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Abstract—Many fault localization techniques operate by 
crosscutting coverage information of passed and failed test 
executions. Generally, their accuracy depends on the utilized 
coverage elements and on the selected test cases. This paper 
proposes a novel fault localization method using mutation and 
investigates its accuracy when using classical test selection 
criteria such as mutation, branch and block. A controlled 
experiment shows that (1) the mutation based approach is 
quite effective at identifying “unknown” faulty program 
statements. Additionally, the experimental results reveal (2) 
that the mutation-based test suites are significantly more 
effective at supporting fault localization than block or branch-
based test suites. Further, (3) evidence in support of facilitating 
mutation alternatives, such as mutant sampling, in order to 
diminish mutation overheads is also given. * 

Keywords- debugging, mutation analysis, fault localization 

I.  INTRODUCTION 
Detecting, localizing and fixing bugs are essential 

software development activities. While software testing 
forms the main activity for detecting program defects, 
software debugging is the process of locating (diagnosing) 
and fixing the defective program parts. The fault localization 
process refers to the problem of identifying the defective 
program parts given the test execution failures. It has been 
recognized as one of the costlier parts of the debugging 
process which justify the important research effort for 
automating the fault localization.  

When considering testing and fault detection, more than 
two decades of experiments on mutation testing have 
demonstrated that detecting artificial faults (e.g. seeded using 
mutation operators) allows effective detection of unknown, 
real ones, compared to more classical test selection criteria 
(e.g. based on code coverage). Test cases generated using 
mutations are good candidates for finding real faults.  

When looking at diagnosis, mutants as relevant 
substitutes of real faults could be useful to improve fault 
localization activity. This raises the research questions of 
whether mutants could provide sufficient guidance for 
localizing “unknown” faults and whether test cases able to 
kill mutants could enable accurate fault localization.  

Generally, fault localization approaches assist the 
programmers by giving some advice either on the causes of 
the failures or on the program locations that are responsible 

                                                           
* This work was done while the author was at the Athens University of 
Economics and Business, Athens, Greece. 

for some program failures. Some approaches i.e. Dynamic 
Slicing [1] produces a set of program statements that affect 
the failing program execution. Delta Debugging [2], [3], [4] 
tries to isolate the causes of program failures by examining 
the state differences between passing and failing program 
executions. Other techniques, usually referred to as 
coverage-based, [5], [6] monitor the program execution to 
gain runtime information, based on which they specify a 
suspiciousness rank of the program statements. Researchers 
have used many coverage elements such as the program 
statements [7], [8], [9] program branches [10], [6] program 
definition use pairs [11] and possible combinations of them 
[6], [12]. Empirical evidence has shown that coverage-based 
fault localization approaches can be very effective and 
helpful [9], [13] in diminishing the debugging effort.  

Among the various coverage elements utilized by the 
fault diagnosis techniques, the most commonly used ones are 
the program statements and branches. Still, the use of 
mutants in locating program faults has drawn little attention 
by the researchers. This might attribute to the general belief 
that mutation testing is quite expensive and can not scale 
[14]. However, recent advances has shown that mutation 
testing can be practical [14], [15] and can be applied on real 
world applications [14], [15], [16]. Many efficient and 
scalable mutation testing tools such as the MiLu [17] and 
Javalanche [18] have been built with promising results. 
Further, by integrating the mutation analysis both in the 
testing and fault localization activities may keep the fault 
diagnosis expenses at a low level.  

Mutation analysis works by introducing faults named 
mutants to the program under analysis. Mutants are produced 
based on simple syntactic rules, called mutation operators. 
Mutation testing is performed by executing the mutant 
programs with a selected set of test cases and by examining 
the differences in behavior between the mutant and the 
original program versions. Thus, the mutants can be 
categorized as killed and live. Killed mutants designate those 
that result in different with the original program version, 
outputs; while live are those of the opposite case. Mutation 
analysis relies on the assumption that mutants form 
“realistic” faults, even if artificially seeded. Several 
empirical results, such as Andrews et al. ones [19], provide 
evidence that this assumption is reasonable. Therefore, the 
following question can be positioned - if revealing mutants’ 
results in revealing “unknown” faults, is the location of 
mutants able to assist the localization of “unknown” faults? 
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The present paper investigates this question, and 
eventually suggests the use of mutation analysis for fault 
localization. By utilizing mutants as alternatives to the 
structural code coverage, a novel mutation-based fault 
diagnosis approach can be defined. If validated, this 
approach may be used to kill two birds with one stone, 
meaning that mutation analysis could be reconciliate testing 
and diagnosis activities, which are usually targeting different 
objectives (fault detection and fault localization [20]). 
Minimizing the effort of the testing process requires the 
minimization/prioritization of the test cases while, 
minimizing the fault localization effort requires the 
maximization of the information provided by test execution.    

This work aims to investigate a) whether mutation 
analysis can improve the effectiveness of coverage-based 
fault localization techniques, b) whether the use of mutation 
testing adequacy criterion can provide a sufficient and 
suitable set of test cases to effectively support the fault 
localization activity and c) to determine whether mutant 
sampling can be assisted for fault localization purposes. The 
above questions were explored on the Siemens benchmark 
program suite using its accompanied faulty versions.  

The remainder of this paper is organized as follows: 
Section II and III present the underlying concepts and details 
the proposed approach. Its evaluation along with empirical 
results is described in Sections IV and V respectively. 
Sections VI and VII discuss about the proposed technique 
and its relation to the literature. Finally, the Section VIII 
concludes the paper and reports some future directions. 

