
Using Mutants to Locate “Unknown” Faults

Mike Papadakis*
Interdisciplinary Center for Security, Reliability and

Trust (SnT),
University of Luxembourg
Michail.Papadakis@uni.lu

Yves Le Traon
Interdisciplinary Center for Security, Reliability and

Trust (SnT),
University of Luxembourg

Yves.LeTraon@uni.lu

Abstract—Many fault localization techniques operate by
crosscutting coverage information of passed and failed test
executions. Generally, their accuracy depends on the utilized
coverage elements and on the selected test cases. This paper
proposes a novel fault localization method using mutation and
investigates its accuracy when using classical test selection
criteria such as mutation, branch and block. A controlled
experiment shows that (1) the mutation based approach is
quite effective at identifying “unknown” faulty program
statements. Additionally, the experimental results reveal (2)
that the mutation-based test suites are significantly more
effective at supporting fault localization than block or branch-
based test suites. Further, (3) evidence in support of facilitating
mutation alternatives, such as mutant sampling, in order to
diminish mutation overheads is also given. *

Keywords- debugging, mutation analysis, fault localization

I. INTRODUCTION
Detecting, localizing and fixing bugs are essential

software development activities. While software testing
forms the main activity for detecting program defects,
software debugging is the process of locating (diagnosing)
and fixing the defective program parts. The fault localization
process refers to the problem of identifying the defective
program parts given the test execution failures. It has been
recognized as one of the costlier parts of the debugging
process which justify the important research effort for
automating the fault localization.

When considering testing and fault detection, more than
two decades of experiments on mutation testing have
demonstrated that detecting artificial faults (e.g. seeded using
mutation operators) allows effective detection of unknown,
real ones, compared to more classical test selection criteria
(e.g. based on code coverage). Test cases generated using
mutations are good candidates for finding real faults.

When looking at diagnosis, mutants as relevant
substitutes of real faults could be useful to improve fault
localization activity. This raises the research questions of
whether mutants could provide sufficient guidance for
localizing “unknown” faults and whether test cases able to
kill mutants could enable accurate fault localization.

Generally, fault localization approaches assist the
programmers by giving some advice either on the causes of
the failures or on the program locations that are responsible

* This work was done while the author was at the Athens University of
Economics and Business, Athens, Greece.

for some program failures. Some approaches i.e. Dynamic
Slicing [1] produces a set of program statements that affect
the failing program execution. Delta Debugging [2], [3], [4]
tries to isolate the causes of program failures by examining
the state differences between passing and failing program
executions. Other techniques, usually referred to as
coverage-based, [5], [6] monitor the program execution to
gain runtime information, based on which they specify a
suspiciousness rank of the program statements. Researchers
have used many coverage elements such as the program
statements [7], [8], [9] program branches [10], [6] program
definition use pairs [11] and possible combinations of them
[6], [12]. Empirical evidence has shown that coverage-based
fault localization approaches can be very effective and
helpful [9], [13] in diminishing the debugging effort.

Among the various coverage elements utilized by the
fault diagnosis techniques, the most commonly used ones are
the program statements and branches. Still, the use of
mutants in locating program faults has drawn little attention
by the researchers. This might attribute to the general belief
that mutation testing is quite expensive and can not scale
[14]. However, recent advances has shown that mutation
testing can be practical [14], [15] and can be applied on real
world applications [14], [15], [16]. Many efficient and
scalable mutation testing tools such as the MiLu [17] and
Javalanche [18] have been built with promising results.
Further, by integrating the mutation analysis both in the
testing and fault localization activities may keep the fault
diagnosis expenses at a low level.

Mutation analysis works by introducing faults named
mutants to the program under analysis. Mutants are produced
based on simple syntactic rules, called mutation operators.
Mutation testing is performed by executing the mutant
programs with a selected set of test cases and by examining
the differences in behavior between the mutant and the
original program versions. Thus, the mutants can be
categorized as killed and live. Killed mutants designate those
that result in different with the original program version,
outputs; while live are those of the opposite case. Mutation
analysis relies on the assumption that mutants form
“realistic” faults, even if artificially seeded. Several
empirical results, such as Andrews et al. ones [19], provide
evidence that this assumption is reasonable. Therefore, the
following question can be positioned - if revealing mutants’
results in revealing “unknown” faults, is the location of
mutants able to assist the localization of “unknown” faults?

2012 IEEE Fifth International Conference on Software Testing, Verification and Validation

978-0-7695-4670-4/12 $26.00 © 2012 IEEE

DOI 10.1109/ICST.2012.159

691

The present paper investigates this question, and
eventually suggests the use of mutation analysis for fault
localization. By utilizing mutants as alternatives to the
structural code coverage, a novel mutation-based fault
diagnosis approach can be defined. If validated, this
approach may be used to kill two birds with one stone,
meaning that mutation analysis could be reconciliate testing
and diagnosis activities, which are usually targeting different
objectives (fault detection and fault localization [20]).
Minimizing the effort of the testing process requires the
minimization/prioritization of the test cases while,
minimizing the fault localization effort requires the
maximization of the information provided by test execution.

This work aims to investigate a) whether mutation
analysis can improve the effectiveness of coverage-based
fault localization techniques, b) whether the use of mutation
testing adequacy criterion can provide a sufficient and
suitable set of test cases to effectively support the fault
localization activity and c) to determine whether mutant
sampling can be assisted for fault localization purposes. The
above questions were explored on the Siemens benchmark
program suite using its accompanied faulty versions.

The remainder of this paper is organized as follows:
Section II and III present the underlying concepts and details
the proposed approach. Its evaluation along with empirical
results is described in Sections IV and V respectively.
Sections VI and VII discuss about the proposed technique
and its relation to the literature. Finally, the Section VIII
concludes the paper and reports some future directions.

II. MUTATION TESTING AND FAULTY STATEMENTS
Provoking program failures forms the primary aim of the

testing process. Developers when experiencing such failures
move to the debugging phase that involves two main steps.
The first one is to identify the faulty program places
(diagnosis) and the second one is to fix those places.
Adequacy or coverage criteria are usually utilized by testers
in order to assist them with the testing process. Fault
diagnosis techniques prioritize the program places in order to
help testers locating faults. This Section summarizes the
above concepts and techniques which underlies the work
presented in this paper.

