
The Seed is Strong: Seeding Strategies in Search-Based Software Testing

Gordon Fraser
Saarland University – Computer Science

Saarbrücken, Germany
fraser@cs.uni-saarland.de

Andrea Arcuri
Certus Software V&V Center at Simula Research Laboratory

P.O. Box 134, 1325 Lysaker, Norway
arcuri@simula.no

Abstract—Search-based techniques have been shown useful
for the task of generating tests, for example in the case
of object-oriented software. But, as for any meta-heuristic
search, the efficiency is heavily dependent on many different
factors; seeding is one such factor that may strongly influence
this efficiency. In this paper, we evaluate new and typical
strategies to seed the initial population as well as to seed
values introduced during the search when generating tests for
object-oriented code. We report the results of a large empirical
analysis carried out on 20 Java projects (for a total of 1,752
public classes). Our experiments show with strong statistical
confidence that, even for a testing tool that is already able to
achieve high coverage, the use of appropriate seeding strategies
can further improve performance.

Keywords-test case generation; search-based testing; testing
classes; search-based software engineering

I. INTRODUCTION

Search-based techniques have been shown to be a promis-
ing approach to tackle many kinds of software engineering
tasks [1], particularly software testing [2]. Although auto-
mated generation of test cases for structural coverage has
received particular attention, for example in the case of
object-oriented software (e.g., [3]), such testing techniques
are still not widely adopted by practitioners. This is partially
due to current limitations in these techniques (e.g., in terms
of efficiency and applicability), and because many of the
different parameters that influence search-based software
testing (SBST) are not well understood. Investigating these
techniques is therefore of practical value.

In this paper, we consider the aspect of the initial pop-
ulation of the search, and present and study a series of
techniques to improve search-based test data generation for
object-oriented software. The objective of such a search is
to automatically generate test suites that maximize branch
coverage, while at the same time having the secondary
objective of being as small as possible. This is necessary
as many types of faults do not lead to crashes (e.g., seg-
mentation faults and null pointer exceptions), and so the
outcome of the test cases has to be manually verified (e.g., by
controlling that the generated assert statements are capturing
the intended behavior of the software). In this case, the test
suites need to be small enough to be controlled by software
engineers in feasible time. However, it is not clear what

influence the seeding of the initial population has on the
achievable results, and what are the best seeding strategies.

In our empirical analyses on this matter, we focus on
the Java language, although the presented techniques can
be extended to other languages as well. In particular, we
study seeding strategies applied in three different contexts:

• Seeding of constants extracted from source code or
bytecode (e.g., numbers and strings) throughout the
search (e.g., initial population, mutation operators).

• Strategies to improve the initial population of the search
in terms of diversity and suitability for the optimization
target.

• Reuse of previous solutions (e.g., previously generated
or hand crafted test cases) to seed the initial population
of the search.

All these seeding techniques have been implemented in
our automated testing tool EVOSUITE [4]. EVOSUITE is an
advanced tool based on a Genetic Algorithm (GA), featuring
for example the whole test suite optimization approach to
test data generation [5], bloat control techniques [6], testa-
bility transformations [7] and effective assertion generation
through mutation testing [8].

We evaluated these seeding techniques with a large case
study, comprising 20 projects for a total of 1,752 public
classes and 85,503 bytecode level branches, and we followed
rigorous statistical procedures to assess the scientific validity
of the presented results [9]. The results show that, with
high statistical confidence, seeding strategies do improve
the performance of the employed SBST technique. However,
different strategies do provide different ranges of improve-
ment, and in some cases this effect can be correlated with
the type of the tested software (e.g., when the class under
test makes strong use of string objects).

The paper is organized as follows: Section II sets up
the context of seeding strategies in SBST, and Section III
discusses different seeding strategies when testing object-
oriented software. Section IV describes our experiments, and
presents and interprets the results. Finally, we discuss threats
to validity (Section V) and conclude the paper (Section VI).



II. BACKGROUND

In this paper, with seeding we loosely refer to any
technique that exploits previous related knowledge to help
solve the testing problem at hand. The presence of this
previous knowledge should not be a requirement to address
the problem at hand (i.e., in theory the problem should be
solvable even without using such knowledge).

