Peer-to-peer Load Testing

Jorge Augusto Meira
UFPR, University of Luxembourg
Curitiba, Brazil - Luxembourg
Email: jmeira@inf.ufpr.br

Curitiba, Brazil

Abstract—Nowadays the large-scale systems are common-
place in any kind of applications. The popularity of the web
created a new environment in which the applications need to
be highly scalable due to the data tsunami generated by a huge
load of requests (i.e., connections and business operations). In
this context, the main question is to validate how far the web
applications can deal with the load generated by the clients.
Load testing is a technique to analyze the behavior of the
system under test upon normal and heavy load conditions.
In this work we present a peer-to-peer load testing approach
to isolate bottleneck problems related to centralized testing
drivers and to scale up the load. Our approach was tested in
a DBMS as study case and presents satisfactory results.

Keywords-peer-to-peer; large-scale systems; load testing;

I. INTRODUCTION

Over the last decade, the web became omnipresent re-
quiring to develop scalable systems due to the load of an
increasing number of connected clients.

The fact is that the web is now portable and one can be
connected all the time by using, for example, a smartphone
or a tablet. Hence, the number of connected clients and the
amount of data increased in orders of magnitude, which is
called by the database community as “data tsunami” [1].

In this context, large-scale systems are designed to support
the web load by gathering distributed components working
along. A computer cluster is an example of a large-scale
system. It gathers a set of machines (i.e., nodes) to form a
single high performance computer, thus it is easy to scale
up the system only by adding a new node. Failures can
happen constantly due to the number of nodes running
along combined with the load created by clients in terms
of data and operations. For this reason, large-scale systems
are designed to be fault-tolerant and scalable upon heavy
load conditions.

As any kind of system, large-scale systems are tested to
validate functionalities (e.g., data store and retrieve opera-
tions) and properties (e.g., fault-tolerance, scalability).

These systems, are commonly tested through a distributed
test driver that coordinates the execution of test cases [2].
The distributed test driver typically consists of a test con-
troller, or coordinator, that synchronizes the execution of
test cases across distributed testers. Testers are responsible

Work partially funded by Fundacdo Araucdria.

Eduardo Cunha de Almeida
UFPR

Email: eduardo@inf.ufpr.br

Yves Le Traon Gerson Sunye
University of Luxembourg INRIA - University of Nantes
Luxembourg Nantes, France

yves.letraon @uni.lu gerson.sunye @univ-nantes.fr

to invoke the inputs from a test case within the system under
test (SUT) context and to compare the expected output with
the observed output to assign a verdict.

Howeyver, the test drivers from the state of the art are not
scalable to reproduce heavy load conditions, in particular
two major load conditions, the cloud computing operations,
such as the Amazon peak load during the Christmas season,
and the internet-scale cyber attacks, such as the distributed
denial of service (DDoS). In this paper, we leverage from a
scalable peer-to-peer (P2P) test driver to generate these two
major load conditions. First, the cloud computing load is
important to expose defects that only appear upon peak load
conditions. In [3], a number of defects exposed by this type
of load is discussed in the context of GMail, Skype, Netflix,
and Facebook. Second, a cyber attack load, like the DDoS
produced by the hacker group “Anonymous” was responsible
to take down several websites, such as the Bank of America,
CIA, MasterCard, and VISA .

We based our test driver on two main hypotheses that
are empirically questioned by reproducing a heavy load
condition. First, large-scale systems can only be tested
through a distributed test driver to avoid results polluted by
test coordination bottlenecks (e.g. with current test drivers).
Second, a P2P load testing approach enables to scale up a
test load by several orders of magnitude and to coordinate
it (distributing the test tasks and collecting results).

Our study case is an open source database management
system (DBMS) that is commonly used as storage system
in cloud computing solutions, such as Greenplum? and
EnterpriseDB>. The results are discussed in the P2P load
testing context.