A. Code coverage and Mutation Analysis
Software testing process is performed by using a set of

test cases based on which the software’s behavior is
exercised. Test adequacy criteria (also called coverage
criteria) are employed in order to help testers select a small
but representative of the whole possible cases, set of tests.
This is approximated by possessing the requirement on the
selected test cases to cover some specific program elements.
Requirements on different elements form different criteria.
The present paper considers block and decision criteria, that
require from the test cases to cover-execute all program
blocks and decisions. Test adequacy, here referred to as
score or coverage level, is measured based on the ratio of the
exercised, by the test cases, elements to the total ones.

Mutation analysis is a fault based technique. It is based
on the hypothesis of the “competent programmer” i.e. the

assumption that programmers produce programs that are
nearly “correct” [21] and the “coupling effect” [21]. The
coupling effect states that “Test data that distinguishes all
programs differing from a correct one by only simple errors
is so sensitive that it also implicitly distinguishes more
complex errors”. This assumption underlies the approach of
the present paper in order to locate real-complex faults. By
generating a mutant program two versions of the same
program exists. The original one, say O and the mutated one,
say M. If M is produced by making only one syntactic
change to O it is called first order mutant. Otherwise it is
called a higher order mutant [14]. This paper considers only
first order mutants. Mutation can be used as a test adequacy
criterion. This is accomplished by assessing the ability of test
cases, say t, to distinguish the mutated from the original
program versions. This distinction is usually performed by
comparing the programs outputs, such as O(t) � M(t). It is
common to have situations where such cases do not exist. In
this case the mutant M is called equivalent. The killing
mutants’ ratio is called mutation score and measures the
adequacy of the test cases with respect to mutation testing.

A usual criticism of mutation is about its cost. Since a
vast number of mutants are to be generated and executed
with test cases, huge computational resources are needed. To
overcome this problem researchers have suggested using
various alternatives such as the “mutant sampling” [22] and
the “selective mutation” [23]. In the “mutant sampling”
approach a small percentage of mutants is sampled and
considered as being the whole mutant set. In the “selective
mutation” only mutants produced by specific operators are
being considered. Empirical evidence [23], [24] has shown
that both of the above approaches are capable of constructing
high quality test data. More details about mutation and its
alternatives can be found in [15] and [22].

B. Coverage-based Fault Localization
Research on Fault localization suggests that this process

can be performed by utilizing the execution traces of the
employed test suites. These approaches referred to as
coverage-based [6] record the executed-covered code
elements of the passing and failing test cases. The main idea
exploiting by such approaches is that code elements executed
by failing test cases are responsible for the failure. Thus, for
each of the employed program elements they compute a
suspiciousness value that approximates the probability of
being faulty based on the frequency they appear in the failing
and passing program executions. The programmer is assisted
to find a fault by inspecting these highlighted elements in a
decreasing order.

One of the most popular coverage-based methods is
Tarantula [8]. Tarantula technique uses program statements
as coverage elements and computes their suspiciousness by
using a formula similar to the one presented in Table I. It is
noted that these values are within the range of [0-1]. Going
along the same lines, other formulas can be defined. Abreu et
al. [7] investigated this issue and concluded that a similarity
coefficient named Ochiai was the most effective one.
Santelices et al. [6] also report that their experiments
supported the use of this formula and thus they used it in

692

their approach. The Ochiai suspiciousness calculation
formula for a code element e is presented in Table I. It is
noted that the same formula is employed by the proposed
mutation-based approach.

To demonstrate how Tarantula works consider the
example of Fig. 1, which has been taken from the work of
Santelices et al. [6]. For the discussion, focus only on the
upper part (above the black line) of the figure that
corresponds to the statement-based approach. The lower part
of the figure corresponds to the mutation based approach that
is discussed in the next section. The example program (mid)
has 13 statements (column Statements) and is executed with
six tests (top of the columns Test 1-6). Test columns record
the execution traces (denoted with “1” per executed
statement) of the respective tests. The columns labeled as
“#Passed” and “#Failed”, record the number of passing and
failing test cases (denoted as passed(e) and failed(e) in the
Ochiai formula of Table I) that execute each program
statement. The columns labeled as “Suspiciousness” and
“Rank” record the suspiciousness scores (calculated by the
Ochiai formula) and the respective ranking of each
statement. Fault 1 (localized at statement 3) is detected by
two test cases (bottom of the columns Test 1-6) and is ranked
in the 6th position while Fault 2 (localized at statement 7) is
detected by one and it is ranked in the 1st position.

As pointed out before, after the localization process the
programmer has to check the ranked statements in a
decreasing suspiciousness order in order to find and fix the
fault. Hence, ranking faulty statements at a higher position in
the ranked order results in putting less effort by the
programmer to find the error.

III. RANKING STATEMENTS USING MUATION ANALYSIS

A. Using mutants to locate “unknown” faults
This section discusses the use of mutants to assist the

fault localization process. We call an “unknown fault” a fault
which has been detected by at least one test case, but that has
still to be located. A mutant M1 is said to have a behavior
similar to another mutant M2 if M1 and M2 are killed by
(almost) the same test cases. The proposed approach is
motivated by the following observations:
• Mutants located on the same program statements

frequently exhibit a similar behavior.
• Mutants located in diverse program statements exhibit

different behaviors. For a ‘hard-to-kill’ mutant, a test
case that kills it is usually specific, and able to kill
mutants located on the same statement.

 Consider a scenario where the program under test
contains an “unknown” fault that is in fact a mutant, not used
by the mutation approach. Based on the above observations
this fault is likely exercised similarly to other mutants
applied at the same statement and differently to those located
in other statements. Then, within this assumption the
“unknown and seeded faults exhibit similar behaviors”, the
identification of an “unknown” fault may be obtained thanks
to a mutant fault at the same (or close) location. Next section
provides an example of the proposed approach illustrating
the above scenario.

TABLE I. THE OCHIAI FORMULA

����������	
���
�

����
��
�

��������
� � �����
��
� � ����
��
��
Where: totfailed - the total number of test cases that fail, failed(e) - the
number of test cases that cover the code element e and fail and passed(e)
- the number of test cases that cover the code element e and pass.

Thus, the intuition behind the proposed approach is this
implicit link of the behavior of “unknown” faults with some
mutants. Based on the location of the mutants, one can
localize real “unknown” faults. A way to achieve a
localization approach from that intuition can be to extend the
coverage-based fault localization techniques, using mutants
instead of structural code elements (such as statements or
decisions). Thus, measuring the number of killed mutants by
the passing and failing test executions one can get an
indication about the suspiciousness of those mutants. This
can be computed straightforwardly by applying the Ochiai
formula (Table I) with coverage elements (e) some mutants.
Killed mutants are treated as covered elements (e) while the
live ones are ignored i.e. treated as uncovered elements.

