
© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. Original publication: Proceedings of the 5th International Conference on
Software Testing, Verification and Validation (ICST 2012)

Test adequacy evaluation for the user-database interaction: a specification-based
approach

Raquel Blanco
Computer Science Department

University of Oviedo
Gijón, Spain

rblanco@uniovi.es

Javier Tuya
Computer Science Department

University of Oviedo
Gijón, Spain

tuya@uniovi.es

Rubén V. Seco
Computer Science Department

University of Oviedo
Gijón, Spain

valdesruben@uniovi.es

Abstract— Testing a database application is a challenging
process where both the database and the user interaction have
to be considered in the design of test cases. This paper
describes a specification-based approach to guide the design of
test inputs (both the test database and the user inputs) for a
database application and to automatically evaluate the test
adequacy. First, the system specification of the application is
modelled: (1) the structure of the database and the user
interface are represented in a single model, called Integrated
Data Model (IDM), (2) the functional requirements are
expressed as a set of business rules, written in terms of the
IDM. Then, a MCDC-based criterion is applied over the
business rules to automatically derive the situations of interest
to be tested (test requirements), which guide the design of the
test inputs. Finally, the adequacy of these test inputs is
automatically evaluated to determine whether the test
requirements are covered. The approach has been applied to
the TPC-C benchmark. The results show that it allows
designing test cases that are able to detect interesting faults
which were located in the procedural code of the
implementation.

Keywords- database testing, model-based testing,
specification-based testing, test input, coverage evaluation,
MCDC

I. INTRODUCTION

Database applications play an important role in today's
commercial systems. In these applications the business logic
is usually implemented by means of a combination of
imperative languages and the SQL language [15]. Testing
database applications is especially important, because faults
can appear in the procedural code of the program, in the SQL
queries used to interact with the database, in the schema of
the database or in the data stored in the database. Besides a
fault may not only produce an incorrect output to the user,
but also cause damage or loss of vital data for a company,
which is stored in the database. So, incorrect data are also
dangerous since they may be the input of other processes of
the application, which may have a malfunction and produce
additional damage to the data.

A typical operation of a database application, from now
on called user transaction, starts with the selection of some
data from the database to be shown in the user interface. The
user, based on this information, introduces new data in this

interface. Then, the transaction is executed taking into
account the database state and the data supplied by the user.
After that execution, the database is updated and/or new data
are shown in the user interface.

A user transaction has two kinds of inputs and two kinds
of outputs, which are taken from the user interface and the
database. Therefore, we consider that the test input of a test
case is composed of the values supplied by the user in the
user interface (henceforth user input) along with the state of
the database before the execution of the user transaction
(henceforth test database). In the same way, the test output
of a test case is formed by the values shown in the user
interface (henceforth user output) and the state of the
database after the execution of the user transaction
(henceforth output database).

 In order to guide the generation of the test inputs and to
evaluate their adequacy, different criteria have been defined
in the literature [33]. These criteria determine situations of
interest to be tested, which are called from now on test
requirements. Regarding to the database applications, typical
criteria for procedural code have been used, such as branch
coverage in the work of Emmi et al. [10], and new criteria
specially designed to deal with the particularities of the
source code that accesses to the database have been
developed. For example, the data-flow criteria defined by
Kapfhammer and Soffa [16], the structural and data-flow
criteria elaborated by Willmor and Embury [26], the multiple
condition coverage described by Suárez-Cabal and Tuya
[21], or the SQLFpc criterion defined by Tuya et al. [24].
These approaches use the SQL statements statically defined
by the application to derive the test requirements. Other
works address the problem of the dynamic construction of
the SQL statements to be executed in the database
application and define adequacy criteria based on the number
of dynamic statements covered, such as the command form
coverage proposed by Halfond and Orso [11]. Recent works
of Zhou and Frankl [30][31][32] also take into account the
generation of the SQL statements on the fly and describe a
mutation testing approach to test Java database applications,
which is based on the mutation operators for SQL statements
proposed by Tuya et al. [23].

However, when these criteria are used, the generation of
the test inputs that cover the test requirements is guided by
the implementation of the database application, instead of
being led by what should be implemented according to the

system specification. So the test inputs are designed to cover
the structure of the source code, not to cover the expected
behaviour of the application expressed in the system
specification. The test cases that rely on the source code
might not expose faults if the implementation does not fulfil
the system specification, because what the application does,
it does well, but the application does not do what it should
do.

A possible approach to guide the generation of the test
inputs from what the application must do consists of
applying Model-based testing, whose benefits, such as its
support for test automation, have been discussed in several
works (for example [13]). In this approach the intended
behaviour of an application is represented by means of
models that are precise enough to be the basis of the
derivation of meaningful test cases [25]. To achieve the goal
of obtaining the test inputs of these meaningful test cases one
or several models are designed from the system specification
focused on testing objectives, and then a given adequacy
criterion is used to derive the test inputs from these models
and evaluate the adequacy achieved.

 Related to the scope of testing database applications, the
process of modelling the system specification involves the
design of models for the required functionality (such as use
cases, scenario diagrams, business rules, etc.), models for the
data handled by the user, that is the user interface, (for
example class diagrams, task models, etc.) and models for
the data handled and stored by the application, that is the
database, (for instances, relational models, a set of
constraints, etc.) However, the use of different types of
models, that only represent a part of the database application,
complicates the tasks of deriving the test inputs for a
complete view of the application and evaluating their
adequacy, due to the interrelation among these models: the
behaviour is affected by the data that are present in both the
user interface and database, the information shown in the
user interface depends on the data stored in the database and
the operations that are carried out over the database also
depend on the data of the user interface.

