
Execution Hijacking: Improving Dynamic Analysis by Flying off Course

Petar Tsankov, Wei Jin, Alessandro Orso
Georgia Institute of Technology

Email: {peshko|weijin|orso}@cc.gatech.edu

Saurabh Sinha
IBM Research – India

Email: saurabhsinha@in.ibm.com

Abstract—Typically, dynamic-analysis techniques operate on
a small subset of all possible program behaviors, which limits
their effectiveness and the representativeness of the computed
results. To address this issue, a new paradigm is emerging:
execution hijacking—techniques that explore a larger set of
program behaviors by forcing executions along specific paths.
Although hijacked executions are infeasible for the given inputs,
they can still produce feasible behaviors that could be observed
under other inputs. In such cases, execution hijacking can
improve the effectiveness of dynamic analysis without requiring
the (expensive) generation of additional inputs. To evaluate
the usefulness of execution hijacking, we defined, implemented,
and evaluated several variants of it. Specifically, we performed
empirical study where we assessed whether execution hijacking
could improve the effectiveness of two common dynamic analy-
ses: software testing and memory error detection. The results of
the study show that execution hijacking, if suitably performed,
can indeed help dynamic analysis techniques.

“When you come to a fork in the road, take it.”
–Yogi Berra1

I. INTRODUCTION

Dynamic-analysis techniques, which instrument a program
and monitor its behavior during execution, are commonly
used for many applications, such as fault detection (e.g., [1]),
memory error detection (e.g., [2], [3]), code optimization
(e.g., [4]), regression testing (e.g., [5]), invariant detection
(e.g., [6]), specification mining (e.g., [7]), and classification
of program behaviors (e.g., [8]). On the one hand, such
techniques overcome imprecision, which is one of the main
limitations of static analysis—static-analysis techniques typ-
ically compute inaccurate results because they operate on
an over-approximation of a program’s behavior, by either
traversing infeasible program paths or making conservative
approximations of properties that are difficult to reason about
statically (e.g., heap structures).

On the other hand, dynamic-analysis techniques are
intrinsically incomplete, as they operate on an under-
approximation of a program’s behavior; the information
they compute is only as good as the comprehensiveness
of the set of behaviors the analysis can observe. Because
typical workloads (i.e., program inputs) used to perform
dynamic analysis explore only a small fraction of potential
program behaviors, the analysis results computed using such
workloads can be incomplete to a large extent. For example,

1When giving directions to his New Jersey home, which was
equally accessible via two different routes.

a dynamic memory-leak detection technique may miss many
leaks if they are not exercised by the inputs considered.

To alleviate this limitation of dynamic analysis, re-
searchers have investigated ways to improve the representa-
tiveness of developer-provided program inputs by leveraging
field executions (e.g., [1], [8]–[11]) and observing program
behaviors much more extensively than what is possible in-
house. Performance and privacy concerns, however, limit the
applicability of such techniques in practice.

Researchers have also developed many approaches for
providing automated support for input generation. Especially
popular among those are approaches based on symbolic exe-
cution (e.g., [12]–[17]), which generate inputs by interpreting
a program over symbolic values and solving constraints that
lead to the execution of a specific program path. Despite
the availability of increasingly efficient techniques, decision
procedures, and machines, however, symbolic execution is
still limited by both scalability and practical applicability
issues (e.g., the combinatorial explosion of the number of
paths, the presence of libraries, and the interactions between
the program and the external environment).

More recently, a few researchers have started investigating
techniques that force executions along specific paths in an
unsound way, so as to explore a larger set of program
behaviors [18]–[20]. Instead of trying to generate better or
larger input sets, these techniques aim to augment the set
of behaviors covered by an existing set of inputs. We call
these approaches execution hijacking because, intuitively,
they involve taking control over an execution to drive it
towards unexplored behaviors. More specifically, execution
hijacking monitors a program execution and forces control
to proceed along otherwise unexplored parts of the program.
To do this, the approach typically flips the outcome (true or
false) of one or more predicates, so that the path of execution
follows a branch that has not been traversed before (and that
would not have been traversed in the original execution).

The advantage of execution hijacking is that, given a
program P and a set of inputs I for P , it allows for exercising
a potentially much larger number of behaviors of P than a
traditional execution of P against I . The obvious drawback
of the approach is that it introduces unsoundness in the
execution: a hijacked execution of P with input i traverses
program paths that would not be traversed by the normal
execution of P with i. For example, the hijacked execution
may cause a runtime exception that would typically not

occur in the normal execution and may be a false positive.
However, there are cases where the manifested behavior
could occur for some other normal execution with a different
input i′. In these cases, the hijacked execution can expose
such behavior without requiring the generation of input
i′. In general, the usefulness of the technique depends on
how often a behavior manifested by a hijacked execution is
infeasible.

In this paper, we perform an investigation of execution
hijacking and a study of its ability to improve dynamic anal-
ysis techniques. To this end, we start by providing a general
definition of the approach and discussing several variants
of it. These variants include different ways to mitigate the
infeasibility problem—some adapted from related work and
some new. We then introduce our prototype tool, NIONKA,
that is parametrized so that it can run our different variants
of the technique. Finally, we present an empirical study in
which we assess the usefulness of execution hijacking by
using NIONKA to improve the effectiveness of two commonly
performed dynamic analyses: software testing [21] and mem-
ory error detection [22].

More precisely, in our empirical evaluation we used
NIONKA to perform execution hijacking on sets of inputs
of different sizes for several applications while performing
the dynamic analyses considered. We then compared the
results of the analyses performed with and without NIONKA
and measured the effectiveness of execution hijacking in
improving such results. Although our investigation is still
at its early stages, our results are promising and motivate
further research. For the programs, input sets, and analyses
considered, execution hijacking was always able to improve
the results of the analysis—software testing revealed more
failures, and memory-error detection identified more errors.
Moreover, the analysis of the performance of the different
variants considered provides some insight on successful ways
to mitigate the infeasibility problem and, ultimately, reduce
the number of false positives.

If our initial results were confirmed by further studies,
execution hijacking could represent a considerable step for-
ward for dynamic analysis because it (1) can be applied
to programs of any complexity that take inputs of any
complexity, (2) requires no expensive analysis, and (3) is
easily implementable through lightweight instrumentation.
The main contributions of this work are:

• A general definition of execution hijacking, an approach
for increasing the number of behaviors observed by
dynamic analysis without generating new inputs.

• Several variants of the basic approach that can help
mitigate the infeasibility problem that is inherent in
execution hijacking.

• The development of NIONKA, a tool that implements
our different variants of execution hijacking and that is

Inputs: {<100, 100>, <0, 0>, <-100, -100>}

void main(int x, y) {
1. z = complex(x);
2. if (z > 0)
3. print (100 / y);
4. else
5. print (100);
}

(a)

void main(int x, y) {
1. z = complex(x);
2. if ((z > 0) && (y != 0))
3. print (100 / y);
4. else
5. print (100);
}

(b)

Figure 1. Examples of successful and unsuccessful applications of
execution hijacking.

freely available.2

• An initial study that shows feasibility and potential
usefulness of execution hijacking and the characteristics
of the approach that can help making it more effective.