The rest of paper is composed as follows. Next section
present a overview about large-scale testing. Section III
presents our testing methodology. Section IV describes the
experiments. Section V concludes the paper.

II. LoAD TESTING

Two main approaches can be used by load testing. The
first approach is based on a point-to-point connection be-
tween the test driver and the SUT, where the driver submits

"http://money.cnn.com/2012/01/20/technology/anonymous_hack/index.htm
Zhttp://www.greenplum.com/
3http://www.enterprisedb.com/cloud-database

a certain load against the SUT interface. The objective is
to validate the performance behavior of the SUT upon a
given workload. Several tools, such as Hammerora®*, Oracle
Application Testing Suit®, and AppPerfect®, provide a test
driver to submit operations based on some type of load.
However, they are limited to present performance results
instead of the problems related to the load, which is typically
presented by validation components used in software testing
practices (ie., the test oracle). The testing tool Agenda [4]
provides both a methodology and a test driver, however,
it is tailored to database applications. Agenda presents a
technique for checking database properties (e.g., ACID), and
does not focus on load issues. In addition, all theses tools
are based on a “single-party” test driver [5] that aims at
testing the SUT in a point-to-point connection, with a single
node. To reach large-scale load conditions it is required a
“multi-party” test driver with distributed nodes (ie., tester
components) communicating with the SUT interface.

Distributed test drivers are in general used along dis-
tributed testing, where a tester component is responsible to
invoke the inputs from a test case within the SUT context
and to compare the expected output with the observed output
to assign a verdict [6], [7].

In this paper, we leverage the P2P [8] test driver ap-
proach, since a typical P2P application can easily reach
from thousands to millions of users [9], as does Gnutella,
Napster, Tapestry or Bittorrent. This scalability is possible,
since there is no centralized component in a P2P system,
where the peers are clients and servers at the same time.
In the P2P approach, synchronization of test cases is done
directly among the distributed testers without a centralized
coordination. Figure 1 presents a UML deployment diagram
that illustrates the deployment of PeerUnit. The diagram has
two logical nodes, represented by rectangular cuboids. The
coordinator and the tester run on different logical nodes and
are connected by a communication path, which specifies
that each tester is connected to exactly one coordinator and
the coordinator can be connected to several testers. This
approach only focuses on improving the performance of the
test coordination by reducing the number of coordination
messages and the time to exchange them [10], [8]. As such,
it does not aim at generating different load conditions like
those observed for the large-scale systems.

III. LOAD TESTING METHODOLOGY

Large-scale testing is a hard task, if addressed without
a rigorous and structured methodology. By analogy, it can
be compared to integration testing, for which it is rec-
ognized that testing directly the whole system (big-bang
strategy) is counter productive, while incrementally testing
and integrating the system parts make it possible both to

“http://hammerora.sourceforge.net/
Shttp://www.oracle.com/technetwork/oem/app-test/index.html
Shttp://appperfect.com/products/load-testing/database-load-testing htm]

= 3] 3]

Peer
Application

Coordinator Tester [--->|

Figure 1. Peerunit Deployment

manage the system complexity and to understand and locate
the detected faults. Where “divide and reign” methodology
works for managing integration testing, there is no such
strategy for testing large scale systems. Directly pushing a
maximum load is likely to provoke failures, as a big-bang
strategy usually does for integration, but it will not help
understanding what are the causes of the failure, where does
it come from. A test methodology is thus needed to cope
with test scalability and to guide the testing campaign [11]:
a test driver to handle such scale [12], [13], and a test load
to allow exercising the SUT. In this paper, we present a P2P
load testing approach based on two main hypotheses.

Hpypothesis 1: For creating realistic load conditions, such
as presented by [3], the test driver must scale up by
distributing the test tasks and sending concurrent requests
to the SUT.

Proof protocol 1: To compare the resource consumption
of the SUT while testing through a centralized test coordi-
nation and a P2P test driver.