To automate the process of testing a database application
from the system specification the following phases can be
considered: (1) the modelling of the system specification, (2)
the definition of an adequacy criterion to derive the test
requirements, (3) the evaluation of the adequacy achieved
by the current test inputs (user inputs and test database), (4)
the generation of new test inputs to cover the test
requirements that have not been covered yet, (5) the
specification of the expected test outputs (user outputs and
output database), (6) the execution of the database
application with the test inputs and (7) the comparison
between actual and expected outputs. The approach
presented in this paper deals with 1, 2 and 3: the modelling
of the system specification, the definition of an adequacy
criterion over the model defined to derive the test
requirements and the automatic evaluation of the adequacy
achieved by the test inputs generated.

The main contributions of this work are:
 The definition of an Integrated Data Model, where

the two types of inputs of a database application, that

is the user interface and the database, are modelled
in a unified way.

 The modelling of the required functionality of the
database application through a set of business rules
that take into account the Integrated Data Model
defined.

 The elaboration of a MCDC-based criterion over the
business rules to automatically derive the test
requirements.

 The automation of the evaluation of the test inputs
adequacy that involves both user inputs and test
database.

The remainder of the paper is organized as follows:
Section II describes our approach to automate the generation
of the test requirements from the system specification and
the evaluation of the test inputs adequacy. Section III
presents the results of the experiments over a case study.
Section IV presents the related work. The paper ends with
conclusions and future work.

II. PROBLEM APPROACH

To describe the problem approach let us consider a user
transaction called “new-order transaction”, taken from the
TPC-C benchmark [22]. This benchmark represents the
activity of a wholesale supplier that has several sale districts
and associated warehouses, which have stocks for a number
of items. Each customer of the wholesale supplier company
is served by a specific warehouse. When a customer places
an order in the user interface of the user transaction, all items
are supplied by the associate warehouse (by default), but if
an item is not in stock of this warehouse, the customer must
indicate a different warehouse to get the item. To calculate
the total price of an order, the warehouses used to serve the
items are considered and, as a result, the price when all items
are ordered to the customer’s warehouse is different to the
price when some items are ordered to an alternative
warehouse.

According to this example, some interesting test
requirements are: (1) all items are ordered to the customer’s
warehouse because all of them are in stock, (2) some items
are ordered to a different warehouse because they are not in
stock of the customer’s warehouse. The test database has to
incorporate meaningful data to cover these situations and the
user has to introduce the user inputs: for (1) the user has to
supply a customer and a list of items such that in the test
database all of them are in stock of the customer’s warehouse
and for (2) the list of items supplied by the user must contain
at least one item that in the test database is not in stock of the
customer’s warehouse but is in stock of another warehouse.

Our approach considers this user transaction as a unit to
be tested. Each test unit is called from now on test
assignment. For each test assignment several test cases are
designed to cover its test requirements, and each of them is
composed of different user inputs and usually the same test
database (to reduce the cost of test preparation and
execution).

As stated above, the system specification of a test
assignment includes the description of its required

functionality, the structure of the information handled and
stored by the application (database) and the structure of the
information handled by the user (user interface). These three
parts are considered together to evaluate the adequacy of the
test inputs.

 The user input and the test database that compose a test
input are closely related, as the previous example shows. For
instance, to achieve the second test requirement, the
customers, warehouses and items in stock of each warehouse
that are stored in the database must be considered to
introduce in the user interface (1) a customer that is served
by a warehouse with items in stock, (2) one or several items
that are in stock of this warehouse and (3) one or several
items that are in stock of a different warehouse and are not in
the stock of the customer’s warehouse. To represent both the
user input and the test database and their dependences in a
homogeneous way, our approach integrates both user
interface and database into a unique model called Integrated
Data Model (IDM), which is described in Section II.A. The
IDM contains the structure of the test cases designed for the
test assignment.

On the other hand, our approach represents the required
functionality of a test assignment as a set of business rules
from which the test requirements can be obtained
automatically (a business rule is a statement that defines or
constrains the business structure or the business behaviour
[12]). The description of this functionality involves the
definition of the properties that both the information stored
in the database and handled by the user must fulfil, the
actions that are carried out over this information and the
output of these actions. As both user interface and database
are represented by the IDM, the business rules express the
functionality of the test assignment in terms of the IDM,
using the language presented in Section II.B. By means of
the IDM the process of evaluating the adequacy of the test
inputs is simplified, since it is carried out as if the test
assignment only had one type of input.

Our approach performs the following steps, which are
depicted in Figure 1:

 Step 1: the model IDM that integrates both user
interface and database is created to represent the test
inputs.

 Step 2: the required functionality of the test
assignment is represented as a set of business rules
that are expressed in terms of the IDM.

 Step 3: the test requirements are derived from the
business rules using a MCDC-based criterion and
they are automatically evaluated.

 Step 4: the test inputs designed, taking into account
the IDM, are automatically evaluated to determine
the test requirements covered.

 Step 5: if some test requirements have not been
covered yet, new test inputs are designed (the
automation of this process is out of the scope of this
paper) and then a new evaluation of the test inputs
adequacy is carried out.

To automatically apply the adequacy criterion and check
whether the test inputs cover the test requirements, we

(3) Derivation of the Test
Requirements

(4) Evaluation of the Test
Inputs Adequacy

All Test
Requirements

covered?

No

Yes

DatabaseUser
Interface

Functionality

Test Assignment Specification

Business
Rules

(2) Specification of the
Business Rules

Test Requirements

(5) Generation of new
test inputs

IDM

Test Inputs

(1) Creation of the
Integrated Data Model

Figure 1. General Schema

express the IDM as a relational model and generate SQL
queries as an executable representation of the test
requirements. So the SQL queries are executed against a
database derived from the IDM to evaluate whether the data
stored cover the test requirements.