II. EXECUTION HIJACKING

In this section, we first introduce the concept of execution
hijacking using an example and then discuss it in detail.

A. Overview

The basic idea behind execution hijacking is straight-
forward: we want to forcibly exercise program behaviors
that would not otherwise be exercised by a given set of
inputs. To do this, the approach forces executions to follow
specific paths by flipping the outcome of some predicates.
To illustrate the basic approach, we use the two small code
examples shown in Figure 1.

The two examples are almost identical; the only difference
between the two programs is the predicate at line 2. Consider
a scenario where the dynamic analysis we are interested in
is some form of smoke test [23]: that is, we execute the
application against a set of inputs and check whether it
crashes or runs to completion. Assume that the inputs we
are using are the ones shown in the figure (same inputs for
both programs). Assume also that none of the values used
for x causes the return value of complex, and thus z, to
be greater than zero.

For the example in Figure 1(a), execution hijacking could
be used to flip the outcome of the predicate at line 2, so as to
cover that yet uncovered part of the program. By doing so,
the execution of the second input would result in a failure
due to a division by zero at line 3. In this case, although
the hijacked execution is infeasible for input <0, 0>, it
still identifies an actual problem with the code that could
occur for any input <x, y> where (1) y is zero and (2)
the value of x causes complex to return a positive value.
Most importantly, it does so without having to identify such
value of x and simply using the existing set of inputs for a
program (e.g., the program’s test suite).

For the example in Figure 1(b) too, execution hijacking
could be used to flip the outcome of the predicate at line 2.
And also in this case, for the second input, the flipping would
result in a failure due to the division by zero at line 3. In this

2The tool can be downloaded at http://www.cc.gatech.edu/∼orso/nionka/

case, however, the problem identified is a false positive—the
predicate that we flipped is checking exactly that y has a
non-zero value.

These two examples illustrate the best and worst cases for
execution hijacking. In the former case, execution hijacking
reveals a feasible behavior and improves the effectiveness
of dynamic analysis. In the latter case, conversely, execution
hijacking generates an infeasible behavior that results in a
false positive in the analysis. The relative frequency of the
two cases, which we investigate in Section IV, determines
the usefulness of the approach in practice.

B. Terminology and Definitions

In this section, we provide the terminology and definitions
that we use in the rest of the paper.

Given a program P and an input i, we indicate with
en(P, i) the normal (i.e., non-hijacked) execution of P with
i as input. Given a program P and a set of inputs I , we call
En(P, I) = {e(P, i) | i ∈ I} the set of normal executions of
P when run against all of the inputs in I .

Given a program P , an input i, and a predicate s, we call
eh(P, i, s) the hijacked execution of P that is obtained by
running P against i and flipping the outcome of predicate
s when it is evaluated. Similarly, given a program P , an
input i, and a set of predicates S, we call Eh(P, i, S) =
{eh(P, i, s) | s ∈ S} the set of hijacked executions of P
that is obtained by running P against i once for every s ∈ S,
and flipping the outcome of predicate s during that execution.
Finally, given a program P , a set of inputs I of cardinality
n, and a set S of sets of predicates {S1, ..., Sn}, one for
each i ∈ I , Eh(P, I, {S}) = {Eh(P, ij , Sk) | ij ∈ I, Sk ∈
S,∧ j = k}.

Given a program P and an execution of the program for
a given input i, there are many places where the execution
can be hijacked. Basically, each predicate in the program
that is reached by i can be flipped to force the program
down a different path. However, it makes little sense to
force the execution along branches that would be exercised
anyway. We therefore consider a predicate s as flippable
with respect to an input i if s is covered by i, but one of
s’s outgoing branches is not covered by the input. From a
practical standpoint, the set fp(P, i) of flippable predicates
for a program P and a given input i can be easily computed
by collecting branch coverage information for En(P, i).

In this paper, we use the term behavior to indicate,
intuitively, any observable aspect of an execution—which
behaviors are of actual interest depends on the kind of dy-
namic analysis performed. If the analysis of interest identifies
program failures, for instance, as in the two examples of
Figure 1, any abnormal termination is a behavior of interest.
Alternatively, if we are performing memory-leak detection,
any memory allocation, deallocation, or access would be a
behavior of interest. Although it may be possible to tailor
execution hijacking to the specific dynamic analysis at hand,

in its basic formulation, the approach is analysis-agnostic
and simply tries to exercise as many behaviors as possible
by steering the execution towards unexplored parts of the
program.

Let b be a behavior of interest that is observed at a
program point p, under state Γ, in a hijacked execution. We
call relevant state, Γrel ⊂ Γ for b the set of variables and
associated values that characterize b at p. The relevant state
variables, vars(Γrel), are the variables (or memory locations
in general) over which state Γrel is defined. In the code of
Figure 1, for instance, for the behavior in which a division by
zero occurs at line 3, Γrel = {〈y = 0〉}, as the value zero for
y leads to the observed behavior; and vars(Γrel) = {y}. To
illustrate with another example, consider a behavior in which
a null-pointer exception occurs at a statement that accesses
a field fi of an object obj (e.g., y = obj.fi); in such a
case, Γrel = {〈obj = null〉}, and vars(Γrel) = {obj}.

C. Exploring Additional Behaviors to Improve Dynamic
Analyses

The two examples discussed in Section II-A illustrate
how execution hijacking can explore additional program
behaviors without requiring the use of new inputs. More
generally, execution hijacking works by pushing the program
into an inconsistent state in the hope of revealing interesting
behaviors that are feasible despite the inconsistency.

Figure 2 provides an intuitive view of execution hijacking,
its benefits, and its drawbacks. The left-hand side of the
figure shows a typical usage scenario of execution hijacking.
In the scenario, we have a program P , a set of inputs I for
the program, and a dynamic analysis that would normally be
performed on the set of executions En(P, I). When used in
conjunction with execution hijacking, the dynamic analysis
operates on the larger set of executions consisting of En(P, I)
plus Eh(P, I, {S}), where {S} is the set of sets of branches
to be flipped, one for each input i ∈ I , as defined in
Section II-B.

The right-hand side of the figure shows the effect of
execution hijacking on the set of behaviors observed by the
dynamic analysis at hand. Set B(∞) indicates the ideal set
of all possible behaviors of P ; that is, the set of behav-
iors that would be exposed by exhaustively exercising the
program with all possible inputs in the program domain. A
dynamic analysis performed on this set of behaviors would
be complete.