The proposed approach considers only first order mutants
and relies on the coupling effect in order to locate complex
faults. The use of first order mutants helps assigning
suspiciousness values on the program statements. Since
mutants are produced based on simple syntactic rules each
mutant is located at one statement. Thus, the suspiciousness
values computed for the mutants can be assigned to their
respective statements. However, most program statements
involve many mutants and assigned suspiciousness values
must be combined. In this paper, the maximum
suspiciousness value of its respective mutants is assigned to
this statement. Statements without mutants are assigned with
the worst suspiciousness value (the number of program
statements). This was done in order to indicate that these
statements will be among the last ones to be inspected. The
need for mapping those statements with suspiciousness
values [6] is not crucial since mutants operate on most
statements. Both the above issues, the assignment of
suspiciousness values on program statements and the use of
mappings between the various mutant elements [6],
constitute a matter of further research. This paper only
focuses on a first investigation of the intuition that artificial
faults (mutants) can help locating unknown real ones.

B. An Ilustrative example
Consider the example of Fig. 1, and focus on the bottom

part (below the black line) of the figure, that illustrates the
use of mutants in localizing faults. This example shows:

1. how the proposed approach works,
2. a concrete scenario of mutant-fault localization using

different types of mutants.
Fault 1 (localized in statement 3) is due to extra code

fragments (y < z � y < z - 1) and can be precisely localized
using the relational mutant operator i.e. it changes the
instance of relational operators with the other ones. The
utilized mutant elements are demonstrated in the column
Mutants and they are named as M1-M35. Fault 2 (localized
in statement 7) is an assignment expression error (m = x � m

693

= y) and can be localized using numerical constant increment
and decrement mutants i.e. it add and subtracts a constant
value to a program’s variable. The mutant elements used are
presented in the column Mutants and they are named as M1-
M32. The Test columns record the killed mutants (denoted
with “1” per killed mutant) by the test cases. The columns
labeled as “#Passed” and “#Failed” record the number of
passing and failing test cases (denoted as passed(e) and
failed(e) in the Ochiai formula of Table I) that kill each
considered mutant. The columns labeled as “Suspiciousness”
and “Rank” record the suspiciousness scores (calculated by
the Ochiai formula) and the respective statement rankings.

Fault 1 (localized at statement 3) is detected by two test
cases (bottom of the columns Test 1-6) and is ranked in the
1th position (Rank column). The M1 mutant was only killed
by the two failing test cases, having a suspiciousness value
1.0. Fault 2 (localized at statement 7) is detected by one test
and it is ranked in the 1st position based on the
suspiciousness values (0.71) of the M17 and M18 mutants.

Conclusively, Fig. 1 demonstrated how two faults can be
effectively localized based on mutation analysis.

IV. EXPERIMENTAL STUDY
This section describes the empirical setup and evaluation

of the proposed approach. First, it describes the definition of
the conducted experiment by setting out the research
questions under investigation. Then, details about the
selected subjects and tools are given. Finally, a description of
the experimental setup and analysis is provided.

A. Definition of the Experiment
The present study seeks to empirically investigate the

following research questions (RQs):
• RQ1: How effective is the mutation-based fault

localization approach? Is this approach more effective in
assisting fault localization process than the statement-
based one?

• RQ2: What is the impact of test adequacy criteria on the
effectiveness of mutation and statement based fault
localization techniques? Comment, in this study Block,
Branch and mutation adequate test suites were used.

• RQ3: How is the effectiveness of mutation-based fault
localization technique affected by using different mutant
sets? Comment, in this study random sampling of 10%,
20%, 30%, 40% and 50% mutant sets were used.
Taking into account RQ1 and showing that the

effectiveness of fault localization techniques can be
improved will benefit researchers in seeking ways to reduce
the program debugging expenses. Answering RQ2 is
important in order to show whether the use of testing
adequacy criteria is practical for the fault localization
process. This answer will indicate whether programmers
should put effort on localizing faults directly after the testing
process or if they should produce some additional tests first.
Additionally, RQ2 will give an answer whether mutation
based localization approach is worthwhile when employing a
basic testing approach such as block or branch coverage.
RQ3 forms one fist step towards dealing with mutation

analysis expenses. If only a small loss on localization
effectiveness is observed when few mutants are considered,
it offers a practical answer to the computational cost that full
mutation analysis usually requires.

B. Subject Programs and test suite pools
The conducted experiment employed the benchmark

programs of the Siemens suite which have been widely used
in mutation testing and fault localization experiments e.g.
[2], [6], [9], [10], [12], [25]. The suite is composed of seven
programs written in C and is accompanied by test suite pools
and a set of 132 faults. One fault was excluded from the
considered set, since it did not result in any execution failure,
mandatory requirement of the examined localization
methods. This action was also taken on other similar studies
e.g. [6], [9], [25]. Table II records details about the program
lines of code (LOC), the size of the test pools and the
number of faults per program. These programs were chosen
due to their widespread use in the literature on the one hand
and their availability along with the accompanied test and
fault sets from the Software-artifact Infrastructure Repository
at the University of Nebraska-Lincoln [26] on the other.

The program suite was initially employed in an empirical
study by Hutchins et al. [27] for comparing various structural
testing criteria. Later, it was extended and adapted
appropriately from other researchers to support their
experiments [28]. According to Hutchins et al. [27] the
accompanied set of faults was manually produced by various
researchers with the intention of introducing realistic faults.
The accompanied test suites were produced based on a
combination of both black and white box approaches such as
random, category-partition, statements, decisions and
definition-use pairs, with the aim of producing a
comprehensive and suitable for empirical studies test suite.
More details about the construction of the test suite pools can
be found in Harder et al. [28].

C. Utilized tools and implemetation details
The present study used the Proteum 1 mutation testing
system, by Maldonado et al. [29] in order to support the
mutation analysis process. To gather the required tracing
information a prototype has been implemented on top of the
Wet [30] framework in the same lines utilized in [12]. Wet
works at machine code instructions’ granularity and thus, it
collects the required information in terms of instruction
instances. The Instruction terms are mapped to their
respective program statements which are identified based on
their line numbers. The prototype implements both the
statement-based and mutation-based approaches utilizing the
Ochiai formula (given in Table I).