A. Integrated Data Model

To cover the test requirements derived from the adequacy
criterion used in the testing process of a database application
a set of test cases is designed. Each test case involves the
introduction of the user input in the user interface and the
population of a test database. To reduce the cost of
populating the database, it is useful to share the same test
database by the most number of test cases as possible, which
may have been created for different test assignments, so the
test inputs of these test cases only differ in the user inputs.
To represent these test inputs our approach defines the
Integrated Data Model (IDM), where the user interfaces of
the test assignments and the database used are integrated into
a unique model and the state of the test database can be
shared by several test cases.

The IDM is composed of three levels, as it is shown in
Figure 2:

 Database level, which models the database used by
the test assignments of the database application and
represents the test database.

 UI level, which models the user interfaces of the test
assignments and represents the user input of each
test case. This level is connected to the Database
level as the user inputs are closely related to the
values stored in the test database.

 Test Case level, which represents the test cases
created for the test assignments. These test cases are
related to different user inputs and share the test
database. This level is connected to the UI level to
identify the user input that corresponds to each test
case.

Each level is modelled through a relational model
composed of a set of entities and their relationships, called
intra-level relationships. The connections between different
levels are relationships, which are called inter-level
relationships, among two entities that belong to these
different levels.

To illustrate the creation of the Integrated Data Model,
consider again the test assignment “new-order transaction”
of the TPC-C benchmark. Figure 3 shows its user interface,
which is composed of the general information of an order
(such as the customer and the discount and warehouse for
this customer) and the list of items ordered along with their
information (such as the item id, the quantity ordered and the
item price). Each field of the user interface has a superscript
which indicates whether it is an input variable (superscript I)
or an output variable (superscript O).

The IDM of this example is depicted in Figure 4. The
database level is formed by the relational model of the
database used by all transactions of the TPC-C benchmark.
The UI level contains the model for the “new-order
transaction” (the models derived from the other test
assignments of the TPC-C benchmark are not represented in
the figure). The name of each entity of the UI level starts
with the prefix UI to identify the entities that clearly belong
to this level.

The user interface of this test assignment is represented
by two entities: UI_Order, which represents the general
information of an order, and UI_OrderLine, which represents
each item ordered. There is an intra-level relationship
between these entities which indicates that an order is
composed of a list of items.

The connections between the UI level and the database
level indicate that the data in both user interface and database
are related. Thus, the entity UI_Order has an inter-level
relationship with the entity Customer and another one with
the entity Order. The former indicates that an order of a user
input, represented by UI_Order, belongs to a specific
customer stored in the test database, which can be used in

Figure 2. Structure of the Integrated Data Model (IDM)

Figure 3. Inputs of the test assignment “new-order transaction”

several test cases. The latter relates the order of a user input
with the order stored in the database level after executing the
test case. The entity UI_OrderLine has an inter-level
relationship with the entity Stock, where the items in stock of
each warehouse are stored. This relationship specifies that an
item ordered in the user input is in the stock of a warehouse
in the test database. An item of this stock can be ordered
more than once.

Finally, the Test Case level is composed of an entity
called TestCase where each test case is distinguished. The
entity Test Case has an inter-level relationship with the test
assignment in the UI level to indicate that several test cases
can be designed for the test assignment and each of them
corresponds to a specific order introduced in the user
interface (the user input).

The IDM is physically implemented as a database, where
the structure and the value of the test inputs are stored. Each
test case is represented by a specific tuple in the entity

Figure 4. IDM of the test assignment “new-order transaction”

TestCase. The user input of each test case is the set of tuples
stored in the entities of the UI level that are related to the
tuple of TestCase used to identify it. The test database is
composed of the tuples stored in the entities of the Database
level.

B. Specification of business rules

This section describes how the business rules are
constructed from the specification of the test assignments.
Two kinds of rules are considered: constraint and derivation
business rules [12]. The constraint business rules impose
conditions on the state of the entities of the IDM. The
derivation rules infer new knowledge from the state of these
entities. The vocabulary used in their construction is based
on the SBVR specification [20].

Before describing the business rules, it is necessary to
define some concepts that are used in their construction:
paths, path attributes, frames and frame attributes. In these
definitions the notation presented by Codd [7] is used.

The entities referred by a business rule can be related by
several paths over the IDM and, therefore, it is necessary to
determine which one is used in order to identify the
relationships involved:

Definition 1: a path P is a sequence of one or more
entities R1, R2, …, Rn of the IDM, where each pair (Ri, Ri+1)
is directly connected via some attributes in the predicate
qi,i+1():

path P is R1[q1,2()]R2[q2,3()]…[qn-1,n()]Rn

If a pair (Ri, Ri+1) is connected via the foreign key, it is
not necessary to specify the predicate qi,i+1().

A path P establishes the context on which the conditions
of the business rules are applied. This context is composed of
the tuples obtained from the Cartesian product of the entities
Ri (i=1..n) that fulfil the predicates qi,i+1().

Definition 2: a path attribute is an attribute A of a path P
denoted by P.A. If A is not unique in P it is denoted by
P.R.A, where R is an entity of P that contains A.

Definition 3: a frame G is a set of tuples over a path P
which have the same value for one or more path attributes
A1, A2, …, An:

frame G is P///A1, A2, …, An

Definition 4: let G be a frame over a path P. A frame
attribute is a path attribute A of P whose value is analyzed in
the tuples of the context defined by G. The frame attribute is
denoted by G.A. If A is not unique in P it is denoted by
G.R.A where R is an entity of P that contains A.

The business rules establish conditions over the values of
path attributes and frame attributes, called from now on
value conditions, and conditions regarding the number of
tuples of a path that relates two entities, called from now on
quantification conditions. The definitions of both types of
conditions are presented below, using the EBNF notation
[14].

Definition 5: a value condition defines or constraints the
value of a path attribute P.A (or a frame attribute G.A):

value_condition = simple_condition | range_condition
simple_condition = (P.A | G.A) (at least | at most | exactly

| different to | like) q
range_condition = (P.A | G.A) at least p and at most q

where p and q are arithmetic expressions over path
attributes of P or frame attributes of G or constants.