Set B(I) ⊂ B(∞) is the set of behaviors of P observed
when P is run against all inputs in I . Typically, B(I) is a
very small subset of B(∞), and dynamic analyses performed
on B(I) produce results that are, therefore, incomplete.
Execution hijacking, by forcing executions along unexplored
parts of the program, exposes a set of behaviors Bh(I) that
can be divided into three categories: (1) behaviors that are
also revealed by I (B(I)∩Bh(I)), which do not provide any
additional information to the dynamic analysis; (2) behaviors

Bh(I) ∩ B(∞) - B(I):
new valid behaviors explored

by execution hijacking

Input set I Program P

Analysis
results R

Dynamic
analysis

Traditional Dynamic Analysis

Input set I Program P

Analysis
results R'

Execution Hijacking

Dynamic Analysis with Execution Hijacking

Dynamic
analysis

B(I):
behaviors of P observed
when running P against I

(without hijacking)

B(∞):
Ideal (complete) set

of behaviors of P

Bh(I):
behaviors of P observed
when running P against I

(with hijacking)

Bh(I) - B(∞):
Infeasible behaviors explored

by execution hijacking

Figure 2. Intuitive view of execution hijacking, its benefits, and its drawbacks.

that are not revealed by I and are infeasible (Bh(I)−B(∞)),
which may cause the analysis to generate false positives;
(3) behaviors that are not revealed by I and are feasible
(Bh(I) ∩ B(∞) − B(I)), which would increase the set of
behaviors that the dynamic analysis can observe and may,
thus, improve the results of the analysis.

More precisely, let us consider a behavior b of interest
that occurs, for a hijacked execution, at a program point p,
with state Γ and relevant state Γrel . Behavior b is a valid
behavior if there exists a normal execution E such that (1)
p is reached in E with state Γ′, and (2) Γrel ⊂ Γ′. In such
cases, the behavior observed in the hijacked execution can
also occur in a normal execution. In all other cases, b is
infeasible and any analysis result derived from b is likely to
be a false positive.

III. INSTANTIATION AND IMPLEMENTATION OF THE
APPROACH

There are many ways in which execution hijacking can
be instantiated, based on how the different aspects of the
technique are defined. In our investigation, we instantiated
and implemented several variants of execution hijacking,
which allowed us to explore some fundamental characteris-
tics of the general approach. In this section, we discuss these
variants along two main dimensions. The first dimension
relates to the extent of deviation from normal executions,
that is, the extent or aggressiveness of the hijacking we
implemented. The second dimension involves infeasibility-
mitigation techniques that we defined or integrated into
our variants. Note that these two dimensions are not fully
orthogonal. For example, a larger deviation from normal
executions may result in more infeasible results and thus
require stronger mitigation techniques.

A. Execution Hijacking Aggressiveness

Given the set of flippable predicates for a program P and
a set of inputs I, fp(P, I), there are three main aspects
that affect the aggressiveness of execution hijacking: which
specific branches to flip, how many branches to flip in a
single execution, and when to flip such branches.

Choice of the branches to flip: One straightforward
possibility, when deciding which branches to flip for an input
i ∈ I , is to go exhaustively and perform all of the executions
in Eh(P, i, fp(P, I)), that is, flip all branches in fp(P, I).
In our second study, we followed this exhaustive approach
because it gives us more data points for our investigation and
more opportunities of studying the proposed infeasibility-
mitigation techniques. Another option is to use a random
approach in which the branches to flip are chosen based on
some probability distribution. Yet another possibility would
be to use a directed approach that may pick the specific
branch to flip based on some goal. For example, if we are
using execution hijacking to support a dynamic analysis that
targets specific program entities (e.g., pointer dereferences),
we may flip branches that are more likely to exercise one or
more of such entities. We used this directed approach in our
first study.

Number of branches to flip in a single execution: In
general, the higher the number of predicates flipped in a
single execution, the more inconsistent the program state and
the lower the likelihood for the generated behaviors to be
feasible. Therefore, we decided to flip at most one predicate
per execution. In this way, we can better investigate the
effectiveness of execution hijacking by limiting the number
of factors involved in the study and the noise in the results.

Choice of when to flip a branch: Related to the issue
of the number of predicates to flip in a single execution is
the issue of when to flip them. Also in this case, there are
various possibilities. A predicate may be flipped each time it

is evaluated, the first time only, each other time, randomly,
and so on. Our current implementation is generic enough
that it can support all such options. In the study presented
in Section IV, however, we decided to flip a predicate when
it is evaluated the first time during the execution only, so as
to reduce state deviation introduced by execution hijacking.

B. Infeasibility-mitigation Techniques

Because the usefulness of execution hijacking depends on
how often a behavior manifested by a hijacked execution is
infeasible and results in a false positive, it is important to try
to limit the occurrences of such infeasible behaviors. To this
end, we defined and adapted several infeasibility-mitigation
techniques, which we describe in the rest of this section.

1) Filtering: Filtering removes from consideration apriori,
before hijacking, those branches whose forced execution
would likely result in infeasible behaviors. Our approach
performs filtering based on code patterns, where a code
pattern is a predicate with some specific characteristics.
Currently, we use one pattern, the null-check pattern, which
matches predicates that check whether a reference has a
NULL value. Intuitively, these predicates are used to guard
the access to the reference being checked, and flipping them
is likely to result in a memory access error that could not
occur in any normal execution. This is also confirmed by our
experience with execution hijacking.

2) Early termination of hijacked executions: This tech-
nique is based on the intuition that more feasible behaviors
are likely be revealed soon after hijacking occurs, before
the corrupted state propagates widely. In other words, the
longer an execution continues after hijacking, more infeasible
behaviors are likely to be revealed because state corruption
would become more pervasive. The technique therefore ter-
minates a hijacked execution based on a stopping criterion.
In our current formulation, we use coverage as a stopping
criterion: our technique terminates a hijacked execution when
the execution reaches an already covered statement. This is
based on the rationale that additional behaviors are more
likely to be revealed when traversing unexplored parts of a
program. Although we did not consider additional criteria
in this initial investigation, we plan to consider them in
future work. Particularly, we will consider criteria based on
different types of code coverage, such as data flow or path-
based coverage.

3) State fixing: State fixing attempts to reduce state cor-
ruption by partially fixing the state after hijacking. Specifi-
cally, instead of forcing the execution of branch b at predicate
p, the technique modifies the state of the program when p is
reached so as to actually change the value of the predicate
and cause b to be taken. For instance, if the condition of p
is x > 1, p is supposed to be flipped, and x > 1 currently
evaluates to true, the technique would change the state (in
this case, the value of x) so that x > 1 evaluates to false
instead (e.g., by assigning a value of 0 to x). The rationale for

state fixing is that operating on a state that is still corrupted,
but at least locally in sync with the control flow, may reduce
infeasibility. Unfortunately, fixing the state is a not-trivial
operation in general because (1) predicates can be arbitrarily
complex and involve constructs such as pointers and data
structures, and (2) there are typically several ways to modify
the state to change the outcome of a predicate [18]. To
avoid these complications while still being able to investigate
the effect of state fixing, our approach is currently limited
to performing state fixing for predicates that involve scalar
variables only.