II. MUTATION TESTING AND FAULTY STATEMENTS 
Provoking program failures forms the primary aim of the 

testing process. Developers when experiencing such failures 
move to the debugging phase that involves two main steps. 
The first one is to identify the faulty program places 
(diagnosis) and the second one is to fix those places. 
Adequacy or coverage criteria are usually utilized by testers 
in order to assist them with the testing process. Fault 
diagnosis techniques prioritize the program places in order to 
help testers locating faults. This Section summarizes the 
above concepts and techniques which underlies the work 
presented in this paper. 

A. Code coverage and Mutation Analysis  
Software testing process is performed by using a set of 

test cases based on which the software’s behavior is 
exercised. Test adequacy criteria (also called coverage 
criteria) are employed in order to help testers select a small 
but representative of the whole possible cases, set of tests. 
This is approximated by possessing the requirement on the 
selected test cases to cover some specific program elements. 
Requirements on different elements form different criteria. 
The present paper considers block and decision criteria, that 
require from the test cases to cover-execute all program 
blocks and decisions. Test adequacy, here referred to as 
score or coverage level, is measured based on the ratio of the 
exercised, by the test cases, elements to the total ones.   

Mutation analysis is a fault based technique. It is based 
on the hypothesis of the “competent programmer” i.e. the 

assumption that programmers produce programs that are 
nearly “correct” [21] and the “coupling effect” [21]. The 
coupling effect states that “Test data that distinguishes all 
programs differing from a correct one by only simple errors 
is so sensitive that it also implicitly distinguishes more 
complex errors”. This assumption underlies the approach of 
the present paper in order to locate real-complex faults. By 
generating a mutant program two versions of the same 
program exists. The original one, say O and the mutated one, 
say M. If M is produced by making only one syntactic 
change to O it is called first order mutant. Otherwise it is 
called a higher order mutant [14]. This paper considers only 
first order mutants. Mutation can be used as a test adequacy 
criterion. This is accomplished by assessing the ability of test 
cases, say t, to distinguish the mutated from the original 
program versions. This distinction is usually performed by 
comparing the programs outputs, such as O(t) � M(t). It is 
common to have situations where such cases do not exist. In 
this case the mutant M is called equivalent. The killing 
mutants’ ratio is called mutation score and measures the 
adequacy of the test cases with respect to mutation testing. 

A usual criticism of mutation is about its cost. Since a 
vast number of mutants are to be generated and executed 
with test cases, huge computational resources are needed. To 
overcome this problem researchers have suggested using 
various alternatives such as the “mutant sampling” [22] and 
the “selective mutation” [23]. In the “mutant sampling” 
approach a small percentage of mutants is sampled and 
considered as being the whole mutant set. In the “selective 
mutation” only mutants produced by specific operators are 
being considered. Empirical evidence [23], [24] has shown 
that both of the above approaches are capable of constructing 
high quality test data. More details about mutation and its 
alternatives can be found in [15] and [22]. 

B. Coverage-based Fault Localization 
Research on Fault localization suggests that this process 

can be performed by utilizing the execution traces of the 
employed test suites. These approaches referred to as 
coverage-based [6] record the executed-covered code 
elements of the passing and failing test cases. The main idea 
exploiting by such approaches is that code elements executed 
by failing test cases are responsible for the failure. Thus, for 
each of the employed program elements they compute a 
suspiciousness value that approximates the probability of 
being faulty based on the frequency they appear in the failing 
and passing program executions. The programmer is assisted 
to find a fault by inspecting these highlighted elements in a 
decreasing order.  

One of the most popular coverage-based methods is 
Tarantula [8]. Tarantula technique uses program statements 
as coverage elements and computes their suspiciousness by 
using a formula similar to the one presented in Table I. It is 
noted that these values are within the range of [0-1]. Going 
along the same lines, other formulas can be defined. Abreu et 
al. [7] investigated this issue and concluded that a similarity 
coefficient named Ochiai was the most effective one. 
Santelices et al. [6] also report that their experiments 
supported the use of this formula and thus they used it in 
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their approach. The Ochiai suspiciousness calculation 
formula for a code element e is presented in Table I. It is 
noted that the same formula is employed by the proposed 
mutation-based approach.  

To demonstrate how Tarantula works consider the 
example of Fig. 1, which has been taken from the work of 
Santelices et al. [6]. For the discussion, focus only on the 
upper part (above the black line) of the figure that 
corresponds to the statement-based approach. The lower part 
of the figure corresponds to the mutation based approach that 
is discussed in the next section. The example program (mid) 
has 13 statements (column Statements) and is executed with 
six tests (top of the columns Test 1-6). Test columns record 
the execution traces (denoted with “1” per executed 
statement) of the respective tests. The columns labeled as 
“#Passed” and “#Failed”, record the number of passing and 
failing test cases (denoted as passed(e) and failed(e) in the 
Ochiai formula of Table I) that execute each program 
statement. The columns labeled as “Suspiciousness” and 
“Rank” record the suspiciousness scores (calculated by the 
Ochiai formula) and the respective ranking of each 
statement. Fault 1 (localized at statement 3) is detected by 
two test cases (bottom of the columns Test 1-6) and is ranked 
in the 6th position while Fault 2 (localized at statement 7) is 
detected by one and it is ranked in the 1st position.  

As pointed out before, after the localization process the 
programmer has to check the ranked statements in a 
decreasing suspiciousness order in order to find and fix the 
fault. Hence, ranking faulty statements at a higher position in 
the ranked order results in putting less effort by the 
programmer to find the error.  