In fact, the empirical evidence will be obtained by show-
ing the intrinsic limitations of a centralized test driver,
compared to P2P scalability, that provides the mean to
generate any peak load condition.

Hypothesis 2: The SUT does not use all of the allocated
resources upon peak loads.

Proof protocol 2: To compare the inconsistencies be-
tween the declared SUT setup and the effective usage of
the its resources.

This hypothesis is related to the defects exposed by the
peak load generated by our P2P approach. We claim that
these defects prevent the SUT from allocating all the avail-
able resources. Next, we discuss the P2P test architecture
and the load generation.

A. P2P test architecture

The P2P test approach provides a solution for deploying
the driver across a large number of machine nodes to gen-
erate peak load conditions. We take advantage of P2P inner
scalability provided by the PeerUnit’ testing framework.

The PeerUnit framework is based on 3 dimensions:

1) Functionality captured by the test sequence which
enables a given behavior to be exercised;

"The PeerUnit Project: http://peerunit.gforge.inria.fr/

2) Scalability captured by the number of peers in the
system,

3) Volatility captured by the number of peers which leave
or join the system after its initialization during the test
sequence.

In this paper, we are based on the scalability dimension
to generate two major load conditions that are commonplace
in large-scale systems. First, the cloud computing load that
aims at reproduce peak load conditions experienced by major
cloud computing players. In [3], a number of defects exposed
by this type of load is discussed in the context of GMail,
Skype, Netflix, and Facebook. Second, a cyber attack load
that aims at reproduce DDoS attacks that take down major
websites, such as those of the Bank of America, CIA,
MasterCard, and VISA.

PeerUnit is implemented in Java and makes extensive use
of dynamic reflection and annotations, using these features
to select and execute the steps that compose a test case.
Typically a test case are basically composed of a name, an
objective and input/output data[14]. PeerUnit divides test
cases into a sequence of test steps and coordinates the
dispatch of the test case steps through the distributed testers.
It ensures that a test step is completely finished by all testers
before starting the next step. Then, testers are responsible to
execute each test case steps against the SUT interface. The
test case are implemented as Java classes and the test steps
as Java methods. Table I illustrates the implementation of a
load test.

Table T
TEST CASE

[Step [Testers | Workload by tester |

(a1) * createConn400();
(a2) * createConn2000();
(a3) * createConn20000();

The first test step (a1) corresponds to the method cre-
ateConn400(), in which a tester submits 400 operations to
the SUT. For instance, if a; is performed by 10 testers
that is equivalent to 4,000 operations. The following test
steps increased the operations up to 200,000 (10*20,000)
operations. The pseudocode can be observed in Listing 1

public class loadTest{
@TestStep(order=1, range = " ", timeout = 100000)
public void createConn400(){
createThreads (400, connDBMS);
}
@TestStep(order=2, range = " ", timeout = 100000)
public void createConn2000(){
createThreads (2000, connDBMS);

@TestStep(order=3, range = " ", timeout = 1000000)
public void createConn20000(){

createThreads (20000, connDBMYS);

}
}

Listing 1. Test Case Class

The methods have 3 attributes: order that specifies the
execution order of each step; range that identifies the testers
responsible for the step (“*”” means all possible testers will
execute the test step); and timeout that is used to avoid
deadlocks in case a tester did not finish the execution, in
this case the step is aborted.

IV. EXPERIMENTS

In this section, we present the results of our experiments to
validate the hypotheses and to generate peak load conditions
for testing. The SUT used in the experiments was the
PostgreSQL (version 8.3), a popular open source DBMS.
The choice of PostgreSQL DBMS as our study case is
due to two main reason: (i) the access to the source code
helps us to understand the cause of the exposed defects;
(i) PostgreSQL is been used as the storage system of a
number of cloud computing solutions where peak load con-
ditions are expected. Some of these solutions include: Green-
plum [15], EnterpriseDB Postgres Plus Cloud Database®,
the Heroku’s Postgre-as-a-service solution’, and the Cloud
Foundry “vPostgres” service.