C. The NIONKA tool

To empirically evaluate the variations of execution hijack-
ing described in the previous section, we implemented them
in a prototype tool called NIONKA. NIONKA can perform
execution hijacking for C and C++, is built on top of the
LLVM compiler infrastructure (http://llvm.org/) and leverages
both the static analysis and the instrumentation capabilities of
LLVM. One of the advantages of using LLVM is that it can
generate target executable code for different architectures,
which makes NIONKA more portable.

NIONKA performs predicate flipping for a program P and
a set of inputs I as follows. First, it analyzes P to generate
a list PR of all predicates in P and assigns a unique ID to
each predicate. Then, NIONKA leverages LLVM’s analysis
capabilities to identify the predicates to be filtered out, as
described in Section III-B1, and removes them from PR.
In the next step, NIONKA collects coverage information for
P when run against each input ik in I and creates a set
of lists Bik , where each list Bik contains the branches bj ,
expressed as pairs 〈predicateID, outcome〉, such that input
ik executes bj’s predicate but does not execute bj .

Finally, NIONKA replaces each predicate in PR with an
alternative predicate that invokes a checking function chk
and passes to chk (1) the outcome of the condition in the
original predicate and (2) the predicate’s ID. At runtime,
when P is run against input ik, chk checks whether a
predicate should be flipped based on information read at
the beginning of the execution from a configuration file
containing the list Bik associated with input ik. A parameter
to NIONKA specifies how many times the branch should be
flipped. For our experiments, we decided to flip only the first
time the predicate is executed, as described in Section III-A.

Note that, although we have not leveraged this aspect of
NIONKA in our evaluation, another parameter to the tool
provides the possibility to change the flipping information at
runtime, which enables more sophisticated flipping schemes.
In fact, we implemented in NIONKA some of these more
elaborated flipping schemes (e.g., flipping only n times or
only when a specific condition is satisfied).

IV. EMPIRICAL EVALUATION

To investigate both the general usefulness of execution
hijacking in supporting dynamic analysis and the effective-
ness of the different variations of the technique that we
considered, we performed an initial empirical evaluation
of the approach. We first performed a feasibility study to
get initial evidence about the benefits of the technique,
which served as support for performing further empirical
assessment. In the feasibility study, we applied the technique
to the detection of (mutation [24]) faults during testing
and obtained encouraging results. We therefore performed a
second, more thorough, study, in which we applied execution
hijacking to the detection of memory errors [22].

The two studies also let us experiment with two alterna-
tive approaches for selecting the branches to flip: directed
flipping (where we select specific predicates to flip based on
some criterion) and exhaustive flipping (where we flip all
predicates whose flipping would increase coverage). In the
rest of this section, we present the two studies in detail and
also discuss the threats to the validity of our results.

A. Study 1: Fault Detection During Testing

In this study, we investigated the effectiveness of execution
hijacking in improving the results of software testing. More
precisely, we investigated the following research question:

RQ1: Given a test suite I , can hijacked executions of the
tests in I detect more faults than normal executions of the
same tests?

To investigate this question, we selected as a subject tcas,
a small program of about 150 lines of code that is part of
the Siemens suite [25]. As test suite I for the study, we used
a set of 30 test cases gathered from the Software-artifact
Infrastructure Repository (SIR).3

Because the study requires the presence of faults, we
built a number of faulty versions of tcas using mutation.
Specifically, we generated 450 mutants of tcas, where
each mutant can be considered a faulty version of the
program [26]. From this set, we eliminated those mutants
that were detected by either none or all of the 30 test
cases considered. By doing this, we eliminated potentially
equivalent mutants and mutants for which hijacking would
not be required, respectively. The reduced set of mutants
contained 226 mutants, each of which was detected by at
least one test case. Let F denote this reduced set of faulty
versions (mutants). From now on, we refer to mutants as
faulty versions of tcas, each of which contains a fault that
corresponds to the difference(s) between that version and the
original tcas.

Next, we randomly created test suites of three different
sizes, I1, I5, and I10, where the subscript indicates the
size of the test suite. (We considered test suites of these

3http://sir.unl.edu/portal/

sizes because larger test suites would identify all faults,
and thus would not benefit from execution hijacking.) We
then executed each test case t in each test suite Ix on each
faulty version f of tcas in F . For each run, we checked
whether t passed or failed—t passed (resp., failed) if f and
tcas produced identical (resp., different) outputs when run
against t. Let F (Ix) ⊆ F be the set of faulty versions
revealed by En(P, Ix), that is, the faulty versions for which
at least one test case in Ix fails. The F (Ix) sets represent
the effectiveness of the test suites Ix in detecting the faults
in F .

To determine the effectiveness of execution hijacking, we
checked whether the hijacked executions of the test cases in
Ix, Eh(P, Ix), could identify additional faults not revealed
by En(P, Ix) (i.e., make faulty versions in the set F −F (Ix)
fail). Because in this study we were mainly interested in
assessing whether execution hijacking can be effective at all,
we leveraged our knowledge of the location of the faults in
the different versions of tcas to perform directed flipping,
as follows. Given (1) a test suite Ix, (2) a faulty version f
whose fault is not revealed by Ix, and (3) the predicate p on
which the fault is control dependent and the corresponding
branch b, we re-executed all test cases in Ix that executed
p but did not cover b, flipped p to force b’s execution, and
checked whether the hijacked execution revealed the fault.

Note that this is obviously not a realistic scenario, as the
location of faults would not be not known a priori in any nor-
mal situation. However, the study can be seen as a simplified
version of a scenario in which we use coverage information
to direct the execution toward uncovered branches. In such
a scenario, we would eventually flip p and execute b; in our
scenario, we go directly to p because the ability of revealing
the fault in f by flipping p is a necessary condition for
execution hijacking to be useful. We investigate other aspects
of execution hijacking, such as the generation of potential
false positives, in our more extensive second study, discussed
in Section IV-B.

To limit the risk that the results may depend on the specific
composition of the Ix test suites considered, we reran the
study ten times, by randomly generating a different set of
Ix test suites each time. This resulted in a total of 30 test
suites. We present the results of the study for all such test
suites in Figure 3.