III. RANKING STATEMENTS USING MUATION ANALYSIS 

A. Using mutants to locate “unknown” faults 
This section discusses the use of mutants to assist the 

fault localization process. We call an “unknown fault” a fault 
which has been detected by at least one test case, but that has 
still to be located. A mutant M1 is said to have a behavior 
similar to another mutant M2 if M1 and M2 are killed by 
(almost) the same test cases. The proposed approach is 
motivated by the following observations:  
• Mutants located on the same program statements 

frequently exhibit a similar behavior.  
• Mutants located in diverse program statements exhibit 

different behaviors. For a ‘hard-to-kill’ mutant, a test 
case that kills it is usually specific, and able to kill 
mutants located on the same statement.  

 Consider a scenario where the program under test 
contains an “unknown” fault that is in fact a mutant, not used 
by the mutation approach. Based on the above observations 
this fault is likely exercised similarly to other mutants 
applied at the same statement and differently to those located 
in other statements. Then, within this assumption the 
“unknown and seeded faults exhibit similar behaviors”, the 
identification of an “unknown” fault may be obtained thanks 
to a mutant fault at the same (or close) location. Next section 
provides an example of the proposed approach illustrating 
the above scenario. 

TABLE I.  THE OCHIAI FORMULA 
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Where: totfailed - the total number of test cases that fail, failed(e) - the 
number of test cases that cover the code element e and fail and passed(e)
- the number of test cases that cover the code element e and pass. 

 

Thus, the intuition behind the proposed approach is this 
implicit link of the behavior of “unknown” faults with some 
mutants. Based on the location of the mutants, one can 
localize real “unknown” faults. A way to achieve a 
localization approach from that intuition can be to extend the 
coverage-based fault localization techniques, using mutants 
instead of structural code elements (such as statements or 
decisions). Thus, measuring the number of killed mutants by 
the passing and failing test executions one can get an 
indication about the suspiciousness of those mutants. This 
can be computed straightforwardly by applying the Ochiai 
formula (Table I) with coverage elements (e) some mutants. 
Killed mutants are treated as covered elements (e) while the 
live ones are ignored i.e. treated as uncovered elements. 

The proposed approach considers only first order mutants 
and relies on the coupling effect in order to locate complex 
faults. The use of first order mutants helps assigning 
suspiciousness values on the program statements. Since 
mutants are produced based on simple syntactic rules each 
mutant is located at one statement. Thus, the suspiciousness 
values computed for the mutants can be assigned to their 
respective statements. However, most program statements 
involve many mutants and assigned suspiciousness values 
must be combined. In this paper, the maximum 
suspiciousness value of its respective mutants is assigned to 
this statement. Statements without mutants are assigned with 
the worst suspiciousness value (the number of program 
statements). This was done in order to indicate that these 
statements will be among the last ones to be inspected. The 
need for mapping those statements with suspiciousness 
values [6] is not crucial since mutants operate on most 
statements. Both the above issues, the assignment of 
suspiciousness values on program statements and the use of 
mappings between the various mutant elements [6], 
constitute a matter of further research. This paper only 
focuses on a first investigation of the intuition that artificial 
faults (mutants) can help locating unknown real ones. 

B. An Ilustrative example 
Consider the example of Fig. 1, and focus on the bottom 

part (below the black line) of the figure, that illustrates the 
use of mutants in localizing faults. This example shows: 

1. how the proposed approach works, 
2. a concrete scenario of mutant-fault localization using 

different types of mutants.  
Fault 1 (localized in statement 3) is due to extra code 

fragments (y < z � y < z - 1) and can be precisely localized 
using the relational mutant operator i.e. it changes the 
instance of relational operators with the other ones. The 
utilized mutant elements are demonstrated in the column 
Mutants and they are named as M1-M35. Fault 2 (localized 
in statement 7) is an assignment expression error (m = x � m 

693



= y) and can be localized using numerical constant increment 
and decrement mutants i.e. it add and subtracts a constant 
value to a program’s variable. The mutant elements used are 
presented in the column Mutants and they are named as M1-
M32. The Test columns record the killed mutants (denoted 
with “1” per killed mutant) by the test cases. The columns 
labeled as “#Passed” and “#Failed” record the number of 
passing and failing test cases (denoted as passed(e) and 
failed(e) in the Ochiai formula of Table I) that kill each 
considered mutant. The columns labeled as “Suspiciousness” 
and “Rank” record the suspiciousness scores (calculated by 
the Ochiai formula) and the respective statement rankings.  

Fault 1 (localized at statement 3) is detected by two test 
cases (bottom of the columns Test 1-6) and is ranked in the 
1th position (Rank column). The M1 mutant was only killed 
by the two failing test cases, having a suspiciousness value 
1.0. Fault 2 (localized at statement 7) is detected by one test 
and it is ranked in the 1st position based on the 
suspiciousness values (0.71) of the M17 and M18 mutants.  

Conclusively, Fig. 1 demonstrated how two faults can be 
effectively localized based on mutation analysis.  

IV. EXPERIMENTAL STUDY 
This section describes the empirical setup and evaluation 

of the proposed approach. First, it describes the definition of 
the conducted experiment by setting out the research 
questions under investigation. Then, details about the 
selected subjects and tools are given. Finally, a description of 
the experimental setup and analysis is provided. 

A. Definition of the Experiment 
The present study seeks to empirically investigate the 

following research questions (RQs): 
• RQ1: How effective is the mutation-based fault 

localization approach? Is this approach more effective in 
assisting fault localization process than the statement-
based one?  

• RQ2: What is the impact of test adequacy criteria on the 
effectiveness of mutation and statement based fault 
localization techniques? Comment, in this study Block, 
Branch and mutation adequate test suites were used. 