Definition 6: a quantification condition defines or
constraints the number of tuples of an entity P.S that are
related to a specific tuple of an entity P.R:

quantification_condition = simple_quantification |
 range_quantification
simple_quantification = P.R (at least | at most | exactly

 | different to) q P.S
range_quantification = P.R at least p and at most q P.S

where p and q are expressions whose evaluation returns
an integer number greater than or equal to 0.

The following subsections present the patterns that allow
the construction of different business rules using the EBNF
notation (Section 1 describes the constraint business rules
and Section 2 describes the derivation business rules). Each
business rule is illustrated through an example based on the
specification of the TPC-C benchmark.

1) Constraint business rules
A constraint business rule establishes one or several

value or quantification conditions to be fulfilled by each
tuple or a set of tuples of the path that defines the context for
the business rule. Taking into account the type of these
conditions, two kinds of rules are defined: constraint rule for
values and constraint rule for the number of tuples in a path.

Definition 7: The general pattern of a constraint business
rule is:

each ci {(and | or) each ci}

 where ci is a condition written according to the patterns
defined by each type of constraint rule (see definitions 8 and
9 below).

Definition 8: a constraint rule for values is a constraint
business rule that establishes one or several value conditions
over the path attributes P.Ai (i=1..n) that must be fulfilled by
each tuple of P. Each ci of the general pattern of a constraint
rule is defined as:

P.Ai must be (at least p | at most p | exactly p |
 different to p | like p | at least p and at most q)

where p and q are arithmetic expressions over path
attributes of P or constants.

Example 1: consider that the quantity ordered for each
item of an order introduced in the user interface must be in
the range [1, 10]. The business rule is:

Each UI_OrderLine.ol_quantity must be at least 1 and at most 10

Definition 9: a constraint rule for the number of tuples in
a path is a constraint business rule that establishes one or
several quantification conditions, where each one restricts
the number of tuples of an entity Si (i=1..n) of a path P
(denoted as P.Si) that can be related to a specific tuple of an
entity Ri (i=1..n) of P (denoted as P.Ri). Each ci of the
general pattern of a constraint rule is defined as:

P.Ri must have (at least p | at most p | exactly p |
different to p | at least p and at most q) P.Si

where p and q are expressions whose evaluation returns
an integer number greater than or equal to 0.

Example 2: consider that each order introduced in the
user interface must have at least 5 and at most 15 order lines.
The business rule is:

Path P1 is UI_Order[]UI_OrderLine
Each P1.UI_Order must have at least 5 and at most 15

P1.UI_OrderLine

2) Derivation business rules
A derivation business rule infers new knowledge when

one or several value or quantification conditions are true in
some or a group of tuples of the path that defines the context
for the business rule.

Taking into account the type of conditions and how many
tuples of the path must fulfil the conditions, the following
rules are defined: derivation rule for conditions in some tuple
in a path, derivation rule for conditions in all tuples of a
frame and derivation rule for the number of tuples in a path.

Definition 10: The general pattern of a derivation rule is:
if ci {(and | or) condi} then r

where ci is a condition written according to the patterns
defined by each type of derivation rule (see definitions 11 to
13 below) and r is a set of actions used to infer the new
information.

Definition 11: a derivation rule for conditions in some
tuple in a path is a derivation business rule that establishes
one or several value conditions over the path attributes P.Ai
(i=1..n) to be fulfilled by some tuple of P. Each ci of the
general pattern of a derivation rule is defined as:

P.Ai is (at least p | at most p | exactly p| different to p | like p |
 at least p and at most q)

where p and q are arithmetic expressions over path
attributes of P or constants.

Example 3: consider that the brand information of an
item of an order introduced in the user interface is inferred
when the brand information stored for that item in both
entities Stock (attribute s_data) and Item (attribute i_data)
include the string ‘ORIGINAL’. The business rule is:

Path P2 is UI_OrderLine[]Stock[]Item
If P2.i_data is like ‘%ORIGINAL%’ and P2.s_data is
 like ‘%ORIGINAL%’ then P2.o_brand = ‘B’

Definition 12: a derivation rule for conditions in all
tuples of a frame is a derivation business rule that establishes
one or several value conditions over the frame attributes
G.Ai (i=1..n) to be fulfilled by all tuples of G. Each ci of the
general pattern of a derivation rule is defined as:

each G.Ai is (at least p | at most p | exactly p| different to p |
 like p | at least p and at most q)

where p and q are arithmetic expressions over frame
attributes of G or constants.

Example 4: consider that the attribute o_all_local of an
order, which is been stored in the database, is inferred when
all items of this order introduced in the user interface are
supplied by the warehouse that servers the customer.

Path P3 is UI_OrderLine[]UI_Order[]Order
Frame G is P3///o_tc_id, o_ui_id
If each G.ol_supply_w_id is exactly G.o_w_id then

G.o_all_local = 1

The path P3 is framed according to the derived attributes
that identify each order introduced in the user interface.

When all tuples of a frame fulfil the condition defined over
the frame attributes, the new knowledge is inferred for this
frame, in this case for the order.

Definition 13: a derivation rule for the number of tuples
in a path is a derivation business rule that establishes one or
several quantification conditions to define the number of
tuples of an entity P.Si (i=1..n) that must be related to a
specific tuple of an entity P.Ri (i=1..n). Each ci of the general
pattern of a derivation rule is defined as:

P.Ri has (at least p | at most p | exactly p | different to p |
 at least p and at most q) P.Si

where p and q are expressions whose evaluation returns
an integer number greater than or equal to 0.