The figure contains one segmented bar for each test suite,
grouped by size of the suite (1, 5, and 10). The maximum
height of a bar for a test suite T , which is always 100%,
represents the total set of faults that may covered through
hijacking of T—faults not revealed by T , but for which
at least one test case in T exercise the predicate that may
be hijacked to lead to the fault. The segments within each
bar represent, from bottom to top, the percentage of faults
discovered by normal executions, discovered by hijacked
executions, and not discovered by hijacked executions. For
example, for test suite I41 (the fourth test suite of size

0%

20%

40%

60%

80%

100%
I
1

I
2

I
3

I
4

I
5

I
6

I
7

I
8

I
9

I
1
0

I
1

I
2

I
3

I
4

I
5

I
6

I
7

I
8

I
9

I
1
0

I
1

I
2

I
3

I
4

I
5

I
6

I
7

I
8

I
9

I
1
0

|I| = 1 |I| = 5 |I| = 10

Mutants targeted but missed by hijacked executions
Additional mutants detected by hijacked executions
Mutants detected by normal executions

Figure 3. Additional faults detected by hijacked executions of the test
suites.

one in the figure), the height of the bar represents 100%
of 53 mutants, of which 28 (53%) were detected by normal
executions of I41; the remaining 25 were potential targets
for hijacking, and 17 of these (68%) were actually detected
by hijacked executions.

Overall, the data in Figure 3 are promising, as they indicate
that execution hijacking can improve the effectiveness of
an existing test suite. For all of the test suites, execution
hijacking can increase the number of faults identified; for
13 test suites, such increase is between 20% and 50% of
the targeted faults; for another five test suites the increase is
between 50% and 70%; finally, for six test suites the increase
is between 90% and 100%. These results, albeit preliminary,
justify the more extensive evaluation that we performed in
Study 2.

B. Study 2: Detection of Memory Errors

In this second study, we used NIONKA to investigate the
following research questions:
• RQ2: Can execution hijacking increase the effectiveness

of dynamic analysis techniques?
• RQ3: Can our infeasibility-mitigation techniques re-

duce the number of infeasible behavior generated by
execution hijacking while still providing benefits?

In the rest of this section, we describe the experiment setup
we used to investigate these questions and our results: the
dynamic analysis that we targeted, the programs and data we
used in our study, and our experiment protocol.

1) Dynamic analysis targeted: To investigate our research
questions in a concrete context, we first selected a specific
dynamic-analysis technique to target in the study. To make
sure that our results are relevant, we selected a widely
used dynamic-analysis technique: memory error detection.
And as a representative of memory error detection tech-
niques, we chose MEMCHECK (http://valgrind.org/info/tools.

Table I
INFORMATION ON THE PROGRAMS USED FOR THE STUDY.

Program Description KLOC # Tests Coverage
flex lexical analyzer 10 525 50%
grep pattern-matching utility 10 800 33%
sed stream editor 14 360 24%

html#memcheck), a well-known memory error detector for C
and C++ programs based on Valgrind [22]. MEMCHECK can
identify a broad range of memory errors: illegal memory
accesses (e.g., heap over- and under-runs, stack overflows,
and accesses to freed memory), uses of undefined vari-
ables, erroneous heap-memory handling (e.g., double frees,
mismatches between memory allocations and deallocations),
pointer overlaps in memcpy and other related functions, and
memory leaks.

2) Objects of study: For our study, we used three real and
widely-used C programs: flex, grep, and sed. We obtained
also these programs, together with test suites for each of
them, from the SIR repository.3 Table I provides, for each
program, a concise description (Description), information
about its size (KLOC), its number of test cases (# Tests),
and the coverage achieved by these test cases (Coverage).

3) Experiment data: To collect the data needed for our
study, we first ran MEMCHECK on each program P and
computed memerr(I), the set of memory errors detected
by MEMCHECK when running P against its test suite I . This
error set includes all the memory errors that can be detected
on P given the tool and inputs considered. For flex, grep,
and sed, the size of memerr(I) is 2, 7, and 5, respectively.

Next, for each program P , we created different subsets of
its test suite I as follows. We generated all possible subsets
SK of P ’s memerr(I) set and, for each SK , we identified
the subset ISk

of I of test inputs that reveal all and only the
memory errors in SK . We then discarded the ISk

subsets
that included all test inputs in I , which resulted in a final
number of 2, 24, and 8 ISk

sets for flex, grep, and sed.
Then, for each subject program P and each Isk for P , we

computed memerr(Isk), the set of memory errors detected
by MEMCHECK when executed on P for only the inputs in
Isk . We also computed memerrh(Isk), the set of memory
errors revealed by execution hijacking when executed on the
same set of inputs. We actually computed memerrh(Isk) in
five different ways, using execution hijacking (1) without
any infeasibility mitigation technique enabled, (2) with only
filtering enabled, (3) with only early termination enabled, (4)
with only state fixing enabled, and (5) with all infeasibility
mitigation techniques enabled.

Figure 4 shows an intuitive view of the data we just
described, analogous to the view of execution hijacking we
provided in Figure 2. In the figure, memerr(∞) indicates
the ideal set of all possible memory errors of P—the
set of memory errors that would be exposed by running
the program with all possible inputs in its domain. Set

memerr(I)

Gain (measurable)

memerr(Ix)
Unknown

Missedmemerr(∞):

memerrh(Ix)

False positives (unknown)

Gain (unknown) }
Figure 4. Intuitive view of our experimental settings for the study.

memerr(I) ⊂ memerr(∞) is the set of memory errors that
we know because they are reported by MEMCHECK when
it analyzes normal executions of P against its test suite I .
Set memerr(Ix) ⊆ memerr(I) is the set of memory errors
revealed by normal executions of the subset of test inputs
Ix ⊂ I . Finally, set memerrh(Ix) is the set of memory errors
computed by the hijacked executions of Ix.

The errors in (memerr(I) ∩memerrh(Ix)−memerr(Ix)),
indicated as Gain(measurable) in Figure 4, represent the
gain in memory error detection provided by execution
hijacking. Because such errors are in memerr(I),
they are definitely true positives, and because they are
not in memerr(Ix), they are not discovered without
execution hijacking. Conversely, the memory errors in
(memerr(I)−memerrh(Ix)) are true errors that execution
hijacking fails to identify; we call this set Missed .

The hijacked executions would typically also reveal addi-
tional memory errors that do not appear in memerr(I) and
can be computed as the set (memerrh(Ix) − memerr(I)).
Such errors can include both additional true positives, indi-
cated as Gain(unknown) in the figure, and false positives,
indicated as False positives(unknown). Distinguishing be-
tween these two cases requires a manual examination of the
results, which can be a difficult and error prone task for
somebody who is not familiar with the program at hand.
Therefore, we conservatively consider Gain(unknown) and
False positives(unknown) together as a set that we call
Unknown , which represents an upper bound on the number
of false positives that execution hijacking can generate when
applied to memory error detection.

C. Results

The data described in the previous section allows us to
answer the two research questions that we are investigating
in our study. We discuss each research question separately.

1) RQ2: RQ2 investigates whether execution hijacking
can increase the effectiveness of dynamic analysis tech-
niques. To address this question, we use the data described
in Section IV-B3. More precisely, for each program P
considered, we compute the average of Gain(measurable)
and Missed across all of the subsets Ix ⊂ I for P .

Sed Grep Flex

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

memerr(Ix) Gain(measurable) Missed

Figure 5. Effectiveness of execution hijacking: additional errors detected
and missed errors.