• RQ3: How is the effectiveness of mutation-based fault 
localization technique affected by using different mutant 
sets? Comment, in this study random sampling of 10%, 
20%, 30%, 40% and 50% mutant sets were used. 
Taking into account RQ1 and showing that the 

effectiveness of fault localization techniques can be 
improved will benefit researchers in seeking ways to reduce 
the program debugging expenses. Answering RQ2 is 
important in order to show whether the use of testing 
adequacy criteria is practical for the fault localization 
process. This answer will indicate whether programmers 
should put effort on localizing faults directly after the testing 
process or if they should produce some additional tests first. 
Additionally, RQ2 will give an answer whether mutation 
based localization approach is worthwhile when employing a 
basic testing approach such as block or branch coverage. 
RQ3 forms one fist step towards dealing with mutation 

analysis expenses. If only a small loss on localization 
effectiveness is observed when few mutants are considered, 
it offers a practical answer to the computational cost that full 
mutation analysis usually requires. 

B. Subject Programs and test suite pools 
The conducted experiment employed the benchmark 

programs of the Siemens suite which have been widely used 
in mutation testing and fault localization experiments e.g. 
[2], [6], [9], [10], [12], [25]. The suite is composed of seven 
programs written in C and is accompanied by test suite pools 
and a set of 132 faults. One fault was excluded from the 
considered set, since it did not result in any execution failure, 
mandatory requirement of the examined localization 
methods. This action was also taken on other similar studies 
e.g. [6], [9], [25]. Table II records details about the program 
lines of code (LOC), the size of the test pools and the 
number of faults per program. These programs were chosen 
due to their widespread use in the literature on the one hand 
and their availability along with the accompanied test and 
fault sets from the Software-artifact Infrastructure Repository 
at the University of Nebraska-Lincoln [26] on the other. 

The program suite was initially employed in an empirical 
study by Hutchins et al. [27] for comparing various structural 
testing criteria. Later, it was extended and adapted 
appropriately from other researchers to support their 
experiments [28]. According to Hutchins et al. [27] the 
accompanied set of faults was manually produced by various 
researchers with the intention of introducing realistic faults. 
The accompanied test suites were produced based on a 
combination of both black and white box approaches such as 
random, category-partition, statements, decisions and 
definition-use pairs, with the aim of producing a 
comprehensive and suitable for empirical studies test suite. 
More details about the construction of the test suite pools can 
be found in Harder et al. [28]. 

C. Utilized tools and implemetation details  
The present study used the Proteum 1  mutation testing 
system, by Maldonado et al. [29] in order to support the 
mutation analysis process. To gather the required tracing 
information a prototype has been implemented on top of the 
Wet [30] framework in the same lines utilized in [12]. Wet 
works at machine code instructions’ granularity and thus, it 
collects the required information in terms of instruction 
instances. The Instruction terms are mapped to their 
respective program statements which are identified based on 
their line numbers. The prototype implements both the 
statement-based and mutation-based approaches utilizing the 
Ochiai formula (given in Table I).  

The ATAC [31] coverage tool was used for the selection 
of the Block and Branch test sets from the accompanied test 
pools and Proteum [29] for the mutation ones. These  tools 
have also been used in software testing experiments e.g. [19], 
[15], [24]. Details about the test selection process are given 
in the following subsection. 

                                                           
1 Proteum/IM 2.0 was used by utilizing only the unit level operators. 
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 Fault1: Statement 3 (if ( y < z - 1)) Fault2: Statement 7 (m = y) 
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int m;  1 1 1 1 1 1 1 4 2 0.58 6  1 1 1 1 1 1 1  5 1 0.41 7 
m = z;  2 1 1 1 1 1 1 4 2 0.58 6  2 1 1 1 1 1 1  5 1 0.41 7 
if ( y < z )  3 1 1 1 1 1 1 4 2 0.58 6  3 1 1 1 1 1 1  5 1 0.41 7 

if ( x < y )  4 1     1 2 0 0.00 13  4 1 1   1 1  3 1 0.50 3 
m = y;  5       0 0 0.00 13  5  1      1 0 0.00 13

else if ( x < z )  6 1     1 2 0 0.00 13  6 1    1 1  2 1 0.58 2 
m = x;  7 1     1 2 0 0.00 13  7 1     1  1 1 0.71 1 

else  8  1 1 1 1  2 2 0.71 2  8   1 1    2 0 0.00 13
if ( x > y )  9  1 1 1 1  2 2 0.71 2  9   1 1    2 0 0.00 13

m = y;  10   1  1  1 1 0.50 8  10   1     1 0 0.00 13
else if ( x > z )  11  1  1   1 1 0.50 8  11    1    1 0 0.00 13

m = x;  12        0 0.00 13  12        0 0 0.00 13
return m;  13 1 1 1 1 1 1 4 2 0.58 6  13 1 1 1 1 1 1  5 1 0.41 7 

}                          
                         

mid(int x, int y, int z){                         
int m;  1          13  1           13

m = z;  2    13 M1. z � z+1 2   1 1   2 0 0 13M2. z � z-1   1 1   2 0 0

if ( y < z  ) 

M1. < � <= 

3 

1 1 0 2 1.00

1 

M3. y � y+1

3 

1   1   2 0 0

13

M2. < � > 1  1 1 3 0 0 M4. y � y-1        0 0 0 
M3. < � >= 1 1 1 1 1 3 2 0.63 M5. z � z+1       0 0 0
M4. < � == 1 1 1 1 2 2 0.71 M6. z � z-1 1   1   2 0 0
M5. < � !=   1    1 0 0            

M6. < � true  1 1 1 1 2 0.82        
M7. < � false 1  1 2 0 0        

if ( x < y ) 

M8. < � <= 

4 

   0 0 0 

13 

M7. x � x+1 

4 

       0 0 0 

13

M9. < � >   1 1 0 0 M8. x � x-1        0 0 0 
M10. < � >=   1 1 0 0 M9. y � y+1       0 0 0
M11. < � ==   0 0 0 M10. y � y-1        0 0 0 
M12. < � !=  1 1 0 0            