A. Database specification

To test a DBMS, we based our experiments on a pop-
ular database benchmark that provides database operations
(i.e., transactions) and the database structure. The TPC-B
benchmark is, actually, a load testing approach. It aims at
testing the integrity of transactions upon significant disk
processing (i.e., I/0 operations)!. TPC-B provides four
tables that implement a banking application (see Figure2)
and reproduces the branches, tellers, accounts and accounts
history.

The transactions reproduce deposits and withdraws per-
formed by the customers (see Listning 2). Each transaction
is composed by five actions: (i) update customer balance;
(ii) select new balance; (iii) update teller balance; (iv) update
branch balance; (v) commit deposit/withdraw in the history
table.

Differently from TPC-B, which executes one transaction
per DBMS client up to the commit state, we submit trans-
actions concurrently up to the workload upper bound spread
across the |T'| testers. The upper bound is defined by the
test engineer with respect to the test objective. At each
t; € T, the transactions are submitted using the “Weibull”
distribution frequency. We use the “Weibull” distribution
frequency, since it is commonly used by engineers in stress

Shttp://www.enterprisedb.com/cloud-database
9http://www.heroku.com/
103 ww.tpc.org/tpe-b

Branch
Branch_ID
Branch_Balance
1:M 1M
Account 1M Teller
Account_ID ¢ Teller_ID
Branch_ID Branch_ID
Account_Balance Teller_Balance
History
1M Account_ID / ‘M
Teller 1D
Branch_ID
Amount
Timestamp

Figure 2. Database schema

testing I to search for a product failure rate [16], [17].
To guarantee the testers all submit requests at a specified
time, we leverage the distributed PeerUnit coordination
algorithm, that organize the testers in a tree-like manner
where synchronization messages are exchanged with low
coordination overhead [8].

BEGIN TRANSACTION
Update Account where Account_ID = Aid:
Read Account_Balance from Account
Set Account_Balance = Account_Balance + Delta
Write Account_Balance to Account
Write to History :
Aid, Tid, Bid, Delta, Time_stamp
Update Teller where Teller_ID = Tid:
Set Teller_Balance = Teller_Balance + Delta
Write Teller_Balance to Teller
Update Branch where Branch_ID = Bid:
Set Branch_Balance = Branch_Balance + Delta
Write Branch_Balance to Branch
COMMIT TRANSACTION
Return Account_Balance to driver ;

Listing 2. Transaction pseudocode

B. Hardware Configuration

All of our experimentation is conducted on a cluster
machine part of the Grid5000 platform'?. We use 11 “Sun
Fire X2200 M2” machine-nodes connected by Gigabit Eth-
ernet, where each node is configured with 2 duo-core AMD
Opteron 2218@2.613GHz and 8GB of main memory. We
use one node to run exclusively the DBMS server and
ten nodes to run clients, where each client is managed by

Stress testing is a type of load testing with the specific objective to
degrade the performance of the SUT to find related defects.
2http://www.grid5000.fr

a Peerunit tester. The clients and the server are executed
on separate nodes, even for the smaller experimentations,
to avoid performance interference. All nodes run with
GNU/Linux Debian 5.0.9 (kernel 2.6). In all experiments
reported in this paper, each tester is configured to run
in its own Java Virtual Machine (JVM). The cost of test
coordination is negligible and is not discussed in this paper
(see [8] for a complete discussion on test coordination
overhead).