The literature on evolutionary computation contains sev-
eral papers on seeding strategies to improve the search. For
example, in Genetic Programming, seeding strategies have
been used in the context of improving different aspects of
programs which the search should optimize. In the context
of machine learning, Langdon and Nordin [10] for example
studied a seeding strategy in order to improve the ability of a
classifier/regressor to generalize. Similarly, White et al. [11]
studied several different seeding strategies to initialize a
Genetic Programming population for optimizing execution
time of a given input program. Having each individual in the
initial population being an exact copy of the input program
could achieve that the search gets stuck in a sub-optimal
area of the search landscape. Therefore, there is the need to
use smart seeding strategies to re-use good “building blocks”
from the original input program.

In the context of search-based software testing (SBST),
the most common case of seeding regards the case when
testing targets (e.g., branches to cover) are sought one at a
time, as for example in [12]. The control dependence graph
can be used to choose an order in which the targets are
sought, and so reuse input data from previous runs when
we seek to cover a dependent target. For example, if several
targets are nested inside the same difficult branch, when
we generate test data for one of them, we can re-use the
result later as starting solution when we seek to cover the
other targets, instead of re-starting the search from scratch
(which can be expensive considering the difficulty of the
parent branch in which they are nested).

In the context of testing real-time systems to find worst
case execution times, Tlili et al. [13] applied seeding strate-
gies as well. Given the execution time of the system under
test as the fitness function to optimize, instead of starting
from scratch, they used a test case with high coverage as
seed to start the search from.

In some cases it can be useful to generate more test
data, even if coverage for the chosen testing criterion is
already maximized. This can be, for example, the case when
automated oracles are available, or when software testers can
afford to manually evaluate more test cases. Starting from
a test case, Yoo and Harman [14] investigated a seeding
strategy in which local search is applied on a solution test
case, such that the diversity of the test data is maximized
while the achieved coverage is not decreased. The rationale
is that more different test cases would have more chances
to find faults.

McMinn et al. [15] proposed seeding values taken from
source code and documentation with the objective to reduce
the human oracle costs. Similarly, Fraser and Zeller [16]
used common object usage for seeding in the search to
reduce the human oracle costs and to improve readability
of the generated test cases.

A Genetic Algorithm (GA) usually starts from an initial
population that is randomly generated. However, domain
knowledge can be used to choose this initial population. For
example, in test data generation there may be several targets
that are not so difficult to cover. So it makes sense to do a
first phase of random testing, before using a complex testing
technique. For example, Miraz et al. [17] create the initial
population by selecting the best individuals out of a larger
pool of randomly generated individuals.

When testing software with predicates involving strings,
generating the right strings for the input data can be very
challenging, as the space of possible strings is much larger
than, for example, the one of integers. Alshraideh and
Bottaci [18] proposed and investigated a seeding technique
in which the code of the SUT is analyzed, and then
string constants are extracted and used as starting point for
generation of string inputs. For example, consider the snippet
if(input.equals("complexAndLongString")):
covering this branch becomes trivial, as the right input
data would be present already in the first generation of
the GA. As the seeded strings can be modified during the
GA evolution (e.g., through the mutation operator), such
seeding technique can be helpful even in more complex
cases [18]. Besides extracting string constants from the
SUT, a recent seeding approach has been investigated by
McMinn et al. [19], in which candidate input strings are
extracted from web queries on search engines based on
SUT information.

Another recent seeding strategy in SBST has been pro-
posed by Alshahwan and Harman [20], named “Dynamically
Mined Value” seeding. In testing web applications, the
resulting HTML pages generated as output of the test cases
are then used as source of string inputs for the new test cases
in the search.

III. SEEDING STRATEGIES FOR CLASS TESTING

When generating tests for object-oriented code, the aim is
to produce small sets of tests that maximize the coverage of
the underlying code in the classes under test. In this section,
we first describe the problem domain in more detail, and then
show how different seeding strategies can be applied in this
context.

A. Evolutionary Testing of Classes

A test suite for a class is a set of test cases, where each test
case in turn is a sequence of statements (e.g., a simple JUnit
test case). Each statement in a test case can generate objects
through constructors and can access fields and methods. The



length of test cases is typically variable, as is the number
of test cases in a test suite, as it is highly dependent on the
class at hand that is tested.