Example 5: consider that the status of an order introduced
in the user interface is updated with the value ‘error’ when
the order has more than 15 order lines. The business rule is:

Path P4 is UI_Order[]UI_OrderLine
If P4.UI_Order has at least 16 P4.UI_OrderLine then

P4.Status = ‘error'

C. Coverage Evaluation

To obtain the set of test requirements from the business
rules, a Masking MCDC-based criterion is used. This
criterion requires that every condition in a decision in the
program has taken on all possible outcomes at least once,
every decision in the program has taken all possible
outcomes at least once, and each condition in a decision has
been shown to independently affect the decision’s outcome
[6].

In our case, the program is represented by means of a set
of business rules, where each one establishes a set of
conditions that forms the decision on which the Masking
MCDC-based criterion is applied. On the other hand, the
evaluation of the decision and the conditions of a business
rule is affected by the context on which they are considered.
As stated above, this context depends on the predicates of the
path P used in the business rule. So, our approach also
applies the Masking MCDC-based criterion over the
predicates of P to derive different contexts on which the
conditions of each business rule are found to hold true.

The process of automatically deriving the test
requirements and evaluating the coverage achieved by the
test inputs has been implemented by a set of tools (see Figure
5).

First, the model of the user interface of each test
assignment is represented through a SQL-like language.
Then, the UIBDRules tool generates the database that
represents the IDM, called henceforth IDM database, taking
as input the database schema of the application and the
representation of the user interface. As stated above this
database contains the structure of the test cases and for each
one it stores the test input.

Next, UIBDRules derives the test requirements from
each business rule in the form of SQL queries, which can be
executed against the IDM database. To do this, our approach
relies on a Masking MCDC-based criterion specially tailored
to deal with SQL, called SQLFpc [24]. This criterion is
applied over a SQL query and derives its test requirements as
SQL queries, called coverage rules. The generation of the

coverage rules has been implemented in the SQLFpcWS web
service [24]. In other words, UIBDRules transforms each
business rule into one or several SQL queries and then
invokes SQLFpcWS with each query and the schema of the
IDM database to obtain the coverage rules. After that,
UIBDRules modifies and filters some coverage rules to get
the final set of coverage rules that constitutes the executable
representation of the test requirements of the business rule.

The final set of coverage rules is presented, along with a
description in natural language, to the tester, who populates
the IDM database with the test inputs intended to fulfil the
conditions imposed by the coverage rules. Afterwards, each
coverage rule is executed against the IDM database to
determine whether it is covered by the test inputs stored, that
is, whether at least one tuple is obtained after its execution.
Thus, the SQL queries guide the design of the test inputs and
the execution of these SQL queries against the IDM database
allows the automatic evaluation of the test inputs adequacy.

To illustrate the test requirements derived from a
business rule using the Masking MCDC-based criterion, and
their executable representation, let us consider the business
rule of Example 3. For this business rule, UIBDRules
generates coverage rules that represent the test requirements
derived from the path P2 (1 to 3) and the test requirements
derived from the conditions established by the business rule
(3 to 7):

(1) The predicate of P2 that connects UI_OrderLine and
Stock is not fulfilled and the other predicate of P2 is
fulfilled. Besides, all conditions of the business rule
are found to hold true.

(2) The predicate of P2 that connects Stock and Item is
not fulfilled and the other predicate of P2 is fulfilled.
Besides, all conditions of the business rule are found
to hold true.

(3) All predicates of the path P2 are fulfilled and all
conditions of the business rule are found to hold true.

(4) The condition P2.i_data is like ‘%ORIGINAL’ is
true and the condition P2.s_data is like
‘%ORIGINAL’ is false. Besides, all predicates of P2
are fulfilled.

Figure 5. Implementation schema

(5) The condition P2.s_data is like ‘%ORIGINAL’ is
true and the condition P2.i_data is like
‘%ORIGINAL’ is false. Besides, all predicates of P2
are fulfilled.

(6) The path attribute P2.i_data has a missing value and
the condition P2.s_data is like ‘%ORIGINAL’ is
true. Besides, all predicates of P2 are fulfilled.

(7) The path attribute P2.s_data has a missing value and
the condition P2.i_data is like ‘%ORIGINAL’ is true.
Besides, all predicates of P are fulfilled.

The test requirements 6 and 7 take into consideration that
the attributes of the entities of the database used by the
application and also the input variables of the user interface
can have a missing value when the test assignment is
executed.

 The following coverage rule constitutes the executable
representation of the test requirement 4:

SELECT *
FROM TestCase
INNER JOIN UI_Order ON (tc_id = o_tc_id)
INNER JOIN UI_OrderLine ON (o_tc_id = ol_tc_id

 AND o_ui_id = ol_ui_id)
INNER JOIN Stock ON (s_i_id = ol_i_id

AND s_w_id = ol_supply_w_id)
INNER JOIN Item ON s_i_id = i_id
WHERE NOT(s_data like '%ORIGINAL%')

AND (i_data like '%ORIGINAL%')

The INNER JOIN clauses among the entities that form

the path P2 represent the fulfillment of the predicates of P2.
The WHERE clause expresses the conditions over the path
attributes P2.i_data and P2.s_data. Besides, additional
INNER JOIN clauses are introduced to relate, through the
foreign keys, the entities of P2 with the entity TestCase,
where each test case designed is identified. In this case, the
entity UI_OrderLine is related to TestCase through
UI_Order. Thus, the test input inserted in the IDM database
to cover the previous SQL query is associated with a specific
test case.

To cover this coverage rule, the IDM database must
contain tuples in the entities TestCase, UI_Order,
UI_OrderLine, Stock and Item that fulfil the predicates of the
INNER JOIN and WHERE clauses. Furthermore, the
referential integrity with the entities Customer, District and
Warehouse must be fulfilled.