The ATAC [31] coverage tool was used for the selection
of the Block and Branch test sets from the accompanied test
pools and Proteum [29] for the mutation ones. These tools
have also been used in software testing experiments e.g. [19],
[15], [24]. Details about the test selection process are given
in the following subsection.

1 Proteum/IM 2.0 was used by utilizing only the unit level operators.

694

 Fault1: Statement 3 (if (y < z - 1)) Fault2: Statement 7 (m = y)

M
ut

an
ts

St
at

em
en

ts

T
es

t 1

T
es

t 2

T
es

t 3

T
es

t 4

T
es

t 5

T
es

t 6

#P
as

se
d

#F
ai

le
d

Su
sp

ic
io

us
ne

ss

R
an

k

M
ut

an
ts

St
at

em
en

ts

T
es

t 1

T
es

t 2

T
es

t 3

T
es

t 4

T
es

t 5

T
es

t 6

#P
as

se
d

#F
ai

le
d

Su
sp

ic
io

us
ne

ss

R
an

k

mid(int x, int y, int z){

3,
 3

, 5

1,
 2

, 3

3,
 2

, 1

5,
 5

, 5

5,
 3

, 4

2,
 1

, 4

3,
 3

, 5

1,
 2

, 3

3,
 2

, 1

5,
 5

, 5

5,
 3

, 4

2,
 1

, 4

int m; 1 1 1 1 1 1 1 4 2 0.58 6 1 1 1 1 1 1 1 5 1 0.41 7
m = z; 2 1 1 1 1 1 1 4 2 0.58 6 2 1 1 1 1 1 1 5 1 0.41 7
if (y < z) 3 1 1 1 1 1 1 4 2 0.58 6 3 1 1 1 1 1 1 5 1 0.41 7

if (x < y) 4 1 1 2 0 0.00 13 4 1 1 1 1 3 1 0.50 3
m = y; 5 0 0 0.00 13 5 1 1 0 0.00 13

else if (x < z) 6 1 1 2 0 0.00 13 6 1 1 1 2 1 0.58 2
m = x; 7 1 1 2 0 0.00 13 7 1 1 1 1 0.71 1

else 8 1 1 1 1 2 2 0.71 2 8 1 1 2 0 0.00 13
if (x > y) 9 1 1 1 1 2 2 0.71 2 9 1 1 2 0 0.00 13

m = y; 10 1 1 1 1 0.50 8 10 1 1 0 0.00 13
else if (x > z) 11 1 1 1 1 0.50 8 11 1 1 0 0.00 13

m = x; 12 0 0.00 13 12 0 0 0.00 13
return m; 13 1 1 1 1 1 1 4 2 0.58 6 13 1 1 1 1 1 1 5 1 0.41 7

}

mid(int x, int y, int z){
int m; 1 13 1 13

m = z; 2 13 M1. z � z+1 2 1 1 2 0 0 13M2. z � z-1 1 1 2 0 0

if (y < z)

M1. < � <=

3

1 1 0 2 1.00

1

M3. y � y+1

3

1 1 2 0 0

13

M2. < � > 1 1 1 3 0 0 M4. y � y-1 0 0 0
M3. < � >= 1 1 1 1 1 3 2 0.63 M5. z � z+1 0 0 0
M4. < � == 1 1 1 1 2 2 0.71 M6. z � z-1 1 1 2 0 0
M5. < � != 1 1 0 0

M6. < � true 1 1 1 1 2 0.82
M7. < � false 1 1 2 0 0

if (x < y)

M8. < � <=

4

 0 0 0

13

M7. x � x+1

4

 0 0 0

13

M9. < � > 1 1 0 0 M8. x � x-1 0 0 0
M10. < � >= 1 1 0 0 M9. y � y+1 0 0 0
M11. < � == 0 0 0 M10. y � y-1 0 0 0
M12. < � != 1 1 0 0

M13. < � true 1 1 0 0
M14. < � false 0 0 0

m = y; 5 13 M11. y � y+1 5 1 1 0 0 13 M12. y � y-1 1 1 0 0

else if (x < z)

M15. < � <=

6

0 0 0

13

M13. x � x+1

6

 0 0 0

13

M16. < � > 1 1 2 0 0 M14. x � x-1 0 0 0
M17. < � >= 1 1 2 0 0 M15. z � z+1 0 0 0
M18. < � == 1 1 2 0 0 M16. z � z-1 0 0 0
M19. < � != 0 0 0

M20. < � true 0 0 0
M21. < � false 1 1 2 0 0

m = x; 7 13 M17. y� y+1 7 1 1 1 1 0.71 1 M18. y� y-1 1 1 1 1 0.71
else 8 13 8 13

if (x > y)

M22. < � >=

9

0 0 0

2

M19. x � x+1

9

 0 0 0

13

M23. < � < 1 1 1 1 2 0.82 M20. x � x-1 1 1 0 0
M24. < � <= 1 1 1 1 2 0.82 M21. y � y+1 1 1 0 0
M25. < � == 1 1 1 1 0.5 M22. y � y-1 0 0 0
M26. < � != 1 0 1 0.71

M27. < � true 1 0 1 0.71
M28. < � false 1 1 1 1 0.5

m = y; 10 13 M23. y � y+1 10 1 1 0 0 13M24. y � y-1 1 1 0 0

else if (x > z)

M29. < � >=

11

0 0 0

3

M25. x � x+1

11

 0 0 0

13

M30. < � < 1 0 1 0.71 M26. x � x-1 0 0 0
M31. < � <= 1 0 1 0.71 M27. z � z+1 0 0 0
M32. < � == 0 0 0 M28. z � z-1 0 0 0
M33. < � != 1 0 1 0.71

M34. < � true 1 0 1 0.71
M35. < � false 0 0 0

m = x; 12 13 M29. x � x+1 12 0 0 0 13 M30. x � x-1 0 0 0

return m; 13 13 M31. m � m+1 13 1 1 1 1 1 1 5 1 0.41 2 M32. m � m-1 1 1 1 1 1 1 5 1 0.41
} P F P P F P P P P P P F

Figure 1. Fault localization example using program statements and mutants. The upper part coresponds to a statement-based approach while the bottom
part coresponds to the muation-based one.

D. Experimental Regime
The following experiment was set to address the stated

RQs.
Initially all subject programs (including the faulty

ones) were executed with all the available test cases in

order to record the passing and failing executions of the
entire test suite. Then, execution traces of all available test
cases per subject program were collected. These traces
were used in order to produce the statement-based fault
localization results (per utilized fault). The study of RQ1
and RQ3 was based on these results.