M13. < � true  1 1 0 0        
M14. < � false 0 0 0        

m = y;  5    13 M11. y � y+1 5  1      1 0 0 13   M12. y � y-1  1      1 0 0 

else if ( x < z ) 

M15. < � <= 

6 

0 0 0

13 

M13. x � x+1

6 

      0 0 0

13

M16. < � > 1  1 2 0 0 M14. x � x-1        0 0 0 
M17. < � >= 1  1 2 0 0 M15. z � z+1        0 0 0 
M18. < � == 1  1 2 0 0 M16. z � z-1        0 0 0 
M19. < � !=   0 0 0        

M20. < � true   0 0 0            
M21. < � false 1  1 2 0 0            

m = x;  7 13 M17. y� y+1 7 1     1  1 1 0.71 1 M18. y� y-1 1     1  1 1 0.71
else  8    13  8           13

if ( x > y ) 

M22. < � >= 

9 

0 0 0 

2 

M19. x � x+1

9 

       0 0 0 

13

M23. < � < 1 1 1 1 2 0.82 M20. x � x-1  1     1 0 0
M24. < � <= 1 1 1 1 2 0.82 M21. y � y+1   1     1 0 0 
M25. < � == 1 1 1 1 0.5 M22. y � y-1        0 0 0 
M26. < � != 1 0 1 0.71        

M27. < � true 1 0 1 0.71        
M28. < � false 1 1 1 1 0.5            

m = y;  10 13 M23. y � y+1 10  1     1 0 0 13M24. y � y-1  1     1 0 0

else if ( x > z ) 

M29. < � >= 

11 

0 0 0 

3 

M25. x � x+1

11

       0 0 0 

13

M30. < � < 1 0 1 0.71 M26. x � x-1       0 0 0
M31. < � <= 1 0 1 0.71 M27. z � z+1       0 0 0
M32. < � == 0 0 0 M28. z � z-1        0 0 0 
M33. < � != 1 0 1 0.71            

M34. < � true 1 0 1 0.71        
M35. < � false 0 0 0            

m = x;  12    13 M29. x � x+1 12        0 0 0 13   M30. x � x-1        0 0 0 

return m;  13    13 M31. m � m+1 13 1 1 1 1 1 1  5 1 0.41 2    M32. m � m-1 1 1 1 1 1 1  5 1 0.41
}   P F P P F P       P P P P P F       

Figure 1.  Fault localization example using program statements and mutants.  The upper part coresponds to a statement-based approach while the bottom 
part coresponds to the muation-based one. 

D. Experimental Regime 
The following experiment was set to address the stated 

RQs.  
Initially all subject programs (including the faulty 

ones) were executed with all the available test cases in 

order to record the passing and failing executions of the 
entire test suite. Then, execution traces of all available test 
cases per subject program were collected. These traces 
were used in order to produce the statement-based fault 
localization results (per utilized fault). The study of RQ1 
and RQ3 was based on these results.  
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TABLE II.  DESCRIPTION OF THE SELECTED SUBJECTS 

Program Name LOC whole 
Test Suite 

Number of 
Faults 

Schedule 296 2650 9 
Schedule2 263 2710 10 

Tcas 137 1608 41 
Totinfo 281 1052 23 

Printtokens 343 4130 7 
Printtokens2 355 4115 10 

Replace 513 5542 32 
 

With respect to the mutation-based approach 
(examined by RQ1), the whole set of utilized mutants were 
generated, compiled and executed against the entire 
provided test suite pool. This process determined the killed 
and live mutants per test case, information used by the 
proposed approach in order to compute mutant 
suspiciousness and produce mutation-based fault 
localization results. Mutant sampling approach (examined 
by RQ3) was performed by selecting and generating at 
random, only a percentage of the whole set of mutants. 
Five different sampling ratios were considered (10%, 20%, 
30%, 40% and 50%). In order to avoid any bias from the 
sampling process, 10 independent sets of mutants, per 
utilized ratio, were sampled, resulting in 50 mutant sets in 
total. For each one of those 50 mutant sets the same 
process as with the whole set of mutants was followed.  

One of the aims of this study, regarding RQ2, is to 
investigate the ability of the examined fault localization 
methods in localizing a detected fault when using adequate 
(with respect to testing criterion) test sets. Thus, the 
utilized test sets should expose the considered fault and 
being adequate2 at the same time. This study considers 
block, branch and mutation testing criteria. In order to 
avoid any side effects through the random selection of test 
cases, 10 independent test sets were constructed. Thus, the 
experiment considers in total 1310 test sets (131 faults × 
10 test sets) per utilized testing criterion. The test sets were 
constructed from the available test suite pool using the 
procedure of Fig. 2. The term score refers to the utilized 
criterion coverage, such as the block, or branch or the 
mutation score for the case of mutation. Additionally, 10 
test sets per utilized fault were constructed based on 
random selection from the available test pool. These sets, 
denoted as Random, were of the same size with the 
mutation ones and used to determine whether they have 
similar effects on fault localization with the mutation ones.   

Only the executable statements were ranked in the 
present experiment due to the function of the developed 
tool (see Section IV.C). Additionally, to complete it with 
reasonable resources (vast resources are typically needed 
by mutation analysis) the localization process was 
performed on the main program versions. Further, in this 
experiment, statements with the same suspiciousness value 
are ranked together at the upper of their ranks. For 
instance, statements 8 and 9 of the Fig. 1 have the highest 
suspiciousness value (0.71), for fault 1, but they are both 

                                                           
2 A test set is considered to be adequate if it achieves the same level of 
coverage with the whole suite. 

assigned with a rank of 2 (instead of ranks 1 and 2). This is 
a typical approach in the literature in this kind of 
experiments e.g. [6], [9], [25]. 

