Symbolic System Time
in Distributed Systems Testing

Oscar Soria Dustmann, Raimondas Sasnauskas, and Klaus Wehrle
Communication and Distributed Systems (ComSys)
RWTH Aachen University, Germany
firstname.lastname @comsys.rwth-aachen.de

Abstract—We propose an extension of symbolic execution of
distributed systems to test software parts related to timing.
Currently, the execution model is limited to symbolic input for
individual nodes, not capturing the important class of timing
errors resulting from varying network conditions.

In this paper, we introduce symbolic system time in order
to systematically find timing-related bugs in distributed systems.
Instead of executing time events at a concrete time, we execute
them at a set of times and analyse possible event interleavings
on demand. We detail on the resulting problem space, discuss
possible algorithmic optimisations, and highlight our future
research directions.

I. INTRODUCTION

Symbolic execution [1] has been established as a viable idea
to test off-line systems [2], [3]. Such test setups can typically
be divided into two phases: First, specify some symbolic
input to feed into the system. Second, run the system on that
symbolic input. Consequently, testing the system’s behaviour
for all possible inputs results in high code coverage and thus
in a high probability to detect errors.

SDE (Symbolic Distributed Execution) applies symbolic
execution to distributed systems [4], [5], such as WSNs
(Wireless Sensor Networks). Its representation of interaction
in networks by means of discrete events is a helpful idiom
for testing as it enables state space reduction. However, the
execution of interactive systems is not solely dependent on
the actual data that is provided as input but also on the time
required for inter-node communication. Thus, we propose a
generalised symbolic input-model for distributed discrete event
systems consisting of the following categories: (1) External
stimuli and (2) synchronisation latency.

While external stimuli relate to data that is of potential
interest, synchronisation latency is a result of the underlying
medium’s performance. Existing SDE-capable tools are lim-
ited to modelling symbolic input of the first category. Although
this includes network failure semantics to some degree (e. g.,
introducing symbolic packet drops), it precludes the ability to
test code that is sensitive to varying network conditions. Since
this is typically low level network interface code, bugs in that
portion of the system might be especially costly in e.g., a
WSN, if single nodes in the deployed system stop responding.

II. SYMBOLIC NETWORK CONDITIONS

We propose research into the realisation of the input model
presented in the previous section. To be able to test systems un-

der symbolic network conditions, we introduce an element of
uncertainty for the delivery of data packets. This is effectively
impossible with current SDE implementations; Receiving a
packet is realised on discrete event systems by scheduling an
event in the future, depending on the packet delivery time.
The underlying event scheduling mechanism will dispatch the
associated handler once the system reaches the respective event
time. If the event time is uncertain, the event appears in a
status where it was already executed and where it is not yet.
A naive resolution to this apparent contradiction is to follow
both possibilities for every discrete time step, time steps being
subject to the granularity of the system time. For instance, a
packet that is assumed to have a delay of up to 100 ms, would
cause a million execution states to be forked off on a node
with a time granularity that corresponds to a 10 MHz clock.

A. Problem Subdivision

While this approach would certainly produce correct results
and reside completely in userspace model-code, it is infeasible
for intensively communicating networks. We intend to defer
scheduling decisions to the symbolic execution engine and
introduce the notion of symbolic event time. This means that
an event is no longer tied to a concrete time, but instead a
set of times. We see two core challenges in building such a
system:

1) Execute event handlers of the tested code on a set of
virtual times instead of a concrete virtual time.

2) Find a strict total ordering of events with sets of virtual
times.

1) Event Execution: Execution of the event handler for a
given event must be done in a fashion that allows us to pretend
it was executed on any concrete time in the set of admissible
event times. This will cause the regular symbolic execution of
the subsequent code to branch into separate execution paths,
if and only if necessary.

To implement this approach one must identify the location
of the system time, in order to modify it. However, this
approach will result in branches that create truly inequivalent,
and therefore non-redundant, execution states.

2) Event Ordering: Discrete Event Scheduling is a well
studied and understood procedure: For a distributed system,
executed (or simulated) by a single host, the scheduler simply
executes the event with the smallest time stamp, while con-
sidering events of the whole network. As trivial as this is for

classical DES (Discrete Event Simulators) the application in
our domain is problematic as the generalisation of event times
to sets of event times causes us to loose the canonic ordering
of the natural numbers as strict total ordering of events.

Consider two events e; and es with the respective non-trivial
time sets 77 and T5. If there are no times t; € T3, t; € T}
with t; < t; for a given valuation of {i,j} = {1,2}, we
can safely execute e; before e; without violating the causality
constraints imposed by the tested application (i.e., the future
must not precede the past). Otherwise, in the presence of such
times ¢;,t; for both possible valuations of (¢, j), we are not
allowed to execute e; before e nor are we allowed to execute
eo before e; because both would violate causality constraints.

However, in a real system run, one of these events would
be executed first, in another system run, the other might be
executed first. This means that our current execution state is
too general to reflect both paths the execution could take.
Therefore, we branch the execution. For one path a we choose
e1 to be executed first, with all timestamps that are admissible,
according to 7%, while we restrict the allowed timestamps of
e2 to values greater than or equal to the values of 7. For the
other path, b, we proceed analogously to a, only with e; and
eo exchanged.