III. CASE STUDY

In this section, a case study is presented using the
standard specification of the TPC-C benchmark [22] as the
system under test. This benchmark defines five user
transactions (each one constitutes a test assignment): New-
Order, Payment, Delivery, Order-Status and Stock-Level
(both New-Order and Payment transactions are mid-weight
read-write transactions and the others are mid-heavy-weight
read transactions, as they are defined in [22]).

Among the different implementations for this benchmark,
the open source benchmark called BenchmarkSQL [1] was
selected, which closely resembles the TPC-C standard for
OLTP. This implementation has been adapted so that the

emulated user takes the input data from the IDM. The
implementation has 129 decisions and 35 SQL queries.

The specification of the TPC-C benchmark was analyzed
to obtain a set of business rules, then the Masking MCDC-
based criterion was applied and the executable representation
of each test requirement was obtained, that it, the coverage
rules. The IDM was implemented in an Oracle database. The
test cases were generated by inspecting each coverage rule
and then filling the required tuples in order to cover it. A
unique IDM database was used to store the test cases of all
test assignments, which share the Database level. First, the
IDM database was empty and then it was incrementally
populated with the tuples that covered the uncovered
coverage rules of each test assignment. The test assignments
were analyzed in the following order: New-Order, Payment,
Order-Status, Delivery and Stock-Level.

Table 1 displays, for each test assignment, the number of
business rules and the number of coverage rules generated.
From the 26 business rules, 9 are constraint rules for values,
1 is a constraint rule for the number of tuples in a path, 9 are
derivation rules for conditions in some tuple in a path, 1 is a
derivation rule for conditions in all tuples of a frame and 6
are derivation rules for the number of tuples in a path.
Additionally, Table 1 displays the total number of tuples
inserted into the IDM database, which accumulates the
number of tuples inserted into the Test Case level (one per
test case), into the UI level and into the Database level. As
the Database level is shared by all test assignments, the
column “Database level” indicates the number of tuples
inserted in that level to cover the coverage rules that had not
been covered yet by the exiting tuples.

Then, the test cases were executed against
BenchmarkSQL and all detected failures recorded. At
present the expected output is specified by the tester. For
each test assignment, Table 1 also shows the number of test
cases, the total number of failures found and the number of
failures after removing duplicates. In total, 13 non duplicate
failures were detected.

Finally, the source code of BenchmarkSQL was analyzed
to find the defects that caused the failures. All of them have
been found in the procedural code, instead of the SQL
queries.

From the total number of failures, 5 are caused by faults
related to input validation errors, such as the creation of an
order in the user interface with more order lines than those

Table 1. Results obtained for each test assignment

Test
Assignment B

u
si

n
es

s
R

u
le

s

C
ov

er
ag

e
R

u
le

s Tuples Inserted

T
es

t
C

as
es

F
ai

lu
re

s

N
on

 D
u

p
li

ca
te

F

ai
lu

re
s

ID
M

U
I

L
ev

el

D
at

ab
as

e
L

ev
el

New-Order 7 38 113 86 17 10 10 5
Payment 6 24 23 9 5 9 7 5
Order-Status 5 19 30 7 16 7 0 0
Delivery 4 20 27 7 13 7 4 2
Stock-Level 4 24 129 8 113 8 3 1
Total: 26 125 322 117 164 41 24 13

allowed or the specification of a threshold for the stock level
comparison out of the allowed range. The other 8 failures
correspond to faults in the implementation of
BenchmarkSQL: 3 failures are caused by an incorrect
handling of null values of the input data that may be present
in the test database, 3 failures are caused by an incorrect
update of the user interface and 2 failures are derived from
the incorrect processing of the test inputs. To illustrate the
kind of defects that were found, some representative faults
are described below:

 Null values: the specification of the Payment
transaction indicates that when a customer is making
a payment, its attribute c_credit is analyzed and only
if it has the value ‘BC’ another attribute called
c_data is updated. When a null value of c_credit is
processed, it is not checked and then an exception is
thrown.

 Incorrect update of the user interface: considering
the same specification of the previous example, the
application correctly updates the attribute c_data in
the database when c_credit is ‘BC’. However, the
user interface is not correctly updated, since the
application uses a variable that does not take into
account the output database state.

 Incorrect processing of test inputs: the specification
of the New-Order transaction indicates how to infer
the brand information shown in the user interface for
an item of an order. The brand information has the
value ‘B’ when two attributes of the database
(Stock.s_data and Item.i_data) related to the item
include the string ‘ORIGINAL’, and otherwise the
value shown is ‘G’. However, the implementation
uses the string ‘GENERIC’ in the comparison, and
the output given to the user is incorrect when the
value of both attributes includes ‘ORIGINAL’.

IV. RELATED WORK

There exist other approaches in the literature which
address the problem of testing database applications, taking
into account the database and the user input. Chays et al.
[3][4] describe the AGENDA tool, which has been improved
in [5][9]. The tool takes as input the database schema, the
application source code (which consists of a set of SQL
queries), suggested values for the attributes given by the user
and some test heuristics. With this information, the tool
populates the database and generates values for the input
variables of the application that are present in the SQL
queries. Although our approach does not automate the
generation of the test inputs, the derivation of the test
requirements relies on a more complete specification of the
database application. The use of a Masking MCDC-based
criterion allows obtaining a set of meaningful test inputs that
checks both the equivalence classes obtained from the
conditions of the business rules and their decisions.

Emmi et al. [10] propose an algorithm that generates
input data for the program and database states to cover all
branches of the procedural code, taking into account that the
execution of a branch may depend on the outcome of a SQL

query. In their work the test requirements are derived from
the conditional statements of the procedural code and from
the WHERE clause of each SQL query whose outcome
affects the coverage of a branch in the procedural code.
However, our approach derives the test requirements from
the conditions defined in the system specification, which can
be implemented correctly (or incorrectly) in the procedural
code and/or in the SQL queries embedded. This
specification-based approach can guide the generation of
meaningful test inputs that complement those obtained by
the work of Emmi et al.