Comparing the accuracy of the examined methods 
between the different programs, a score for diagnosis 
effectiveness should be adopted. The most commonly used 
score by the literature in such cases is the one proposed by 
Jones et al. [9] in evaluating the Tarantula fault 
localization system. The “score” measures the percentage 
of executed program statements that need not to be 
examined if statements are examined by the programmer 
in a decreasing suspiciousness order. The use of the 
“score” is based on the assumption that the programmer 
will inspect each program statement until finding the faulty 
one based on the order specified by the fault localization 
tool. Along these lines the “score” value is calculated 
based on the following formula: 
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In the above formula, rank indicates the position of the 

faulty statement in the ranked list produced by the fault 
localization method. Greater “score” values suggest that 
less program code needs inspection by the programmer in 
order to identify the sought fault. Similarly, the term cost 
refers to the ratio of a given rank of a faulty statement to 
the total number of executed statements.  

Lastly, some additional concerns were made about the 
utilized faults and their localization. In cases of faults that 
involve omitted statements, it was assumed that these 
faults are found if the programmer inspects a statement 
next to the missing statement. Otherwise, there will never 
be such a mutated or executed statement. Similar situation 
is experienced in the cases of faults occurring on non 
executable statements such as variable initializations or 
constant assignment statements. In such cases, the faulty 
statements will not result in the considered suspiciousness 
list (for both of the utilized approaches). Hence, it was 
assumed that these faults will be located whenever the 
programmer inspects a statement using the constant or the 
faulty defined variable.  

 
Input: Test suite pool score PoolScore of the aimed criterion  
Output: Adequate test set with respect to the aimed criterion  
Set CurrSet = [ ]; 
SetScore = 0; 
select one test case (TC) able to expose the considered fault and put 
it in the CurrSet. The selection was performed at random among the 
available tests that expose the considered fault; 
while ( SetScore < PoolScore ){ 

add to CurrSet a randomly selected test case (TC) from the pool 
Execute the CurrSet and determine its score (CurrScore) level 
if ( SetScore < CurrScore  ) 

 SetScore = CurrScore; 
else 

 remove TC from the CurrSet;  
} 
return the CurrSet; 

Figure 2.  Test selection Procedure  
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Figure 3.  Effectiveness comparison of the mutation-based and 

statement-based fault localization methods using the whole test suite 

V. EXPERIMENTAL RESULTS 
This section reports results on performing statement 

and mutation based fault localization methods according to 
the process specified in the previous section.  

A. Effectiveness Evaluation – (RQ1) 
The effectiveness results of mutation and statement 

based approaches, with respect to RQ1, are summarized in 
the graph of Fig. 3. The obtained results are categorized 
based on the assigned “scores”, practice also used in [12],  
[13] and [25], in the following categories: 99-100%, 90-
100%, 80-100%, 70-100%, 60-100%, 50-100%, 40-100%, 
30-100%, 20-100%, 10-100%, 0-100%. Fig. 3 plots the 
percentage of faults effectively localized (y – axis) within 
the given range, “score” categories, the percentage of 
statements not needing inspection (x – axis) by the 
programmer. Thus, method curves (data points) that 
appear higher in the graph reflect a better fault localization 
effectiveness. For example a programmer is able to 
effectively localize approximately 0.90 of the total faults 
when using the mutation-based and only 0.44 with 
statement-based approaches, by inspecting only a 10% of 
the programs’ code3. Following these lines Table III in the 
columns “StLoc whole-suite” and “MutLoc whole-suite” 
records these results. Mutation-based approach achieved to 
effectively localize the 0.11, 0.89 and 0.93 of faults in the 
99%, 90% 80% categories while the statement based one 
0.41, 0.44 and 0.60 respectively. These experiments 
indicate that the mutation-based approach outperforms the 
statement-based one. This difference is of practical 
significance: the average “score” (average “score” values 
of all the examined faults) of the statement-based approach 
is equal to 77% while the mutation-based one 95%. 

Fig. 4 depicts the fault localization cost per fault. From 
this graph it can be observed that the cost for localizing 
faults with mutation-based approach is lower in most 
cases. Additionally, the difference is considerable for most 
cases. Further, in the sample of the 131 examined faults, 
mutation-based approach performed better in the 108 
cases, worst in 17 cases and had equal effectiveness in 6 

                                                           
3 The results consider only the executable statements not the whole 
program ones. 

cases. An examination of these 17 cases reveals that in 9 
cases this difference was less than 1%. Only in 4 cases the 
statement-based approach was better by more than 5% but 
no more than 11%. These results suggest that whenever 
the statement-based approach achieves a better 
effectiveness this difference is not so important. 

B. Testing criteria and fault localization – (RQ2) 
Fault localization approaches rely on coverage of 

program’ elements and the utilized number of test cases. 
Consequently, it seems natural to expect that using testing 
criteria requiring more test cases (such as mutation testing) 
will assist the localization of faults. However, since the 
mutation-based fault localization method relies on the 
killed mutants, it is expected (intuitively) to observe a low 
effectiveness when many mutants are not killed by the 
employed tests. Thus, low quality test suites such as those 
coming from block and branch testing should greatly affect 
the effectiveness of the localization method.  