In our experiments, we use the EVOSUITE test gener-
ation tool [4], which uses a GA to derive test suites for
classes. Individuals of the population of the GA are test
suites as described above. The GA works by iteratively
selecting individuals from the population based on their
fitness with respect to the search objective, and then applying
crossover and mutation operators to the selected individuals.
From generation to generation, the fitness of the individuals
gradually improves, until either a solution has been found,
or the search is terminated another way (e.g., when it hits
a fixed bound on the number of generations or fitness
evaluations). Crossover and mutation operators have to be
defined specifically for each type of chromosome; in the case
of test suite chromosomes, crossover amounts to exchange
of test cases between two parent test suites, while mutation
adds, deletes, or changes existing test cases. Changing a test
case, in turn, involves deletion, change, and insertion of new
method calls.

The search is guided by a fitness function that aims to
maximize coverage [5]. For example, to measure the fitness
of a test suite with respect to the common branch coverage
criterion, we calculate the minimum branch distance [2] (es-
timate how close the branch was to being executed based on
the guarding predicate) for each of the branches in the class
under test, and essentially sum up the normalized branch
distance values. An optimal solution thus has fitness 0.0.
In practice, classes often have difficult branches that require
the generation of complex sequences of method calls as well
as specific constant values (e.g. numbers or strings). In the
standard case, the initial population is generated randomly,
and any constants generated during this initialization step or
during the search are chosen randomly out of their respective
value domains.

B. Seeding Constants

When branches are dependent on particular values, the
program code often contains values that are similar to the
sought values. For example, branch conditions often contain
the boundary values as constants, and string comparisons are
often performed with constant substrings, or matched against
string patterns. An intuitive idea is to make use of such
information by collecting constant values from the source
code, and then seeding the search with these values. Even if
the constant values in the code might not represent the exact
values that are required to trigger certain branches, they are
often close to those values.

The EVOSUITE tool operates on bytecode, which is an
intermediate representation used by many modern object-
oriented languages: Compilation produces a binary represen-
tation of the classes that is close to machine code, yet retains
parts of the original structure (e.g., classes and methods).

Typically, bytecode also includes constant values and strings,
and so it is easy to collect these constants from bytecode. In
principle, constants can be extracted from source code just
as well, if available.

This information is easily integrated into the search: Dur-
ing the search or initialization of the population, whenever
attempting to generate a new constant value (e.g., to satisfy a
parameter necessary for a method call), then with a certain
probability PBytecode we use one of the collected constant
values, rather than a random new value.

C. Optimizing the Initial Population

When the initial population is generated entirely ran-
domly, it can be arbitrarily bad with respect to the opti-
mization objective, even when it might be easy to produce
a much better starting point for the search. Given some
domain knowledge, it can be very easy to improve the initial
population. In the case of testing classes, a prerequisite
to achieve branch coverage is that every single method of
the class under test is executed at least once. However,
when generating random test cases there is no guarantee
that all methods are called in the first place. Therefore,
a simple strategy to improve the initial population is to
attempt to maximize the number of different methods called
in the initial population. For example, in EVOSUITE we have
implemented this strategy (which we call “AllMethods”)
such that during the initialization, each time a new method
call is inserted, it is not chosen randomly; instead, it is
chosen based on a ring buffer of all methods (i.e., each time
a new method is requested, the next method in the buffer is
returned). This does not guarantee that all methods are called
by a single test suite; however, it is likely that all methods
are called by some individual in the initial population.

Even when lacking domain knowledge, it is still possible
to improve the initial population. For example, as discussed
in Section II, M > N test suites can be generated at
random, and then based on some criteria N out of those
M can be used as seed to initialize a GA population
of size N . In particular, in this paper we consider the
following strategy, which we call “Tournament”: For each
of the N positions we need to fill in the population, we
generate 10 random test suites, and add only the one that
has highest fitness. Notice that, compared to AllMethods,
Tournament is more computational expensive, as it requires
the evaluation of several test suites. To make a fair analysis,
this computational cost is deduced from the search budget.
In other words, a GA using Tournament would be run for
fewer generations.

D. Incorporating Previous Solutions

When testing classes, often one does not start from
scratch, but already has a certain set of test cases ready.
These might for example originate from previous runs of
the test generation tool, or they might be test cases written



by hand by the developer of the class. Naturally, such
information can be useful to seed the initial population.

In the context of testing classes, previous test cases are
also sequences of method calls which need to be parsed and
interpreted. This might be a non-trivial task, if a developer
bases his tests on class hierarchies and interprocedural test
calls. Given a set of parsed test cases TP , the question is
how to best use this information in the initial population.
If TP is small, then using this information too much might
lead to the search being stuck in a sub-optimal area of the
search landscape. On the other hand, if TP is too large, then
it may be difficult to map this to small individual test suites,
as desired in evolutionary testing of classes.