C. DBMS Configuration

In all experiments only one setup parameter was modified,
that is the maximum number of concurrent connections,
max_connections, that by default is equal to 100. We
set its value to 2,000, accordingly to the amount of available
memory in the server node-machine [18]. This amount
is controlled by the operating system parameter SHMMAX,
which specifies the largest shared memory segment size.
According to the PostgreSQL documentation, the following
formula is recommended to calculate its value:

SHMMAX = (250kB + 8.2k B * shared_buf fers +

14.2k B * maz_conn)

D. Comparing the Test Driver Architectures

The first experiment highlights the need of a distributed
testing architecture for simulating large-scale environments.
The experiment compares the two test architectures, the first
using the point-to-point test driver and the second using
the P2P testing driver (distributing concurrent test requests).
The point-to-point driver uses two machines, the first with
the SUT and another simulating the clients. The second
architecture is distributed and uses one machine to the SUT
and five machines to simulate the clients.

Centralized vs Distributed

5000 - A
4000 |- |

3000 |- 1

Transactions per second

2000 |- g

1000 B

0 I
1 2 3
Test Step

Figure 3. Hypothesis 1

Figure 3 shows the scalability problems of the centralized
architecture where the number of created threads, that simu-
late the clients, is limited by the tester machine resources as

Extreme conditions

Aécgp':eg
inished ------—-
5000 Errors <<+

4000 \ 4

3000 | B 1

Connections

2000 | bl

1000 " A

% SN L L L L L L i
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Seconds

Figure 4. Load testing - Workload 100,000

long as we increase the load at each test step. It is possible
to observe that the bottleneck is the tester machine, not the
SUT. The number of concurrent transactions submitted by
the point-to-point driver did not change due to the limitation
of the tester machine, and the DBMS could accept all the
submitted transactions as discussed in the next section.

E. Peak load conditions

This experiment is based on a distributed architecture
and tries to reproduce a cloud computing load. This is an
important step of the load testing to help analyzing the
behavior of the DBMS upon peak conditions and also search
for related defects. The expected behavior for this test, is the
DBMS accepting 2,000 concurrent connections and finishing
each transaction in the average time of the first step (we
assume the first test step as the reference for the average
response time). The exceeding connections shall be dropped
by issuing a default error message'>.

Figure 4 shows the results where the DBMS presented
an important number of error messages upon the peak
conditions. From a functional test point of view, this is
considered as a defect, since the observed connection value
differs from the expected one.

In fact, we observed an increasing number of new backend
DBMS processes created by each new transaction request.
To create a backend process, besides getting a piece of
shared-memory, the DBMS needs to manage the state of
each process within an array. When a larger number of
requests are taken by the DBMS due to the Max_conn
setup, the number of backend processes fill out the array and
eventually overtook its limit. The result: the new backend
processes are dropped and the objective of Maz_conn =
2,000 is never reached (Hypothesis 2 proof).

The Figure 5 shows response time degradation, that in the
worst case reach 11 seconds. It is related to peak conditions

3In PostgreSQL, when the number of requests exceeds the configured
value, it issues the following message: Sorry too many clients already.

Response time degradation
12 .

Response time

Seconds

0 1
1 2 3
Test Step

Figure 5. Response time degradation

of a cloud computing environment or even a cyber DDoS
attack.

V. CONCLUSION

Large-scale systems are submitted to environments with
huge variety of workloads. Load testing is becoming an
insecapable technique to determine whether a system may
face a huge amount of requests. Deploying a system that is
supposed either to resist to load peaks or to DDoS should
be done only after a testing stage targeting this aspect.

In this paper we presented a load distributed testing
methodology based on P2P testing framework that shows
the importance of the distributed testing methodology to
reach the real problems in distributed systems. The exper-
iments shown us the problems related with the centralized
approaches where the bottleneck is not the SUT, but the
centralized driver.

Our approach also shown the advantages of using P2P
testing architecture to test large-scale systems. The scalabil-
ity provided by this architecture is very important to scale
up the workload and reach the performance limits of the
SUT.

In future work, we plan to spread the load across a larger
setup of node machines to scale up the test in orders of
magnitude. This type of experiment will allow to reproduce
the load of DDoS attacks upon any type of SUT. Further-
more, we plan to develop a proper stress testing methodology
for cloud-computing systems to isolate the biases that may
affect the test results (e.g., operating system, network) and
to consider intrinsic aspects of large-scale systems (e.g.,
scalability, resilience, and heterogeneity of nodes).