695

TABLE II. DESCRIPTION OF THE SELECTED SUBJECTS

Program Name LOC whole
Test Suite

Number of
Faults

Schedule 296 2650 9
Schedule2 263 2710 10

Tcas 137 1608 41
Totinfo 281 1052 23

Printtokens 343 4130 7
Printtokens2 355 4115 10

Replace 513 5542 32

With respect to the mutation-based approach
(examined by RQ1), the whole set of utilized mutants were
generated, compiled and executed against the entire
provided test suite pool. This process determined the killed
and live mutants per test case, information used by the
proposed approach in order to compute mutant
suspiciousness and produce mutation-based fault
localization results. Mutant sampling approach (examined
by RQ3) was performed by selecting and generating at
random, only a percentage of the whole set of mutants.
Five different sampling ratios were considered (10%, 20%,
30%, 40% and 50%). In order to avoid any bias from the
sampling process, 10 independent sets of mutants, per
utilized ratio, were sampled, resulting in 50 mutant sets in
total. For each one of those 50 mutant sets the same
process as with the whole set of mutants was followed.

One of the aims of this study, regarding RQ2, is to
investigate the ability of the examined fault localization
methods in localizing a detected fault when using adequate
(with respect to testing criterion) test sets. Thus, the
utilized test sets should expose the considered fault and
being adequate2 at the same time. This study considers
block, branch and mutation testing criteria. In order to
avoid any side effects through the random selection of test
cases, 10 independent test sets were constructed. Thus, the
experiment considers in total 1310 test sets (131 faults ×
10 test sets) per utilized testing criterion. The test sets were
constructed from the available test suite pool using the
procedure of Fig. 2. The term score refers to the utilized
criterion coverage, such as the block, or branch or the
mutation score for the case of mutation. Additionally, 10
test sets per utilized fault were constructed based on
random selection from the available test pool. These sets,
denoted as Random, were of the same size with the
mutation ones and used to determine whether they have
similar effects on fault localization with the mutation ones.

Only the executable statements were ranked in the
present experiment due to the function of the developed
tool (see Section IV.C). Additionally, to complete it with
reasonable resources (vast resources are typically needed
by mutation analysis) the localization process was
performed on the main program versions. Further, in this
experiment, statements with the same suspiciousness value
are ranked together at the upper of their ranks. For
instance, statements 8 and 9 of the Fig. 1 have the highest
suspiciousness value (0.71), for fault 1, but they are both

2 A test set is considered to be adequate if it achieves the same level of
coverage with the whole suite.

assigned with a rank of 2 (instead of ranks 1 and 2). This is
a typical approach in the literature in this kind of
experiments e.g. [6], [9], [25].

Comparing the accuracy of the examined methods
between the different programs, a score for diagnosis
effectiveness should be adopted. The most commonly used
score by the literature in such cases is the one proposed by
Jones et al. [9] in evaluating the Tarantula fault
localization system. The “score” measures the percentage
of executed program statements that need not to be
examined if statements are examined by the programmer
in a decreasing suspiciousness order. The use of the
“score” is based on the assumption that the programmer
will inspect each program statement until finding the faulty
one based on the order specified by the fault localization
tool. Along these lines the “score” value is calculated
based on the following formula:

�����
�

�����
�
���
������
�
	�� � ��	�

�����
�
���
������
�
	��
In the above formula, rank indicates the position of the

faulty statement in the ranked list produced by the fault
localization method. Greater “score” values suggest that
less program code needs inspection by the programmer in
order to identify the sought fault. Similarly, the term cost
refers to the ratio of a given rank of a faulty statement to
the total number of executed statements.

Lastly, some additional concerns were made about the
utilized faults and their localization. In cases of faults that
involve omitted statements, it was assumed that these
faults are found if the programmer inspects a statement
next to the missing statement. Otherwise, there will never
be such a mutated or executed statement. Similar situation
is experienced in the cases of faults occurring on non
executable statements such as variable initializations or
constant assignment statements. In such cases, the faulty
statements will not result in the considered suspiciousness
list (for both of the utilized approaches). Hence, it was
assumed that these faults will be located whenever the
programmer inspects a statement using the constant or the
faulty defined variable.

Input: Test suite pool score PoolScore of the aimed criterion
Output: Adequate test set with respect to the aimed criterion
Set CurrSet = [];
SetScore = 0;
select one test case (TC) able to expose the considered fault and put
it in the CurrSet. The selection was performed at random among the
available tests that expose the considered fault;
while (SetScore < PoolScore){

add to CurrSet a randomly selected test case (TC) from the pool
Execute the CurrSet and determine its score (CurrScore) level
if (SetScore < CurrScore)

 SetScore = CurrScore;
else

 remove TC from the CurrSet;
}
return the CurrSet;

Figure 2. Test selection Procedure

696

Figure 3. Effectiveness comparison of the mutation-based and

statement-based fault localization methods using the whole test suite

V. EXPERIMENTAL RESULTS
This section reports results on performing statement

and mutation based fault localization methods according to
the process specified in the previous section.

A. Effectiveness Evaluation – (RQ1)
The effectiveness results of mutation and statement

based approaches, with respect to RQ1, are summarized in
the graph of Fig. 3. The obtained results are categorized
based on the assigned “scores”, practice also used in [12],
[13] and [25], in the following categories: 99-100%, 90-
100%, 80-100%, 70-100%, 60-100%, 50-100%, 40-100%,
30-100%, 20-100%, 10-100%, 0-100%. Fig. 3 plots the
percentage of faults effectively localized (y – axis) within
the given range, “score” categories, the percentage of
statements not needing inspection (x – axis) by the
programmer. Thus, method curves (data points) that
appear higher in the graph reflect a better fault localization
effectiveness. For example a programmer is able to
effectively localize approximately 0.90 of the total faults
when using the mutation-based and only 0.44 with
statement-based approaches, by inspecting only a 10% of
the programs’ code3. Following these lines Table III in the
columns “StLoc whole-suite” and “MutLoc whole-suite”
records these results. Mutation-based approach achieved to
effectively localize the 0.11, 0.89 and 0.93 of faults in the
99%, 90% 80% categories while the statement based one
0.41, 0.44 and 0.60 respectively. These experiments
indicate that the mutation-based approach outperforms the
statement-based one. This difference is of practical
significance: the average “score” (average “score” values
of all the examined faults) of the statement-based approach
is equal to 77% while the mutation-based one 95%.