Zhou and Frankl [30][31][32] describe the JDAMA tool,
which applies mutation testing over the SQL queries
embedded into a Java program. These queries can contain
input variables of the program and are dynamically
generated. As the mutants are only obtained from the SQL
queries their approach relies on the extensive use of SQL
queries in the source code to obtain a meaningful set of test
inputs for the database application. In contrast, our approach
does not depend on the use of SQL queries in the source
code of the database application to guide the creation of the
test inputs.

The closest approach to ours is that of Willmor and
Embury [28] who applied their intensional approach of [27]
to verify the implementation of constraint business rules.
Each test case incorporates check-conditions, which
represent the business rule, pre-conditions, which are used to
prepare the database for the test case execution, and post-
conditions, which verify whether the execution of the test
case violates the business rule. Unlike the work of Willmor
and Embury, our approach uses the business rules to derive
the test requirements that guide the generation of meaningful
test cases for database applications, and it is able to handle
the input variables provided by the user interface.

The approach presented in this paper does not address the
automatic generation of test inputs. However it represents the
structure of the test inputs as a database and defines the test
requirements to design them as SQL queries. Thus, a number
of complementary approaches can be used to automatically
generate the test inputs, such as those present below.

Zhang et al. [29] describe a fault-based approach which
generates a set of constraints that feeds a general purpose
constraint solver to derive the test database. Binnig et al. [2]
propose the Multi-RQP technique to populate a test database,
taking as input a set of queries and their expected results.
Khalek et al. [17] present the ADUSA tool, which automates
the test database generation for a given SQL query and a
given database schema using the Alloy Analyzer. A recent
work of Khalek and Khurshid [18] relies on ADUSA to test
DBMS engines. Lo et al. [19] describe the generator QAGen
which generates a test database from an individual query and
the database schema. QAGen uses symbolic query
processing to capture the user-defined constraints on the
query, such as the output cardinality, into the database and a
constraint solver to instantiate the database. De la Riva et al.
[8] propose an approach for the automatic generation of a
test database for a set of SQL queries using the SQLFpc
adequacy criterion. This approach models both the schema
and the test requirements obtained from the adequacy

criterion in the Alloy language and then the Alloy Analyzer
generates the test database.

To complement our approach with the automatic
generation of the test inputs (user inputs and test database),
the aforementioned works could populate the IDM database.
To do this, the SQL queries that represent the test
requirements derived from the business rules could be
translated into the constraints accepted by these works.

In general, most of the existing approaches either do not
consider the user interaction or are implementation based.
However, our approach takes into account the user
interaction to generate the test inputs and it is specification
based, so it does not depend on a particular implementation.

V. CONCLUSIONS AND FUTURE WORK

This work presents an approach to automatically derive
the test requirements from the specification of a database
application and to automate the evaluation of the test inputs
adequacy, taking into account the database and the user
interface.

The database and the user interface are integrated into a
unique model called IDM that contains the structure of the
test cases for the database application. The required
functionality of the database application is expressed through
a set of business rules, written in terms of the IDM, on which
a Masking MCDC-based criterion is applied to automatically
derive and evaluate whether the test requirements are
fulfilled by a given set of test inputs (user inputs and test
database). Thus, our approach helps the tester in identifying
interesting test situations both for the user inputs and the
database state.

To automate the evaluation of the test inputs adequacy,
the IDM is implemented as a database, which stores both the
user inputs and the test database of the test cases designed,
and the test requirements are expressed as SQL queries,
which are executed against the database. The execution of
these queries determines the test requirements that are
covered by the test inputs.

The results of the case study show that the test cases
obtained are able to detect interesting faults which were
located in the procedural code of an implementation of the
benchmark TPC-C.

Future work includes several avenues. On the one hand,
to improve the expressiveness of the business rules that can
be handled, and to model more complex user transactions
involving more than one interaction between the user and the
application. Furthermore, to automate the population of the
IDM (that is, to generate the test database and the user
inputs) using, probably, some of the aforementioned
approaches for test database generation. Additionally, a
comprehensive experimentation should be performed to
compare our approach with other works, in order to evaluate
their effectiveness at detecting faults in database
applications.

Finally, as the user inputs and test database are
represented by the IDM in a unified way, the outputs are
represented in it and then they can also be used to partially
automate the comparison between actual and expected

outputs. In addition, as some business rules express the
output behaviour they may also be used as a test oracle.

ACKNOWLEDGMENT

This work has been funded by the Department of Science
and Innovation (Spain) and ERDF funds (TIN2010-20057-
C03-01).

REFERENCES
[1] BenchmarkSQL, version 2-3-2,

http://sourceforge.net/projects/benchmarksql

[2] C. Binnig, D. Kossmann, E. Lo, “MultiRQP - Generating test
databases for the functional testing of OLTP applications”, Proc. 1st
International Workshop on Testing Database Systems (DBTest 08),
ACM Press, June 2008.

[3] D. Chays, S. Dan, P.G. Frankl., F.I. Vokolos, E.J. Weyuker, “A
framework for testing database applications”, Proc. ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA
00), ACM Press, August 2000, pp. 147-157.

[4] D. Chays, Y. Deng, P.G. Frankl, S. Dan, F.I. Vokolos, E.J. Weyuker,
“An AGENDA for testing relational database applications”, Software
Testing, Verification and Reliability 14, 1, March 2004, pp. 17-44.

[5] D. Chays, J. Shahid, P.G. Frankl, “Query-based test generation for
database applications”, Proc. 1st International Workshop on Testing
Database Systems (DBTest 08), ACM Press, June 2008.

[6] J. J. Chilenski, “An investigation of three forms of the modified
condition decision coverage (MCDC) criterion”, Technical Report
DOT/FAA/AR-01/18, U.S. Department of Transportation, Federal
Aviation Administration, April 2001.

