or just by luck (wah
low probability) due to the random nature. If the probapilit
is high, the strategy must have some characteristics for
Classes finding such faults.
Figure 4: Group-wise distinct faults detected by the ps- Figur_e_ 6 plots the group-wise distinct fault_detection
strategy and the or-strategy probab|llty d|fferenf:e betwegn thg two strategies. In the
figure, every point in the x-dimension represents a fgult
its corresponding y coordinate is the detection probabilit
Figure 4 shows that most of the faults were found by bothdifference between the ps-strategy and the or-strategghwh
strategies, but some were found only by the ps-strategy anid calculated aD(f, ps) — D(f, or). 39% of the faults are
some only by the or-strategy. detected in both strategies equally often (witlifference);
The same faults can be found in multiple class groups, foB7% of the faults are more likely to be detected in the ps-
example, a fault in class ARRAY is likely to be caught in strategy (with positive detection probability differeficand
many groups because they all use ARRAY. After removing24% were more likely to be detected in the or-strategy (with
all duplications, the strategy-wise distinct faults aréirdel  negative difference). This means both strategies have the
as the set of distinct faults that are detected in at leastiome tendency to detect some kinds of faults more often.

120

Number of distinct faults
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the speed difference between these two strategies. Figure 7
shows the speed of the ps-strategy relative to the or-girate
over time. Every curve represents a class group. A line above
the x-axis means the ps-strategy is faster, belowothiae
means the ps-strategy is slower. For most of the groups, the
curve is close to thé® line with little variance throughout
the testing period. The thick curve around théine is the

% group-wise faults
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=] o
T T
I I

=
o
T

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(=]

o

(a) Detection probabilty: or-strategy median of all groups. It stays close to thdine, meaning
0 that the ps-strategy brings almost no overhead (only 0.03%)
This does not mean that the extra steps involved in the
3o0r ] ps-strategy, such as V-pool building and searching, do not

take up time; it means that even though they need time, the
overall speed is compensated by the fact that more test cases
1 are generated for hard routines while they would otherwise

. HﬂﬂﬂHﬁﬂﬁﬁmmmmmﬁﬁﬁﬁﬁﬁﬁﬁﬁmﬁmmmﬂ result in precondition violations.
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(b) Detection probability: ps—strategy
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Figure 7: Test case generation speed
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The two class groups with the highest and lowest speed
Figure 6: Comparison of fault detection probability are also highlighted in the figure with thick curves, indicat
ing that the ps-strategy performs best on class group ARRAY
and worst on class group LEBUILDER. Both classes have
quite a few linearly-constrained preconditions. On ARRAY,

Faults found only by the ps-strategy or only by the or-ihe ps-strategy wad0% faster because often there are
strategy are highlighted in different colors in Figure 6eYh  sq|ytions to the linear constrains: on LEBUILDER, the

appear above or below the x-axis respectively. Some of thergo|ytion hardly exists, so Isolve spent a lot of time without
are detected with relatively high probability (The ones togccess resulting in 20% overhead.

the very left and to the very right of the figure.) The fact

that some strategy-specific faults were detected with higli. Success Rate of the ps-strategy

probability suggests that they are detected thanks to the ag gescribed above, the V-pool may contain inconsistent

characteristic of that strategy instead of pure luck. information, which can mislead the ps-strategy to make

wrong suggestions. The suggestion success rate reflects the

level of consistency of the V-pool. For a class group, the
The test case generation speed is measured as the numieaccess rate is measured as the percentage of the number of

of valid test cases generated per minute. The overhead abrrect suggestions out of the total number of suggestions.

the ps-strategy compared to the or-strategy is defined dsigure 8 shows the success rate for every class group over

E. Test Case Generation Speed



time. Every curve represents the success rate of a clasénsatisfiable preconditions (9%) Some routines have

group. Depending on the class, the success rate varies
a wide spectrum, from as low &)% to as high a99%.
For most of the class groups, the success rate is atifie