In this case, we consider the data collected for execution
hijacking run without any infeasibility-mitigation technique
enabled, as we are interested in assessing the maximum gain
that can be provided by the approach. (We will investigate the
trade-offs between gain and infeasibility in Section IV-C2,
where we investigate RQ3.)

Figure 5 presents the values of memerr(Ix),
Gain(measurable), and Missed for the three programs. As
the figure shows, execution hijacking always increases the
number of (real) memory errors detected by MEMCHECK.
For sed, MEMCHECK without execution hijacking detects
48% of the known memory errors, whereas it detects 93%
of such errors when run with execution hijacking. For grep,
the percentage of detected memory errors increases from
51% to 57%, which is the lowest gain among the three
subjects. Finally, for flex, the percentage of detected errors
increases from 50% to 75%.

To get a better understanding of the results, we also
checked the percentage of the individual subsets of test
inputs Ix for which execution hijacking provided a benefit.
We found that execution hijacking was able to increase the
number of memory errors revealed by a subset of inputs in
50%, 33%, and 100% of the cases for flex, grep, and sed,
respectively.

Overall, these results are encouraging and illustrate the
potential of execution hijacking to improve dynamic anal-
ysis results. Although NIONKA is more effective on some
programs than others, it can increase the number of memory
errors detected by MEMCHECK for all of the programs
considered. Across programs, NIONKA was able to improve
memory error detection for 17 of the 34 input subsets
considered, and in most of these cases, the improvements
were considerable.

2) RQ3: The results for RQ2 show the effectiveness of
execution hijacking but do not mention the unknowns (i.e.,
the upper bound for the number of false positives) that a

S
e

d
 o

ri
g

in
a

l

S
e

d
 fi

lte
r

S
e

d
 t

e
rm

in
a

tio
n

S
e

d
 f

ix
in

g

S
e

d
 c

o
m

bi
n

e
d

G
re

p
 o

ri
g

in
a

l

G
re

p
 f

ilt
e

r

G
re

p
te

rm
in

a
tio

n

G
re

p
 f

ix
in

g

G
re

p
 c

o
m

b
in

e
d

F
le

x
 o

ri
gi

n
a

l

F
le

x
 f

ilt
e

r

F
le

x
 t

e
rm

in
a

tio
n

F
le

x
 f

ix
in

g

F
le

x
 c

o
m

b
in

e
d

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Removed TPs TPs Unknowns Removed unknowns

Figure 6. Impact of infeasibility-mitigation techniques on the results of
execution hijacking.

dynamic analysis based on execution hijacking can produce
when observing infeasible behaviors. In RQ3, we consider
such unknowns and investigate whether our infeasibility-
mitigation techniques (see Section III-B) can reduce the num-
ber of infeasible behaviors generated by execution hijacking,
while still providing benefits. Intuitively, when applying
those techniques, there exists a trade-off between the gain
achieved by execution hijacking and the number of unknown
errors reported—although the techniques can reduce the
number of unknowns, they can also reduce the gain.

Figure 6 presents, as a segmented bar chart, the data
about the memory errors identified using NIONKA in the five
configurations discussed in Section IV-B3: (1) without any
infeasibility-mitigation technique enabled (original), (2) with
only filtering enabled (filter), (3) with only early termination
enabled (termination), (4) with only state fixing enabled
(fixing), and (5) with all infeasibility-mitigation techniques
enabled (combined).

For each subject, the figure contains five bars, one for
each configuration, and each bar contains four segments. The
bottom segment (Removed TPs) for a given configuration
represents the percentage of true positives generated by
NIONKA that are eliminated when the infeasibility-mitigation
techniques for that configuration are applied. This percentage
is 0 in most cases, so the first segment is present only in
a few bars. The second segment from the bottom (TPs) is
the percentage of true positives revealed by NIONKA that
are not affected by the mitigation techniques for that con-
figuration. The third segment (Unknowns) is the percentage
of unknowns that the mitigation techniques are not able to
eliminate. Finally, the top segment (Removed unknowns)
represents the percentage of unknowns that the mitigation
techniques do remove. Therefore, the top two segments,
considered together, represent the percentage of unknown
memory errors generated by MEMCHECK when run with
NIONKA and without any mitigation technique enabled.

As the data shows, the total number of unknowns produced

when using execution hijacking without mitigation (original)
is fairly large compared to the gain provided, which will
likely affect the practical usefulness of the technique. In other
words, the gains are not large enough to compensate the
effort required to separate true positives and false positives
manually. In such cases, developers would not be able to
take advantage of execution hijacking to improve dynamic
analysis due to excessive noise in the results.

The data also shows that our infeasibility-mitigation tech-
niques can reduce the percentage of unknowns without
affecting the gains in most cases. Among the individual
techniques, early termination is the most successful at re-
ducing unknowns. This result confirms the intuition that pre-
venting inconsistent states from propagating too extensively
can considerably reduce the amount of infeasible behaviors
generated.

Conversely, state fixing is the least effective technique,
with basically no effect on the number of unknowns. This
may be an artifact of the fact that we performed a limited
form of state fixing that targets scalar variables only (see
Section III-B3). We therefore plan to investigate, in future
work, more powerful approaches to state fixing that can
handle conditions involving pointers and non-primitive type
values.

Filtering’s effectiveness is also fairly limited. It provides
some help in reducing the number of unknowns for sed and,
especially, grep, but it has almost no effect on flex.

Finally, the combined use of all three infeasibility-
mitigation techniques provides the best results overall, which
is not surprising considering that the three techniques are
mostly orthogonal.

Overall, we consider also the results for RQ3 to be encour-
aging. Although the total number of unknowns is still larger
than the number of true positives, which is not ideal, such
number is dramatically reduced by the mitigation techniques.
Most importantly, the gains provided by execution hijacking
are almost unaffected by the mitigation techniques. Based
on these findings, and considering that this was our first
attempt at improving execution hijacking, we believe that it
is possible to define more aggressive mitigation techniques
that can further improve the ratio between true positive and
unknowns. Furthermore, the number of unknowns is an upper
bound on the number of false positives, and in fact we expect
at least some of the unknowns to be additional true positives.

D. Threats to Validity

The most significant threats to the validity of our results
are threats to external validity, which arise when the observed
results cannot be generalized to other experimental setups.
In our study of memory errors, we used three C programs;
in the study of testing, we used one subject. Therefore, we
can draw only limited conclusions on how our results might
generalize to other programs. Moreover, our current evalu-
ation was limited to two applications of dynamic analysis.

The performance of execution hijacking may vary for other
kinds of analysis. However, the programs we used are real,
widely used programs, and the analyses considered are very
popular, which mitigates such threats of external validity.