Fig. 4 depicts the fault localization cost per fault. From
this graph it can be observed that the cost for localizing
faults with mutation-based approach is lower in most
cases. Additionally, the difference is considerable for most
cases. Further, in the sample of the 131 examined faults,
mutation-based approach performed better in the 108
cases, worst in 17 cases and had equal effectiveness in 6

3 The results consider only the executable statements not the whole
program ones.

cases. An examination of these 17 cases reveals that in 9
cases this difference was less than 1%. Only in 4 cases the
statement-based approach was better by more than 5% but
no more than 11%. These results suggest that whenever
the statement-based approach achieves a better
effectiveness this difference is not so important.

B. Testing criteria and fault localization – (RQ2)
Fault localization approaches rely on coverage of

program’ elements and the utilized number of test cases.
Consequently, it seems natural to expect that using testing
criteria requiring more test cases (such as mutation testing)
will assist the localization of faults. However, since the
mutation-based fault localization method relies on the
killed mutants, it is expected (intuitively) to observe a low
effectiveness when many mutants are not killed by the
employed tests. Thus, low quality test suites such as those
coming from block and branch testing should greatly affect
the effectiveness of the localization method.

The obtained results to address this issue, RQ2, are
recorded in Table III and Fig. 5. Table III and Fig. 5
present the ratio of the effectively localized faults at the
various considered “score” ranges when using the Block
(Block-suite), Branch (Branch-suite), Mutation (Mut-suite)
and Random (Rand-suite) test suites by employing both
statement (StLoc) and mutation (MutLoc) based fault
localization methods. Additionally, Table III records the
obtained results for the whole suite (whole-suite). These
results confirm the intuition that the use of ‘more effective
at revealing faults’ testing criteria helps also the
localization process. Both examined localization
approaches experience considerably better effectiveness
when utilizing test suites adequate with respect to mutation
than those based on Random, branch or block criteria.

The most interesting finding of these results is that
mutation-based localization approach out-performs the
statement-based one in all cases, even when using block
adequate test suites. Further, it was found that this
difference is statistically significant 4 in all cases.
Moreover, mutation-based approach is more effective with
block suites than the statement-based one with the whole
suite. Recall, that the whole suite is a relatively huge and
comprehensive one, see section IV.B for details.

Figure 4. Fault localization cost per utilized fault

4 Statistical paired t test with statistical significance difference: p < 0.001

697

TABLE III. AVERAGE FAULT LOCALIZATION SCORES FOR THE BLOCK, BRANCH, RANDOM, MUTATION AND THE WHOLE TEST SUITES.

Score StLoc
Block-suite

StLoc
Branch-suite

StLoc
Mut-suite

StLoc
Rand-suite

StLoc
whole-suite

MutLoc
Block-suite

MutLoc
Branch-suite

MutLoc
Mut-suite

MutLoc
Rand-suite

MutLoc
whole-suite

99-100% 0.01 0.02 0.08 0.05 0.11 0.01 0.01 0.28 0.19 0.41
90-100% 0.23 0.32 0.44 0.35 0.44 0.49 0.56 0.88 0.82 0.89
80-100% 0.32 0.39 0.52 0.51 0.60 0.79 0.80 0.94 0.92 0.93
70-100% 0.44 0.50 0.60 0.56 0.66 0.88 0.91 0.96 0.94 0.97
60-100% 0.54 0.66 0.69 0.67 0.75 0.95 0.96 0.98 0.98 0.97
50-100% 0.69 0.79 0.81 0.79 0.85 0.98 0.98 0.98 0.98 0.99
40-100% 0.79 0.83 0.84 0.84 0.89 0.99 0.99 0.99 0.99 0.99
30-100% 0.85 0.85 0.85 0.87 0.90 1.00 1.00 1.00 1.00 1.00
20-100% 0.91 0.91 0.92 0.91 0.93 1.00 1.00 1.00 1.00 1.00
10-100% 0.99 0.99 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00
0 -100% 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Another interesting finding was the noticeable
improvement on the fault localization approaches
effectiveness, especially that of the mutation-based one,
when mutation adequate test suites are employed. The
question that it is raised here is whether this improvement
is attributed to the size of the utilized test sets and not to
their adequacy. To examine this issue, the average size of
the selected test sets per considered criterion was
computed and presented at Table IV. From this table it can
be observed that Mutation tests are considerably more than
those of Branch and Block. However, the results of Table
III and Fig. 5, reveal that Mutation test sets have an
advantage over the Random ones. Recall that Random test
sets are of the same average size with the mutation ones.
Further, this advantage is of statistical significance 5
suggesting that mutation test suites are suitable for
assisting fault localization. Considering whether mutation
adequate test suites can be improved to assist further the
fault localization process a comparison between the
mutation test sets and the whole test suite was performed.
The results suggested that in the case of statement-based
method the improvement was more evident. In the case of
mutation-based method the whole suite provide a slight
improvement on the method’s effectiveness. In both cases
the difference was not of great statistical significance. This
finding suggests that there is a slight room for
improvement in the methods’ effectiveness by producing
additional test cases.

C. Mutant sampling evaluation – (RQ3)
Mutation analysis has been identified as a costly

technique. To overcome its difficulties, various mutation
alternative techniques have been proposed [22], [15]. The
present study examines the use of mutant sampling in fault
localization. Fig. 6 presents the average effectiveness
results of the mutant sampling technique with sampling
ratios 10%, 20%, 30% 40% and 50%. For evaluation
reasons Fig. 6 also plots the results of the whole utilized
mutant set (denoted as 100%) and the statement-based
ones. The graph of Fig. 6 suggests that all the examined
sampling ratios experience loss in their effectiveness
compared to the whole mutant set. In the case of 10% this
loss is more apparent than the rest utilized approaches,
which have a similar effectiveness.

5 Statistical paired t test with statistical significance difference: p < 0:001

Figure 5. Effectiveness comparison of the mutation-based (MutLoc)
and statement-based (StLoc) fault localization methods by utilizing

Block, Branch and Mutation and Random test sets

By statistically comparing the differences between the
various sampling ratios it was found that only the 10% and
20% sampling ratios have statistically significant
differences with the whole set of mutants. However, the
10% mutant sampling approach outperforms the
statement-based one with great statistical significance. On
average 10% mutant sampling achieved to effectively
localize 0.89 of the introduced faults while the statement-
based one only the 0.77 of them. In view of this, it can
argue that mutation alternative methods can be effectively
utilized to assist the fault localization process.