When generating the initial population for the GA in
EVOSUITE, each initial test suite is given n random tests,
where n is selected within predefined bounds. When given
such a set of parsed test cases TP , each time we produce a
new test case, with probability PClone we do not produce it
randomly, but clone an existing test case randomly chosen
from TP . Then, to increase diversity, we apply a number
of mutations to this clone, chosen randomly in the range of
[0,NMutation].

IV. EVALUATION

Having defined the different seeding strategies, we now
address the following three research questions:

• RQ1: What is the impact of using constants from the
bytecode for seeding?

• RQ2: Which are the best pre-processing techniques to
seed an improved population before starting a SBST
search?

• RQ3: Given a solution to improve from, which are the
best seeding strategies to initialize a new population for
SBST?

A. Case Study Subjects

For the evaluation, we chose a total of 19 open source
libraries and programs. For example, among those there
are several widely used libraries developed by Google and
the Apache Software Foundation. Furthermore, to analyze
in more details some specific types of software, we also
used a translation of the String case study subjects employed
by Alshraideh and Bottaci [18], and we also used a set of
numerical applications from [21]. To avoid a bias caused by
considering only open source code, we also selected a subset
of an industrial case study project previously used by Arcuri
et al. [22]. This results in a total of 3,165 classes, which were
tested by only calling the API of the 1,752 public classes
(the remaining classes are private and anonymous member
classes).

1LOC stands for non-commenting lines of source code, calculated with
JavaNCSS (http://javancss.codehaus.org/)

Table I
NUMBER OF CLASSES, BRANCHES, AND LINES OF CODE IN THE CASE

STUDY SUBJECTS

Case Study #Classes #Branches LOC1

Public All

COL Colt 137 298 10,795 20,741
CCL Commons CLI 14 15 662 1,078
CCD Commons Codec 21 22 1,369 2,205
CCO Commons Collections 246 421 8,683 19,190
CMA Commons Math 247 306 10,503 23,881
CPR Commons Primitives 210 231 2,874 7,008
GCO Google Collections 85 370 4,214 9,886
ICS Industrial Casestudy 21 29 373 809
JCO Java Collections 30 118 3,531 6,339
JDO JDom 57 61 4,098 6,452
JGR JGraphT 137 193 2,467 5,924
JTI Joda Time 131 199 8,681 18,003
NXM NanoXML 1 1 310 661
NCS Numerical Casestudy 11 11 209 421
REG Java Regular Expressions 3 91 1,922 3,020
SCS String Casestudy 12 12 607 606
TRO GNU Trove 206 591 10,585 24,297
XEN Xmlenc 7 7 1,645 788
XOM XML Object Model 167 185 11,794 23,814
ZIP Java ZIP Utils 3 4 219 441

Σ 1,752 3,165 85,503 175,564

The choice of a case study is of paramount importance
for any empirical analysis in software engineering. To ad-
dress this problem, in this paper we consider several types
of software, as for example container classes, numerical
applications, and software with high use of strings and
arrays processing. To avoid bias in analyzing the results,
we present and discuss the results of our empirical study
grouped by project. In fact, different testing techniques can
have comparatively different performance on different types
of software. For example, random testing has been shown
to be very effective in testing container classes [23]. If one
only chooses container classes as case study and ignores
for example numerical applications, then random testing
could be misleadingly advantaged in technique comparisons.
In fact, even if one uses several kinds of software in a
case study, then it all depends on the proportion of the
software types (e.g., if in the case study there are many more
container classes than numerical applications). Therefore,
aggregated statistics on all the artifacts of a case study need
to be interpreted with care, as the proportion of different
kinds of software types could lead to misleading results.
Unfortunately, how to define a representative case study for
test data generation is still an open research question.

B. Experiments

We carried out three different sets of experiments, each
one addressing one of the three research questions. In all
the experiments, we used the default settings of EVOSUITE,
where the search is stopped after either executing up to one
million statements or a 10 minute timeout.

The choice of using the number of statements as stopping



criterion is a common practice in the literature of SBST
(and evolutionary computation in general), as it reduces
the threats to internal validity regarding the implementation
details of the developed research prototypes. This is rea-
sonable only under the (usually met) assumption that the
cost of the fitness function is “high” compared to the search
operators (e.g., crossover and mutation). We also employed
a 10 minute timeout for practical reasons. When using a
large case study, there might be classes that are highly
computational expensive, and this could be hard to detect
without specialized tools before running the experiments.
Due to the very large number of experiments on this case
study, we used this 10 minutes timeout to be sure that all the
experiments would be finished within a known time bound.
Even so, the experiments took weeks to run even with the
use of a cluster of computers.