[7] E.F. Codd, “The Relational Model for Database Management -
Version 2”, Addison-Wesley, 1990.

[8] C. de la Riva, M.J. Suárez-Cabal, J. Tuya, “Constraint-based test
database generation for SQL queries”, Proc. 5th International
Workshop on Automation of Software Test (AST 10), ACM Press,
May 2010, pp. 67-74.

[9] Y. Deng, P. Frankl, D. Chays, “Testing database transactions with
AGENDA”, Proc. 27th International Conference on Software
Engineering (ICSE 05), ACM Press, May 2005, pp. 78-87.

[10] M. Emmi, R. Majumdar, K. Sen, “Dynamic Test input generation of
database applications”, Proc. International Symposium on Software
Testing and Analysis (ISSTA 07), ACM Press, July 2007, pp. 151-
162.

[11] W.G.J. Halfond, A. Orso, “Command-form coverage for testing
database applications”, Proc. 21st IEEE/ACM International
Conference on Automated Software Engineering (ASE 06), IEEE
Computer Society, September 2006, pp. 69-80.

[12] D. Hay, K. Healy, “Defining Business Rules – what are they really?”,
Technical Report, The Business Rules Group, Revision 1.3, July
2000.

[13] R. Hierons, K. Bogdanov, J. Bowen, R. Cleaveland, J. Derrick, J.
Dick, M. Gheorghe, M. Harman, K. Kapoor, P. Krause, G. Lüttgen,
A. Simons, S. Vilkomir, M. Woodward, H. Zedan, “Using formal
specifications to support testing”, ACM Computing Surveys 41(2),
article nº 9, 2009.

[14] International Standards Organisation. 1996. ISO/IEC 14977
Information technology - Syntactic metalanguage - Extended BNF.

[15] International Standards Organisation. 1999. ISO/IEC 9075,
Information technology - Database languages – SQL.

[16] G.M. Kapfhammer, M.L. Soffa, “A family of test adequacy criteria
for database-driven applications”, Proc. 9th European Software

Engineering Conference held jointly with 11th ACM SIGSOFT
International Symposium on the Foundations of Software
Engineering (ESEC/FSE 03), ACM Press, September 2003, pp. 98–
107.

[17] S.A. Khalek, B. Elkarablieh, Y.O. Laleye, A. Khurshid, “Query-
aware test Generation using a relational constraint solver”, Proc. 23rd
IEEE/ACM International Conference on Automated Software
Engineering (ASE 08), IEEE Computer Society, September 2008, pp.
238-247.

[18] S. A. Khalek, S. Khurshid, “Systematic testing of database engines
using a relational constraint solver”, Proc. International Conference
on Software Testing, Verification and Validation (ICST 11), IEEE
Computer Society, March 2011, pp. 50-59.

[19] E. Lo, C. Binnig, D. Kossmann, M.T. Özsu, W.K. Hon, “A
framework for testing DBMS features”, The VLDB Journal 19, 2,
April 2010, pp. 203-230.

[20] OMG, Semantics of Business Vocabulary and Business Rules
Specification, version 1.0, OMG Document Number: formal/2008-
01-02, January 2008.

[21] M.J. Suárez-Cabal, J. Tuya, “Structural coverage criteria for testing
SQL queries”, Journal of Universal Computer Science 15, 3, 2009,
pp. 584-619.

[22] Transaction Processing Performance Council. TPC Benchmark C,
Revision 5.10.1, February 2009.

[23] J. Tuya, M.J. Suárez-Cabal, C. de la Riva, “Mutating database
queries”, Information and Software Technology 49, 4, April 2007, pp.
398-417.

[24] J. Tuya, M.J. Suárez-Cabal, C. de la Riva, “Full predicate coverage
for testing SQL database queries”, Software Testing Verification and
Reliability 20, 3, September 2010, pp. 237-288.

[25] M. Utting, A. Pretschner, B. Legeard, “A taxonomy of model-based
testing approach”, Software Testing, Verification and Reliability,
2011, doi: 10.1002/stvr.456.

[26] D. Willmor, S.M. Embury, “Exploring test adequacy for database
systems”, Proc. 3rd UK Software Testing Research Group, York, UK,
2005, pp. 123-133.

[27] D. Willmor, S.M. Embury, “An intensional approach to the
specification of test cases for database applications”, Proc. 28th
International Conference on Software Engineering (ICSE 06), ACM
Press, May 2006, pp. 102-111.

[28] D. Willmor, S.M. Embury, “Testing the implementation of business
rules using intensional database tests”, Proc. Testing: Academic &
Industrial Conference on Practice and Research Techniques (TAIC-
PART 06), IEEE Computer Society, August 2006, pp. 115-126.

[29] J. Zhang, C. Xu, S.C. Cheung, “Automatic generation of database
instances for white-box testing”, Proc. 25th International Computer
Software and Applications Conference (COMPSAC 01), IEEE
Computer Society, October 2001, pp. 161-165.

[30] C. Zhou, P. Frankl, “Mutation testing for java database applications”,
Proc. International Conference on Software Testing, Verification and
Validation (ICST 09), IEEE Computer Society, Abril 2009, pp. 396-
405.

[31] C. Zhou, P. Frankl, “Inferential checking for mutants modifying
database states”, Proc. International Conference on Software Testing,
Verification and Validation (ICST 2011), IEEE Computer Society,
March 2011, pp. 259-268.

[32] C. Zhou, P. Frankl, 2011, “JDAMA: Java Database Application
Mutation Analyzer”, Software Testing, Verirication and Reliability,
21, 2011, pp. 241-263.

[33] H. Zhu, P.A.V. Hal, J.H.R. May, “Software Unit Test Coverage and
Adequacy”, ACM Computing Surveys 29, 4, December 1997, pp.
366-427.