VI. DISCUSSION
The main problem faced by researchers when

employing mutation analysis is about its scalability. The
question that it is raised here is whether the proposed
approach can scale to larger real world programs. This
issue is a matter of further investigation, i.e. the optimal
subset selection of mutants capable to effectively locate

TABLE IV. AVERAGE TEST SUITE SIZE

Program Name Block Tests Branch Tests Mutation Tests

Schedule 4.54 7.33 28.91
Schedule2 5.66 8.24 35.23

Tcas 5.46 9.34 74.65
Totinfo 6.34 6.66 29.88

Printtokens 9.57 10.54 33.09
Printtokens2 8.62 11.02 28.17

Replace 13.98 18.50 145.92

698

Figure 6. Mutat sampling approaches in assisting fault localization

program faults at a low computational cost. However, the
obtained results suggest that mutant sampling can be used
as an alternative mutation method, in locating program
faults. Other, possible direction in dealing with the
scalability of the proposed approach is due to its combined
use of other methods such as dynamic slicing [1].

Generally, fault localization is performed after the
testing process. Conversely, if mutation was employed
during the testing phase, then most and perhaps all
computationally expensive analysis parts will have already
been performed. For example, in case of the higher order
approach, as proposed by Jia and Harman [14], all required
mutants executions will have been performed at the first
steps of the higher order mutants construction. Thus, the
fault localization expenses will be negligible. Further, it
should be mentioned that equivalent mutants do not pose
any problem to the localization approach. Since these
mutants are not killed, they are ignored by Ochiai
calculation formula. Therefore, they can safely be
discarded from the employed mutant set along with those
killable mutants that were not killed by the utilized test
cases. These actions are performed at the testing phase.

VII. RELATED WORK
There are a relatively large number of fault localization

approaches appearing in the literature. Here a brief
discussion on some of them is given.

As it has already described, Jones et al. [8] developed
the Tarantula method and Abreu et al. [7] introduce the
Ochiai formula. Both these advances were utilized by the
propose mutation-approach in order to include mutants.
Additional approaches employing different program
elements such as program branches and definition use
pairs are the ones of Marsi [11], Santelices et al. [6] and
Yu et al. [12]. Marsi [11] concluded that branches and
definition use pairs are more effective than statements.
However, Santelices [6] showed that there is no approach
that performs better in all cases, hence, proposing a
combination of methods. Based on their results, Yu et al.
[12] proposed a different combination approach. Similarly,
Wong et al. [5] proposed a set of coverage-based heuristics
able to improve the effectiveness of Tarantula.

Other related approach not using information is the
Delta Debugging method [2], [3], [4]. This method
recognizes and isolates input parts responsible for failures

[4], recognizes chains of program states that lead to the
failure [3] and links these chains with the faulty code.
Recently, Burger and Zeller [32] proposed a combination
of delta debugging and program slicing techniques to aid
the whole debugging process. Their approach produces a
test case that involves the minimum number of objects and
method calls related to an examined failure, thus, assisting
the programmers in reasoning about the failure. Jeffrey et
al. [25] proposed a value profiling method to localize
program faults. In this approach, variables at each program
statement are assigned with different to the original
execution values. These value replacements help identify
the faulty statements by observing the programs’ outputs.

Baudry et al. [20] suggested a different approach to
assist fault localization. Instead of using existing tests in
the localization process, to generate and optimize the
whole suite according to an introduced criterion. This
criterion was shown to be able to improve the fault
diagnosis accuracy. This approach is somehow orthogonal
to the one proposed in this paper. If tests can be optimized
with respect to fault localization then the proposed
approach will be assisted to provide better results. A
different mutation-based debugging approach is that of
Debroy and Wong [33]. In [33] it is suggested to use
mutants in order to fixing faults. This approach operates
after the localization process differing from the present
one. Considering this approach it can be argued that
mutation analysis is capable of supporting testing, fault
localization and fault correction processes.

VIII. CONCLUSIONS AND FUTURE WORK
Supporting both testing and localization activities with

mutation analysis is the key-contribution of this paper.
Mutants can be used first for guiding the production of test
cases, therefore identifying program failures, and then in
assisting the debugging process.

The work presented in this paper provides a number of
insights to the fault diagnosis research. Primary, it shows
that mutants can be utilized for the efficient localization
of “unknown” faults. Further, it validates this hypothesis
in the cases of Block, Branch, Mutation adequate test sets
and a relatively large and comprehensive test suite leading
to the conclusion that mutants are suitable for both
testing and debugging processes. Finally, the practical use
of mutation-based approach via mutant sampling was also
investigated and showed that the mutation-based fault
localization method is still efficient while used in a
degraded situation, using few mutants.

The major contributions made by the present paper can
be summarized on the following points:
• The application of mutation analysis in assisting the

fault localization process. The obtained results suggest
that mutation-based fault localization is an effective
technique, able to locate approximately 90% of the
utilized program faults by investigating at most 10%
of the program code.

• An experimental comparison of fault localization based
on Block, Branch and Mutation based tests. Compared
to the other criteria, mutation-based test cases

699

significantly improve the effectiveness of the fault
localization approaches.

• An empirical investigation of the practical usage of
mutation-based fault localization, with reduced cost by
mutant sampling. With only 10% of the mutants, the
approach is still more effective, statistically
significant, than the statement-based approach.
Issues for further investigation include the use of weak

mutation [22] as an alternative to mutation-based fault
localization. Since weak mutation has been shown to be
quite efficient [34] with respect to the test execution phase,
utilizing it seams to be worthwhile. Additionally, the
combination the proposed approach with the mutants’
impact [16] may lead to reason about the located defects.

REFERENCES
[1] X. Zhang, N. Gupta, and R. Gupta, "Pruning dynamic slices with

confidence," SIGPLAN Not., vol. 41, pp. 169-180, 2006.
[2] H. Cleve and A. Zeller, "Locating causes of program failures," in

Proceedings of the 27th international conference on Software
engineering, St. Louis, MO, USA, 2005, pp. 342-351.

[3] A. Zeller, "Isolating cause-effect chains from computer programs,"
in Proceedings of the 10th ACM SIGSOFT symposium on
Foundations of software engineering, USA, 2002, pp. 1-10.