REFERENCES

[1] M. Stonebracker. (2012, Jan.) Voltdb. [Online]. Available:
http://voltdb.com/

[2] T. Walter, 1. Schieferdecker, and J. Grabowski, “Test archi-
tectures for distributed systems: State of the art and beyond,”
in IWTCS, 1998, pp. 149-174.

(3]

(4]

[5

—

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

[16]

H. S. Gunawi, T. Do, J. M. Hellerstein, I. Stoica,
D. Borthakur, and J. Robbins, “Failure as a service (faas):
A cloud service for large-scale, online failure drills,”
EECS Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2011-87, Jul 2011. [Online]. Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-
2011-87.html

Y. Deng, P. G. Frankl, and D. Chays, “Testing database
transactions with agenda,” in /ICSE, G.-C. Roman, W. G.
Griswold, and B. Nuseibeh, Eds. ACM, 2005, pp. 78-87.

ISO9646, “Open systems interconnection conformance test-
ing methodology and framework,” 1991.

B. Long and P. A. Strooper, “A case study in testing dis-
tributed systems,” in DOA, 2001, pp. 20—

A. Petrenko and A. Ulrich, “Verification and testing of
concurrent systems with action races,” in TestCom, ser. IFIP
Conference Proceedings, H. Ural, R. L. Probert, and G. von
Bochmann, Eds., vol. 176. Kluwer, 2000, pp. 261-280.

E. C. de Almeida, J. E. Marynowski, G. Sunyé, Y. Le Traon,
and P. Valduriez, “Efficient distributed test architectures for
large-scale systems,” in ICTSS 2010: 22nd IFIP Int. Conf. on
Testing Software and Systems, Natal, Brazil, November 2010.

S. Androutsellis-Theotokis and D. Spinellis, “A survey of
peer-to-peer content distribution technologies,” ACM Comput.
Surv., vol. 36, no. 4, pp. 335-371, 2004.

E. C. de Almeida, G. Sunyé, and P. Valduriez, “Testing
architectures for large scale systems,” in VECPAR, 2008, pp.
555-566.

E. C. de Almeida, G. Sunyé, Y. L. Traon, and P. Valduriez, “A
framework for testing peer-to-peer systems,” in /9th ISSRE,
11-14 November, Redmond, Seattle, USA. 1EEE Computer
Society, 2008.

E. C. de Almeida, G. Sunye, Y. L. Traon, and P. Valduriez,
“Testing peer-to-peer systems,” Empirical Software Engineer-
ing, vol. 15, no. 4, pp. 346-379, 2010.

H. S. Gunawi, T. Do, J. M. Hellerstein, I. Stoica,
D. Borthakur, and J. Robbins, “Failure as a service (faas):
A cloud service for large-scale, online failure drills,”
EECS Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2011-87, Jul 2011. [Online]. Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-
2011-87.html

J. Offutt, S. Liu, A. Abdurazik, and P. Ammann, “Generating
test data from state-based specifications,” The Journal of
Software Testing, Verification and Reliability, vol. 13, pp. 25—
53, 2003.

F. M. Waas, “Beyond conventional data warehousing - mas-
sively parallel data processing with greenplum database,” in
BIRTE (Informal Proceedings), 2008.

A. Alhadeed and S.-S. Yang, “Optimal simple step-stress plan
for khamis-higgins model,” IEEE Transactions on Reliability,
vol. 51, pp. 212 — 215, June 2002.

[17] C. Xiong, “Inferences on a simple step-stress model with
type-ii censored exponential data,” IEEE Transactions on
Reliability, vol. 47, pp. 142 — 146, June 1998.

[18] P. G. D. Group. (2012, Jan.) Postgresql. [Online]. Available:
http://www.postgresql.org/about/