Threats to internal validity arise when factors affect the
dependent variables (the data described in Section IV-B3)
without the researchers’ knowledge. In our study, such fac-
tors are errors in the implementation of the technique. One of
the strengths of execution hijacking, especially in its current
formulation, is that it does not require sophisticated analysis
to be performed, which reduces the risk for implementation
errors. Moreover, we extensively tested NIONKA on small
examples to gain confidence in its implementation.

V. RELATED WORK

The conventional way of exploring new program behaviors
is based on test-input generation. Although many advances
have been made in automated test-input generation, espe-
cially based on techniques that use symbolic execution (e.g.,
[12], [14], [15]) or a combination of symbolic and concrete
execution (e.g., [16], [17]), test-input generation continues
to be an expensive and inherently extremely complex task.
Systematic exploration of a large number of behaviors using
test-input generation is therefore not practical.

Researchers have also investigated ways to observe ad-
ditional program behaviors by monitoring and/or sampling
field executions (e.g., [1], [9]–[11]). The benefit of such
techniques is that the field executions represent how the
software is actually used by real users, instead of how it
was anticipated to be used. Thus, the representativeness of
developer-provided test inputs can be significantly enriched.
However, practical considerations still limit the applicability
of such techniques. Among these, performance and privacy
concerns restrict the amount of instrumentation that can be
added to, and the data that can be collected from, deployed
software.

Execution hijacking is an alternative technique for observ-
ing new program behaviors without requiring the monitoring
of field executions or the generation of new test inputs. The
idea of forcibly altering the outcome of a predicate at runtime
has been investigated in the specific contexts of identifying
elided conditionals [27], fault localization [28], malware
analysis [18], [19], and fault detection [20]. However, these
previous investigations have targeted specific contexts and, in
some cases, did not share our goal of exploring new program
behaviors.

Renieris and colleagues [27] introduced the notion of an
elided conditional: a conditional statement whose evaluation
is inconsequential. To identify such conditionals, their tech-
nique forcibly changes the value of a condition and monitors
for differences in the program output. Their goal is not
to explore new program behaviors, but rather to identify
predicates that have no effect on the program outcome.

Zhang and colleagues [28] present a fault-localization
technique that is based on switching a predicate at runtime.
Given a failing execution that produces an incorrect output,
their technique re-executes the program and switches the
outcome of an executed predicate at each execution until
either the correct output is produced or all predicates have
been switched. Also in this case, the goal of predicate
switching is not to explore unseen behaviors, but to identify
a program path that can generate a correct output.

Moser and colleagues [18] present, in the context of
malware analysis, a technique that uses a single execution to
explore multiple program paths. Their goal is to detect mali-
cious program behavior that is difficult to identify using test-
case generation (e.g., a malware could perform a malicious
activity only on certain dates). Specifically, their approach
drives program execution based on how certain inputs (e.g.,
the content of a file or the current system time) are used to
decide the outcome of a predicate p. By forcing alternative
evaluations of p, their approach can explore whether the
program could exhibit malicious behaviors had those external
(environmental) conditions been satisfied. Their approach
performs consistent state updates, to the extent possible, at
p to ensure that the path traversed after flipping p does not
start from an inconsistent state.

Related to the previous approach is the approach by Wil-
helm and Chiueh [19]. They present a system, LIMBO, that
uses forced sampled execution to detect kernel rootkits. In
a single execution of a kernel driver, LIMBO flips predicates
based on a depth-first traversal of the driver’s control-flow
graph. Unlike the approach of Moser and colleagues, LIMBO
does not perform state updates to ensure consistency.

Lu and colleagues [20] present a hardware-supported
approach, called PATHEXPANDER, that executes “not-taken”
paths to increase path coverage, with the goal of improving
fault detection. PATHEXPANDER attempts to reduce the state
inconsistency along a not-taken path by fixing the variables
used in the condition at which a non-taken path begins.
Although related to our approach, the main emphasis of their
work is on leveraging hardware support to enable the use of
their technique on user platforms.

Finally, techniques that dynamically modify program ex-
ecutions have also been explored for identifying regres-
sion faults [29], supporting fault localization [30], detecting
concurrency-related faults [31], and assess software robust-
ness through fault injection [32].

The key distinguishing aspect of our work from all these
approaches is that we investigate execution hijacking as a
general technique for observing new program behaviors—
without generating new program inputs—that can be applied
to different types of dynamic analyses. Specifically, we have
evaluated the effectiveness of hijacking for software testing
and memory-error detection. Moreover, unlike most existing
approaches, we propose several techniques for mitigating the
infeasibility problem inherent in execution hijacking.

VI. CONCLUSION AND FUTURE WORK

In this paper we presented an approach, called execution
hijacking, for improving the effectiveness of dynamic anal-
ysis. Execution hijacking forces execution to proceed along
unexplored paths by flipping the outcome of predicates at
runtime. Although a hijacked execution is infeasible, it can
reveal behaviors that could occur in a normal execution
with a different input. In such cases, hijacking can en-
able dynamic-analysis techniques to observe new behaviors
without requiring the generation of new program inputs.
Execution hijacking can therefore overcome the limitations
imposed by the cost and complexity of input generation,
which restricts dynamic analyses to observe only a small
fraction of a program’s behavior.

We also presented a prototype tool, NIONKA, that im-
plements execution hijacking for C and C++ programs and
that is freely available.2 Using NIONKA, we performed an
empirical evaluation in which we used NIONKA to improve
the effectiveness of software testing and memory error de-
tection, two commonly performed dynamic analysis tech-
niques. Our results, albeit still preliminary, are promising:
for the programs, inputs, and analyses considered, execution
hijacking was able to improve the results of the analysis. Our
results also indicate that hijacking can reveal many unknown
behaviors that may not be easy to classify as true or false
positives. However, we provided initial evidence that suitably
defined infeasibility-mitigation techniques can help reduce
the number of unknown behaviors considerably.

Although encouraging, our results are just a first step
in this challenging research area, and many interesting di-
rections are still to be explored. In our investigation, we
performed a limited evaluation of three different techniques
for reducing possibly infeasible behaviors introduced by
execution hijacking. Further evaluation of these approaches
and investigation of improved techniques—such as more so-
phisticated state-fixing techniques or techniques that leverage
program dependences to perform more aggressive filtering—
are needed to provide stronger evidence of the usefulness
of execution hijacking. Also, our current instantiation of
execution hijacking makes certain choices about how many
branches to flip in an execution, which branches to flip,
and when to flip; other choices for these aspects need to
be investigated. In the immediate future, we will perform
additional empirical evaluation of the approach by consider-
ing more subjects and, especially, more dynamic analyses. In
particular, we are currently considering the use of execution
hijacking to support dynamic invariant detection [33] and
specification mining [7].

Overall, we believe that, if our initial results were to be
confirmed by further experimentation, and improved with the
development of more effective infeasibility-mitigation tech-
niques, execution hijacking could represent a considerable
step forward in the area of dynamic analysis.

ACKNOWLEDGMENTS

This work was supported in part by NSF awards CCF-
0916605 and CCF-0725202 to Georgia Tech.