[4] A. Zeller and R. Hildebrandt, "Simplifying and Isolating Failure-
Inducing Input," IEEE Trans. Softw. Eng., vol. 28, pp. 183-200, 2002.

[5] W. E. Wong, V. Debroy, and B. Choi, "A family of code coverage-
based heuristics for effective fault localization," J. Syst. Softw.,
vol. 83, pp. 188-208, 2010.

[6] R. Santelices, J. A. Jones, Y. Yu, and M. J. Harrold, "Lightweight
fault-localization using multiple coverage types," in Proceedings of
the 31st International Conference on Software Engineering, 2009,
pp. 56-66.

[7] R. Abreu, P. Zoeteweij, and A. J. C. v. Gemund, "On the Accuracy
of Spectrum-based Fault Localization," in Proceedings of the
Testing: Academic and Industrial Conference Practice and
Research Techniques - MUTATION, 2007, pp. 89-98.

[8] J. A. Jones, M. J. Harrold, and J. Stasko, "Visualization of test
information to assist fault localization," in Proceedings of the 24rd
International Conference on Software Engineering, 2002, pp. 467-477.

[9] J. A. Jones and M. J. Harrold, "Empirical evaluation of the
tarantula automatic fault-localization technique," in Proceedings of
the 20th international Conference on Automated software
engineering, 2005, pp. 273-282.

[10] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff, "SOBER:
statistical model-based bug localization," SIGSOFT Softw. Eng.
Notes, vol. 30, pp. 286-295, 2005.

[11] W. Masri, "Fault localization based on information flow coverage,"
Software Testing, Verification and Reliability, vol. 20, pp. 121-
147, 2010.

[12] K. Yu, M. Lin, Q. Gao, H. Zhang, and X. Zhang, "Locating faults
using multiple spectra-specific models," in Proceedings of the
Symposium on Applied Computing, 2011, pp. 1404-1410.

[13] S. Ali, J. H. Andrews, T. Dhandapani, and W. Wang, "Evaluating
the Accuracy of Fault Localization Techniques," in Proceedings of
the 2009 IEEE/ACM International Conference on Automated
Software Engineering, 2009, pp. 76-87.

[14] Y. Jia and M. Harman, "Higher Order Mutation Testing," Inf.
Softw. Technol., vol. 51, pp. 1379-1393, 2009.

[15] Y. Jia and M. Harman, "An Analysis and Survey of the
Development of Mutation Testing," IEEE Transactions on
Software Engineering, vol. 99, 2010.

[16] D. Schuler and A. Zeller, "(Un-)Covering Equivalent Mutants," in
Software Testing, Verification and Validation (ICST), 2010 Third
International Conference on, 2010, pp. 45-54.

[17] J. Yue and M. Harman, "MILU: A Customizable, Runtime-
Optimized Higher Order Mutation Testing Tool for the Full C
Language," in Testing: Academic & Industrial Conference, 2008,
pp. 94-98.

[18] D. Schuler and A. Zeller, "Javalanche: efficient mutation testing
for Java," in Proceedings of the symposium on The foundations of
software engineering, 2009, pp. 297-298.

[19] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin, "Using
Mutation Analysis for Assessing and Comparing Testing Coverage
Criteria," IEEE Trans. Softw. Eng., vol. 32, pp. 608-624, 2006.

[20] B. Baudry, F. Fleurey, and Y. L. Traon, "Improving test suites for
efficient fault localization," in Proceedings of the 28th
international conference on Software engineering, Shanghai,
China, 2006, pp. 82-91.

[21] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, "Hints on Test
Data Selection: Help for the Practicing Programmer," Computer,
vol. 11, pp. 34-41, 1978.

[22] A. J. Offutt and R. H. Untch, "Mutation 2000: uniting the
orthogonal," in Mutation testing for the new century, 2001, pp. 34-
44.

[23] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf, "An
experimental determination of sufficient mutant operators," ACM
Trans. Softw. Eng. Methodol., vol. 5, pp. 99-118, 1996.

[24] M. Papadakis and N. Malevris, "An Empirical Evaluation of the
First and Second Order Mutation Testing Strategies," in Software
Testing, Verification, and Validation Workshops (ICSTW), 2010
Third International Conference on, 2010, pp. 90-99.

[25] D. Jeffrey, N. Gupta, and R. Gupta, "Fault localization using value
replacement," in Proceedings of the 2008 international symposium
on Software testing and analysis, 2008, pp. 167-178.

[26] H. Do, S. Elbaum, and G. Rothermel, "Supporting Controlled
Experimentation with Testing Techniques: An Infrastructure and its
Potential Impact," Empirical Softw. Engg., vol. 10, pp. 405-435, 2005.

[27] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, "Experiments
of the effectiveness of dataflow- and controlflow-based test
adequacy criteria," in Proceedings of the 16th international
conference on Software engineering, 1994, pp. 191-200.

[28] M. Harder, J. Mellen, and M. D. Ernst, "Improving test suites via
operational abstraction," in Proceedings of the 25th International
Conference on Software Engineering, 2003, pp. 60-71.

[29] J. C. Maldonado, M. E. Delamaro, S. C. P. F. Fabbri, A. d. S.
Simão, T. Sugeta, A. M. R. Vincenzi, and P. C. Masiero,
"Proteum: a family of tools to support specification and program
testing based on mutation," in Mutation testing for the new
century, 2001, pp. 113-116.

[30] X. Zhang and R. Gupta, "Whole execution traces and their
applications," ACM Trans. Archit. Code Optim., vol. 2, pp. 301-
334, 2005.

[31] M. R. Lyu, J. R. Horgan, and S. London, "A coverage analysis tool
for the effectiveness of software testing," in Software Reliability
Engineering, 1993. Proceedings., Fourth International Symposium
on, 1993, pp. 25-34.

[32] M. Burger and A. Zeller, "Minimizing reproduction of software
failures," in Proceedings of the 2011 International Symposium on
Software Testing and Analysis, 2011, pp. 221-231.

[33] V. Debroy and W. E. Wong, "Using Mutation to Automatically
Suggest Fixes for Faulty Programs," in Proceedings of the 2010
Third International Conference on Software Testing, Verification
and Validation, 2010, pp. 65-74.

[34] M. Papadakis and N. Malevris, "Automatically performing weak
mutation with the aid of symbolic execution, concolic testing and
search-based testing," Software Quality Journal, vol. 19, pp. 691-
723, 2011.

700