100
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80
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Success rate (%)

40
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Figure 8: ps-strategy suggestion success rate

imsatisfiable preconditions. This is an artifact of theglis
erarchy design. For example, Listing 3 shows the interféice o
routine fill and the implementation of routine:tendible in
class ARRAY. By designfill's precondition is not satisfiable
becausgill does not make sense for ARRAY, so its precon-
dition is “disabled”. But in ARRAYED LIST, a descendant
class of ARRAY, fill makes sense, so its precondition is
redefined to return True. AutoTest will repeatedly try to
satisfy those unsatisfiable preconditions without success

Listing 3: Unsatisfiable precondition

(other: CONTAINER
—— Fill with as many items of ‘other’ as possible .
require
other_not void: other /= Void
extendible: extendible

fill

extendiblee BOOLEAN
—— May items be added?
do
Result ;= False
end

Not supported by AutoTest or by the testing envi-
ronment (32%) Routines of this type have preconditions
only satisfiable on certain environment, for example, some
routines requires to be tested on the .NET platform while

Figure 8 also shows that for many groups, the suCCes§, experiment was conducted only on Linux; or their

rate goes down as testing procegds. This suggests th_a.t tB?econditions are not satisfiable by current implementatio
effectiveness of the ps-strategy in terms of preconditiornys atoTest.

satisfaction decregses over time. The pattern is that if thgyher (49%) This type is more interesting because it shows
class group contains routines that are not testable even Qe |imitation of the random testing strategy or the guided

the ps-strategy, the success rate goes down. This is becauggect selection strategy. There are four possible cases:
as the testing proceeds, the suggestions are increasingly | gpiects satisfying the desired preconditions never pop-

targeting only hard routines. Those suggestions must have
very low success rate, otherwise the untestable routines
would be tested.

The success rate may decrease, but it will not go down
to 0, because th&,. heuristic function makes sure that
all precondition-equipped routines are tested evenlynofte
throughout the whole testing process. As a result, the sgcce
rate converges to a certain level which depends on the
number of hard routines in the class. In fact, most of the

curves in the figure reach a plateau. There are some curves

that do not show a plateau, the reason could be that the
testing time was not long enough.

V. DISCUSSION

This section first discusses the routines still untested by
the ps-strategy, then provides a remark on the importance
of speed in random testing, and finally covers the threats to
validity of the results.

A. Routines Untested by the ps-strategy

B.

ulate the object pool. This is because a random strategy
cannot fully explore object state space.

o The object pool does contain objects satisfying the
desired preconditions, but the ps-strategy does not
consider them during the predicate evaluation phase
because they do not occur to be relevant objects of
the same passing test case.

« Objects satisfying the desired preconditions got dam-
aged before they are selected to test the corresponding
routine. This is because after precondition predicates
evaluation and V-pool updating, the ps-strategy does
not use the objects immediately, instead, it will continue
to randomly choose the next routine to test. One way
to solve this problem is to test a routine immediately
after its precondition is observed to hold. We call this
schemeeager routine selectian

« The test runs were not long enough.

Overcoming these limitations is part of our future work.

Importance of Speed

The ps-strategy could not test 184 routines, which are As in the or-strategy, speed plays an important role in

classified into the following three categories:

the ps-strategy because the algorithm relies on randomness



to diversify the object pool, and a diversified pool greatly selection part of the random testing strategy is similar to
contributes to fault detection. In the prototype of the ps-the work presented here but we focused on precondition
strategy, we tried two other variations for better prectiadi  satisfaction, and the method that we used was quite differen
satisfaction by sacrificing speed, but they suffered from a Model-based testing is closely related to this work be-
slow object pool diversification process, and detected fewecause it generates precondition-satisfying test casesc Sp
faults in the end: Explorer [22] requires a model of the software under test

« lterating through all objects in the object pool searchingand only generates valid test cases conforming to that
for precondition-satisfying combinations. While this model. However, software models are manually provided,
made sure that every suggestion is correct, it broughwhile ps-strategy is fully automatic. Although tools such a
a huge overhead. Even with turning on precondition-ADABU [23] used contract inference technique to construct
satisfaction only from time to time, the overhead wasthe model automatically, the test suite used for the infegen
still above50%. is manually written.