The obtained results to address this issue, RQ2, are 
recorded in Table III and Fig. 5. Table III and Fig. 5 
present the ratio of the effectively localized faults at the 
various considered “score” ranges when using the Block 
(Block-suite), Branch (Branch-suite), Mutation (Mut-suite) 
and Random (Rand-suite) test suites by employing both 
statement (StLoc) and mutation (MutLoc) based fault 
localization methods. Additionally, Table III records the 
obtained results for the whole suite (whole-suite). These 
results confirm the intuition that the use of ‘more effective 
at revealing faults’ testing criteria helps also the 
localization process. Both examined localization 
approaches experience considerably better effectiveness 
when utilizing test suites adequate with respect to mutation 
than those based on Random, branch or block criteria. 

The most interesting finding of these results is that 
mutation-based localization approach out-performs the 
statement-based one in all cases, even when using block 
adequate test suites. Further, it was found that this 
difference is statistically significant 4  in all cases. 
Moreover, mutation-based approach is more effective with 
block suites than the statement-based one with the whole 
suite. Recall, that the whole suite is a relatively huge and 
comprehensive one, see section IV.B for details.  

 

 
Figure 4.  Fault localization cost per utilized fault 

                                                           
4 Statistical paired t test with statistical significance difference: p < 0.001 
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TABLE III.  AVERAGE FAULT LOCALIZATION SCORES FOR THE BLOCK, BRANCH, RANDOM, MUTATION AND THE WHOLE TEST SUITES. 

Score StLoc 
Block-suite 

StLoc 
Branch-suite 

StLoc 
Mut-suite 

StLoc 
Rand-suite 

StLoc 
whole-suite

MutLoc 
Block-suite 

MutLoc 
Branch-suite

MutLoc 
Mut-suite 

MutLoc 
Rand-suite 

MutLoc 
whole-suite

99-100% 0.01 0.02 0.08 0.05 0.11 0.01 0.01 0.28 0.19 0.41 
90-100% 0.23 0.32 0.44 0.35 0.44 0.49 0.56 0.88 0.82 0.89 
80-100% 0.32 0.39 0.52 0.51 0.60 0.79 0.80 0.94 0.92 0.93 
70-100% 0.44 0.50 0.60 0.56 0.66 0.88 0.91 0.96 0.94 0.97 
60-100% 0.54 0.66 0.69 0.67 0.75 0.95 0.96 0.98 0.98 0.97 
50-100% 0.69 0.79 0.81 0.79 0.85 0.98 0.98 0.98 0.98 0.99 
40-100% 0.79 0.83 0.84 0.84 0.89 0.99 0.99 0.99 0.99 0.99 
30-100% 0.85 0.85 0.85 0.87 0.90 1.00 1.00 1.00 1.00 1.00 
20-100% 0.91 0.91 0.92 0.91 0.93 1.00 1.00 1.00 1.00 1.00 
10-100% 0.99 0.99 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 
0 -100% 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

 

Another interesting finding was the noticeable 
improvement on the fault localization approaches 
effectiveness, especially that of the mutation-based one, 
when mutation adequate test suites are employed. The 
question that it is raised here is whether this improvement 
is attributed to the size of the utilized test sets and not to 
their adequacy. To examine this issue, the average size of 
the selected test sets per considered criterion was 
computed and presented at Table IV. From this table it can 
be observed that Mutation tests are considerably more than 
those of Branch and Block. However, the results of Table 
III and Fig. 5, reveal that Mutation test sets have an 
advantage over the Random ones. Recall that Random test 
sets are of the same average size with the mutation ones. 
Further, this advantage is of statistical significance 5 
suggesting that mutation test suites are suitable for 
assisting fault localization. Considering whether mutation 
adequate test suites can be improved to assist further the 
fault localization process a comparison between the 
mutation test sets and the whole test suite was performed. 
The results suggested that in the case of statement-based 
method the improvement was more evident. In the case of 
mutation-based method the whole suite provide a slight 
improvement on the method’s effectiveness. In both cases 
the difference was not of great statistical significance. This 
finding suggests that there is a slight room for 
improvement in the methods’ effectiveness by producing 
additional test cases.  

C. Mutant sampling evaluation – (RQ3) 
Mutation analysis has been identified as a costly 

technique. To overcome its difficulties, various mutation 
alternative techniques have been proposed [22], [15]. The 
present study examines the use of mutant sampling in fault 
localization. Fig. 6 presents the average effectiveness 
results of the mutant sampling technique with sampling 
ratios 10%, 20%, 30% 40% and 50%. For evaluation 
reasons Fig. 6 also plots the results of the whole utilized 
mutant set (denoted as 100%) and the statement-based 
ones. The graph of Fig. 6 suggests that all the examined 
sampling ratios experience loss in their effectiveness 
compared to the whole mutant set. In the case of 10% this 
loss is more apparent than the rest utilized approaches, 
which have a similar effectiveness.  

                                                           
5 Statistical paired t test with statistical significance difference: p < 0:001 

 
Figure 5.  Effectiveness comparison of the mutation-based (MutLoc) 
and statement-based (StLoc) fault localization methods by utilizing 

Block, Branch and Mutation and Random test sets 

By statistically comparing the differences between the 
various sampling ratios it was found that only the 10% and 
20% sampling ratios have statistically significant 
differences with the whole set of mutants. However, the 
10% mutant sampling approach outperforms the 
statement-based one with great statistical significance. On 
average 10% mutant sampling achieved to effectively 
localize 0.89 of the introduced faults while the statement-
based one only the 0.77 of them. In view of this, it can 
argue that mutation alternative methods can be effectively 
utilized to assist the fault localization process. 