This kind of forced event sorting is known as Interval
Branching and was studied for system-simulation [6]. Al-
though the basic problems of Interval Branching and Symbolic
Time are quite similar, their respective domains allow for
different solutions and optimisations. While the former is a
Parallel Discrete Event Simulator, running a system model on
several LPs (Logical Processes), the latter relies on a symbolic
execution engine of actual, unmodified code, which is run in
a single process.

B. Possible Optimisations

While Interval Branching can be expected to produce rea-
sonable state spaces, there might be additional considerable
improvements. SDE reduces the number of execution states
by keeping transitive relationship information and branching
packet receivers only if there exist competing, non-sending
states. This global view allows packet-interception and inspec-
tion, which results in additional state space reduction if the
same packet is sent by all relevant states. With symbolic packet
arrival times, packet equivalency depends on the intersection
of arrival times, which may be overlapping, yet unequal. There
are several valid possibilities to optimise this situation and it
will be subject to evaluation to decide which is most efficient.

Since events on separate nodes are independent, per se,
interleaving times require no state branching in such a case.
However, in this situation one event ¢; can be chosen to be
run prior to the other event es. But event eo might schedule an
event e3 on e1’s node. Since the execution time intervals of e;
and e overlap, ej is allowed to be scheduled on a time interval
that overlaps with e;. Therefore, es would have been eligible
to be run prior to e;, due to the Interval Branching mechanism.
In order to resolve this, a state must be preserved, where e;
has not been executed. This would then allow an execution

where ez is scheduled prior to e;. While snapshotting can
be used to implement this rollback, the execution of the other
equally legit branch where e; indeed does precede es has been
run incorrectly because the time restrictions imposed by event
ez were unknown when e; was run. Thus, e; would have
to be rerun with adjusted time constraints on the snapshot.
It depends on the execution framework, whether this work
repetition can be avoided by retroactively narrowing the set of
times at which e; has been run. Such retroactive tampering
would constitute an optimistic execution scheme that entails
no rollback penalty.

III. OUTLOOK

We see this research direction not only as an effort to amend
symbolic packet delivery time capabilities to SDE but as a
paradigm shift and a different approach to symbolic testing of
distributed systems. The limited input model of current SDE
forces the user to invest time into identifying crucial sensory
input and hoping that a few symbolically injected packet drops
will trigger a possible bug. Our proposed input model is more
generic, in the sense that it allows for push-button tools for
testing of protocol behaviour.

However, a generalised input model yields a more thorough
coverage at the price of a higher workload for the execution
engine and therefore a longer runtime and possibly a larger
memory footprint. For instance, an overzealous attempt to test
all possible cases, might result in the choice of large packet
delivery intervals, producing a high number of overlapping
events and therefore severe state explosion. This presents us
with an additional source of unusability.

We believe that a hybrid system that infers rough latency
estimates from an actually deployed system or a concrete
emulation, and weakens these to add symbolic uncertainty
could be used to efficiently run fully automated tests of net-
worked systems. Further applications could entail incremental
searcher implementations for continuous testing, discovering
even remote corner case bugs.

REFERENCES

[1] J.C. King, “Symbolic execution and program testing,” in Commun. ACM,
vol. 19. ACM, July 1976, pp. 385-394.

[2] D. Dunbar, C. Cadar, and D. Engler, “Klee: unassisted and automatic
generation of high-coverage tests for complex systems programs,” in
Proceedings of the 8th USENIX conference on Operating systems design
and implementation, ser. OSDI’08, 2008, pp. 209-224.

[3] C. S. Pasdareanu, P. C. Mehlitz, D. H. Bushnell, K. Gundy-Burlet,
M. Lowry, S. Person, and M. Pape, “Combining Unit-level Symbolic
Execution and System-level Concrete Execution for Testing NASA Soft-
ware,” in Proceedings of the 2008 International Symposium on Software
Testing and Analysis, ser. ISSTA *08. ACM, 2008.

[4] R. Sasnauskas, O. Landsiedel, M. H. Alizai, C. Weise, S. Kowalewski, and
K. Wehrle, “Kleenet: discovering insidious interaction bugs in wireless
sensor networks before deployment,” in Proceedings of the 9th ACM/IEEE
International Conference on Information Processing in Sensor Networks,
ser. IPSN 10. ACM, 2010, pp. 186-196.

[5] R. Sasnauskas, O. Soria Dustmann, B. L. Kaminski, K. Wehrle, C. Weise,
and S. Kowalewski, “Scalable symbolic execution of distributed systems,”
in Proceedings of the 2011 31st International Conference on Distributed
Computing Systems, ser. ICDCS *11. IEEE, 2011, pp. 333-342.

[6] P. Peschlow, P. Martini, and J. Liu, “Interval branching,” in 22nd Work-
shop on Principles of Advanced and Distributed Simulation, ser. PADS
’08. IEEE, 2008, pp. 99-108.