« Always enforcing precondition satisfaction for a rou- Mock objects are also commonly used in precondition
tine. As mentioned earlier, this also came with a hugesatisfaction and are usually provided manually. Pex [2Hus
overhead. manually provided mock objects to return values satisfying

Previous work [6] of ours also showed that speed losdhe path conditions derived from sy.rrjbolic executi.qn. (can

can influence the effectiveness of random testing in findind*® treated as strengthened preconditions). One criticism o
faults. So the fact that the ps-strategy involves only 0.0394nOCks is that one may end up testing a different program

overhead is plausible. if the mocks provide inconsistent behavior. Compared to
mocks, the guided object selection uses objects that were
C. Threats to Validity correctly constructed before.
The following three threats may influence the generaliza- Korat [25] generates all non-isomorphic inputs satisfying
tion of our results: a given predicate (precondition) from a given bound size

« Although the chosen classes have different semantic@"d a set of primitive objects, which are used to construct
and complexities, they may not be representative fothe final input object. But it is difficult to apply Korat to
all 0-O programs. classes with complex internal structures, such as theaegul

« AutoTest is one implementation of random testing usingeXPression based lexer we used in the experiments.
a pseudo-random number generator. We tried to keep Several methods [9], [26], [27] based on evolutionary
the algorithm of AutoTest as general as possible, bulgorithms have been applied to testing O-O software. But
other implementations of random testing may produces© far, we have not seen large-scale experiments showing its
different results. applicability in general.

« Atthe end of a 1 hour test run, for many of the classes,
the number of faults did not reach a plateau. Given

VII. CONCLUSIONS ANDFUTURE WORK

more time, AutoTest may continue to find new faults. The guided objegt S.EIGCUOO strategy IS a f?*"y auto-
_matic method for satisfying routine preconditions in ramdo

The results, especially the faults found only by the pst ing 0-0 C d to th inal d
strategy or the or-strategy may be different from those esting ©-L programs. L.ompared 1o the original rahdom
trategy, it is able to test 56% of the routines that were not

reported here if the classes are tested for a longer time table bef it tes 3.6 fi test f
It is also possible that more routines can be tested wit estable betore, It generates 2.6 times more 1est cases 1or

longer testing time ard routines, finds almos0% more faults over all tested
' classes and has negligible overhead. The results suggest
V1. RELATED WORK that even though the guided object selection strategy uhisse

Tools such as JCrasher [18], Eclat [19], Jartege [20p0ome routines and faults that are tested or detected by the
and Jtest [21] for random testing O-O software drew a lotoriginal strategy, it is more effective than the latter.
of interest in recent years. Although they target languages Future work includes: 1) testing classes in longer runs;
without contracts (mostly Java), the fact that object badray 2) experimenting with eager routine selection for better
depends on its state requires implicit preconditions ayywa Precondition satisfaction; and 3) understanding why the
generating a test case to insert a value into a list at an nof@uided object selection strategy misses some faults eetect
existing position does not make sense. These tools eithdl the original random testing.
cannot detect precondition violations or ignore invalidtte
cases, like what AutoTest does with the or-strategy. ) _ ) _
Adaptive random testing [5] is an enhancement of random 2] I Ciupa, A. Leitner, M. Oriol, and B. Meyer, “Experimeait

. i lecti Previ K 161 of h d that assessment of random testing for object-oriented softhiare
input selection. Previous work [6] of ours showe a ISSTA '07: Proceedings of the 2007 international symposium

adaptive random testing based anject distancecan detect on Software testing and analysis New York, NY, USA:
new faults in O-O programs. The idea of enhancing the data  ACM, 2007, pp. 84-94.
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