VI. DISCUSSION 
The main problem faced by researchers when 

employing mutation analysis is about its scalability. The 
question that it is raised here is whether the proposed 
approach can scale to larger real world programs. This 
issue is a matter of further investigation, i.e. the optimal 
subset selection of mutants capable to effectively locate  

TABLE IV.  AVERAGE TEST SUITE SIZE 

Program Name Block Tests Branch Tests Mutation Tests

Schedule 4.54 7.33 28.91 
Schedule2 5.66 8.24 35.23 

Tcas 5.46 9.34 74.65 
Totinfo 6.34 6.66 29.88 

Printtokens 9.57 10.54 33.09 
Printtokens2 8.62 11.02 28.17 

Replace 13.98 18.50 145.92 
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Figure 6.  Mutat sampling approaches in assisting fault localization   

program faults at a low computational cost. However, the 
obtained results suggest that mutant sampling can be used 
as an alternative mutation method, in locating program 
faults. Other, possible direction in dealing with the 
scalability of the proposed approach is due to its combined 
use of other methods such as dynamic slicing [1]. 

Generally, fault localization is performed after the 
testing process. Conversely, if mutation was employed 
during the testing phase, then most and perhaps all 
computationally expensive analysis parts will have already 
been performed. For example, in case of the higher order 
approach, as proposed by Jia and Harman [14], all required 
mutants executions will have been performed at the first 
steps of the higher order mutants construction. Thus, the 
fault localization expenses will be negligible. Further, it 
should be mentioned that equivalent mutants do not pose 
any problem to the localization approach. Since these 
mutants are not killed, they are ignored by Ochiai 
calculation formula. Therefore, they can safely be 
discarded from the employed mutant set along with those 
killable mutants that were not killed by the utilized test 
cases. These actions are performed at the testing phase.  

VII. RELATED WORK 
There are a relatively large number of fault localization 

approaches appearing in the literature. Here a brief 
discussion on some of them is given.  

As it has already described, Jones et al. [8] developed 
the Tarantula method and Abreu et al. [7] introduce the 
Ochiai formula. Both these advances were utilized by the 
propose mutation-approach in order to include mutants. 
Additional approaches employing different program 
elements such as program branches and definition use 
pairs are the ones of Marsi [11], Santelices et al. [6] and 
Yu et al.  [12]. Marsi [11] concluded that branches and 
definition use pairs are more effective than statements. 
However, Santelices [6] showed that there is no approach 
that performs better in all cases, hence, proposing a 
combination of methods. Based on their results, Yu et al. 
[12] proposed a different combination approach. Similarly, 
Wong et al. [5] proposed a set of coverage-based heuristics 
able to improve the effectiveness of Tarantula.  

Other related approach not using information is the 
Delta Debugging method [2], [3], [4]. This method 
recognizes and isolates input parts responsible for failures 

[4], recognizes chains of program states that lead to the 
failure [3] and links these chains with the faulty code. 
Recently, Burger and Zeller [32] proposed a combination 
of delta debugging and program slicing techniques to aid 
the whole debugging process. Their approach produces a 
test case that involves the minimum number of objects and 
method calls related to an examined failure, thus, assisting 
the programmers in reasoning about the failure. Jeffrey et 
al. [25] proposed a value profiling method to localize 
program faults. In this approach, variables at each program 
statement are assigned with different to the original 
execution values. These value replacements help identify 
the faulty statements by observing the programs’ outputs. 

Baudry et al. [20] suggested a different approach to 
assist fault localization. Instead of using existing tests in 
the localization process, to generate and optimize the 
whole suite according to an introduced criterion. This 
criterion was shown to be able to improve the fault 
diagnosis accuracy. This approach is somehow orthogonal 
to the one proposed in this paper. If tests can be optimized 
with respect to fault localization then the proposed 
approach will be assisted to provide better results. A 
different mutation-based debugging approach is that of 
Debroy and Wong [33]. In [33] it is suggested to use 
mutants in order to fixing faults. This approach operates 
after the localization process differing from the present 
one. Considering this approach it can be argued that 
mutation analysis is capable of supporting testing, fault 
localization and fault correction processes. 

VIII. CONCLUSIONS AND FUTURE WORK 
Supporting both testing and localization activities with 

mutation analysis is the key-contribution of this paper. 
Mutants can be used first for guiding the production of test 
cases, therefore identifying program failures, and then in 
assisting the debugging process.  

The work presented in this paper provides a number of 
insights to the fault diagnosis research. Primary, it shows 
that mutants can be utilized for the efficient localization 
of “unknown” faults. Further, it validates this hypothesis 
in the cases of Block, Branch, Mutation adequate test sets 
and a relatively large and comprehensive test suite leading 
to the conclusion that mutants are suitable for both 
testing and debugging processes. Finally, the practical use 
of mutation-based approach via mutant sampling was also 
investigated and showed that the mutation-based fault 
localization method is still efficient while used in a 
degraded situation, using few mutants. 

The major contributions made by the present paper can 
be summarized on the following points: 
• The application of mutation analysis in assisting the 

fault localization process. The obtained results suggest 
that mutation-based fault localization is an effective 
technique, able to locate approximately 90% of the 
utilized program faults by investigating at most 10% 
of the program code.  

• An experimental comparison of fault localization based 
on Block, Branch and Mutation based tests. Compared 
to the other criteria, mutation-based test cases 
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significantly improve the effectiveness of the fault 
localization approaches.  

• An empirical investigation of the practical usage of 
mutation-based fault localization, with reduced cost by 
mutant sampling. With only 10% of the mutants, the 
approach is still more effective, statistically 
significant, than the statement-based approach. 
Issues for further investigation include the use of weak 

mutation [22] as an alternative to mutation-based fault 
localization. Since weak mutation has been shown to be 
quite efficient [34] with respect to the test execution phase, 
utilizing it seams to be worthwhile. Additionally, the 
combination the proposed approach with the mutants’ 
impact [16] may lead to reason about the located defects. 
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