REFERENCES

[1] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I.
Jordan, “Scalable Statistical Bug Isolation,” in Proceedings of
the ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2005, pp. 15–26.

[2] M. Jump and K. McKinley, “Cork: Dynamic memory leak
detection for garbage-collected languages,” in Proceedings
of the 34th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, 2007, pp. 31–38.

[3] N. Mitchell and G. Sevitsky, “Leakbot: An automated and
lightweight tool for diagnosing memory leaks in large Java
applications,” in Proceedings of the 17th European Conference
on Object-Oriented Programming, 2003, pp. 351–377.

[4] W.-K. Chen, S. Bhansali, T. Chilimbi, X. Gao, and W. Chuang,
“Profile-guided proactive garbage collection for locality opti-
mization,” in Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation, 2006,
pp. 332–340.

[5] A. Orso, T. Apiwattanapong, and M. J. Harrold, “Leveraging
field data for impact analysis and regression testing,” in Pro-
ceedings of the 9th European Software Engineering Confer-
ence and 10th ACM SIGSOFT Symposium on the Foundations
of Software Engineering, september 2003, pp. 128–137.

[6] M. D. Ernst, A. Czeisler, W. G. Griswold, and D. Notkin,
“Quickly detecting relevant program invariants,” in Proceed-
ings of the 22nd International Conference on Software Engi-
neering, 2000, pp. 449–458.

[7] G. Ammons, R. Bodı́k, and J. R. Larus, “Mining specifica-
tions,” in Proceedings of the 29th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, 2002,
pp. 4–16.

[8] J. Bowring, A. Orso, and M. J. Harrold, “Monitoring deployed
software using software tomography,” in Proceedings of the
ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for
Software Tools and Engineering, November 2002, pp. 2–8.

[9] J. Clause and A. Orso, “A Technique for Enabling and
Supporting Debugging of Field Failures,” in Proceedings of
the 29th IEEE and ACM SIGSOFT International Conference
on Software Engineering, 2007, pp. 261–270.

[10] “The GAMMA Project,” http://gamma.cc.gatech.edu/, georgia
Institute of Technology.

[11] M. Haran, A. Karr, A. Orso, A. Porter, and A. Sanil, “Ap-
plying classification techniques to remotely-collected program
execution data,” in Proceedings of the 10th European Software
Engineering Conference / 13th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2005,
pp. 146–155.

[12] C. Cadar, D. Dunbar, and D. R. Engler, “KLEE: Unassisted
and Automatic Generation of High-Coverage Tests for Com-
plex Systems Programs,” in Proceedings of the 8th USENIX
Symposium on Operating Systems Design and Implementation,
2008, pp. 209–224.

[13] J. C. King, “Symbolic execution and program testing,” Com-
munications of the ACM, vol. 19, no. 7, pp. 385–394, 1976.

[14] W. Visser, C. S. Pǎsǎreanu, and S. Khurshid, “Test Input
Generation with Java PathFinder,” ACM SIGSOFT Software
Engineering Notes, vol. 29, no. 4, pp. 97–107, 2004.

[15] T. Xie, D. Marinov, W. Schulte, and D. Notkin, “Symstra:
A framework for generating object-oriented unit tests using
symbolic execution,” in Proceedings of the 11th International
Conference on Tools and Algorithms for the Construction and
Analysis of Systems, 2005, pp. 365–381.

[16] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed
Automated Random Testing,” in Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and
Implementation, 2005, pp. 213–223.

[17] K. Sen, D. Marinov, and G. Agha, “CUTE: A Concolic Unit
Testing Engine for C,” in Proceedings of the 10th European
Software Engineering Conference / 13th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering,
2005, pp. 263–272.

[18] A. Moser, C. Kruegel, and E. Kirda, “Exploring multiple
execution paths for malware analysis,” in Proceedings of the
IEEE Symposium on Security and Privacy, 2007, pp. 231–245.

[19] J. Wilhelm and T. Chiueh, “A forced fampled execution
approach to kernel rootkit identification,” in Proceedings of
the 10th International Symposium on Recent Advances in
Intrusion Detection, ser. LNCS, vol. 4637, 2007, pp. 219–235.

[20] S. Lu, P. Zhou, W. Liu, Y. Zhou, and J. Torrellas, “PathEx-
pander: Architectural support for increasing the path coverage
of dynamic bug detection,” in Proceedings of the 39th Annual
IEEE/ACM International Symposium on Microarchitecture,
Dec. 2006, pp. 38–52.

[21] G. J. Myers, The Art of Software Testing. John Wiley and
Sons, 1979.

[22] J. Seward and N. Nethercote, “Using Valgrind to detect
undefined value errors with bit-precision,” in Proceedings of
the 2005 USENIX Annual Technical Conference, 2005.

[23] S. McConnell, “Daily build and smoke test,” IEEE Software,
vol. 13, no. 4, p. 144, 1996.

[24] T. A. Budd, “Mutation analysis: Ideas, examples, problems
and prospects,” in Computer Program Testing, B. Chan-
drasekaran and S. Radicchi, Eds. New York, NY: North-
Holland Publishing Company, 1981, pp. 129–148.

[25] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, “Ex-
periments of the effectiveness of dataflow- and controlflow-
based test adequacy criteria,” in Proceedings of the 16th
International Conference on Software Engineering, 1994, pp.
191–200.

[26] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation
an appropriate tool for testing experiments?” in Proceedings
of the 27th international conference on Software engineering
(ICSE 2005). New York, NY, USA: ACM, 2005, pp. 402–
411.

[27] M. Renieris, S. Chan-Tin, and S. P. Reiss, “Elided condi-
tionals,” in Proceedings of the 5th ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and Engi-
neering, Jun. 2004, pp. 52–57.

[28] X. Zhang, N. Gupta, and R. Gupta, “Locating faults through
automated predicate switching,” in Proceedings of the 28th
International Conference on Software Engineering, May 2006,
pp. 272–281.

[29] J. Laski, W. Szermer, and P. Luczycki, “Dynamic mutation
testing,” in Proceedings of the 15th International Conference
on Software Engineering, May 1993, pp. 108–117.

[30] A. Zeller, “Isolating cause-effect chains from computer pro-
grams,” in Proceedings of the 10th ACM SIGSOFT Symposium
on Foundations of Software Engineering, Nov. 2002, pp. 1–10.

[31] O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, and S. Ur,
“Multithreaded Java program test generation,” IBM Systems
Journal, vol. 41, no. 1, pp. 111–125, 2002.

[32] J. Voas and G. McGraw, Software Fault Injection: Innoculat-
ing Programs Against Errors. John Wiley & Sons, 1997.

[33] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin,
“Dynamically discovering likely program invariants to support
program evolution,” IEEE Transactions on Software Engineer-
ing, vol. 27, no. 2, pp. 1–25, Feb. 2001.