All experiments were repeated 30 times to take the ran-
domness of the employed algorithms into account, and the
results were analyzed following the guidelines in [9]. When
the algorithmic performance of two different algorithms/con-
figurations is compared (e.g., which seeding strategy leads to
higher branch coverage?), the effect sizes of the comparisons
are quantified with the Vargha-Delaney Â12 statistics. In our
context, the Âxy is an estimation of the probability that, if we
run EVOSUITE with seeding configuration x, we will obtain
better coverage than running it with configuration y. When
two randomized algorithms are equivalent, then Â12 = 0.5.
A high value Âxy = 1 means that, in all of the 30 runs
of EVOSUITE with configuration x, we obtained coverage
values higher than the ones obtained in all of the 30 runs
with configuration y.

Statistical difference has been measured with a two-tailed
Mann-Whitney U test. For reason of space, we cannot report
all the p-values of the comparisons, so we only highlight the
ones that are significant at α = 0.05 level.

In the first set of experiments, we chose five different
values for the probability PBytecode for the seeding from
bytecode. In particular, PBytecode ∈ {0 ,0.2 ,0.4 ,0.6 ,0.8},
where PBytecode = 0 means no seeding at all (i.e., the default
EVOSUITE). Results of these experiments are presented in
Table II. Notice that, for reasons of space, we only report
the comparison of PBytecode = 0.2 with PBytecode = 0, as
PBytecode = 0.2 was the configuration that gave best results
on average on all the case study.

In the second set of experiments, we ran EVOSUITE with
the three different seeding strategies for the initialization of
the first population. Results are presented in Table III. Notice
that, to make the design of the experiments for each research
question independent from each other, we used PBytecode =
0. Future work will be focused on studying the potential
interaction effects among the different contexts for seeding
strategies.

To gather empirical evidence for answering the last re-
search question, we ran EVOSUITE (PBytecode = 0 and

Table II
FOR EACH PROJECT, AVERAGE COVERAGE ON ALL OF ITS CLASSES

WHEN NO BYTECODE CONSTANT IS USED (PBYTECODE = 0) AND WHEN
THEY ARE USED WITH PROBABILITY PBYTECODE = 0.2. THE Â12 OF

THESE COMPARISONS ARE CALCULATED BY AGGREGATING ALL RUNS
OF ALL CLASSES PER PROJECT (IN BOLD IF STATISTICALLY

SIGNIFICANT). ON HIGHER GRANULARITY, IT IS REPORTED THE
PERCENTAGE % OF CLASSES FOR WHICH WE HAVE A SIGNIFICANT

Â12 > 0.5 AND Â12 < 0.5.

Project P = 0 P = 0.2 Â12 % > 0.5 % < 0.5

COL 0.74 0.73 0.48 0.04 0.27
CCL 0.87 0.90 0.56 0.21 0.07
CCD 0.87 0.88 0.52 0.29 0.00
CCO 0.91 0.91 0.50 0.02 0.01
CMA 0.75 0.75 0.51 0.12 0.02
CPR 0.93 0.94 0.52 0.15 0.005
GCO 0.74 0.74 0.50 0.04 0.01
ICS 0.85 0.86 0.50 0.05 0.00
JCO 0.82 0.82 0.50 0.07 0.00
JDO 0.73 0.73 0.50 0.12 0.00
JGR 0.75 0.75 0.50 0.03 0.01
JTI 0.84 0.85 0.52 0.18 0.00
NXM 0.59 0.59 0.51 0.00 0.00
NCS 0.97 0.97 0.51 0.09 0.00
REG 0.75 0.75 0.50 0.00 0.00
SCS 0.63 0.85 0.77 0.75 0.00
TRO 0.88 0.87 0.46 0.005 0.32
XEN 0.65 0.72 0.57 0.29 0.00
XOM 0.76 0.77 0.51 0.17 0.00
ZIP 0.80 0.83 0.69 1.00 0.00

Average 0.79 0.81 0.53 0.18 0.04

default “Random” initialization strategy) on a subset of the
case study for which hand-written test cases were avail-
able. Not all classes had hand-written test cases, and for
some projects our parser was not able to handle their test
cases. In particular, our parser currently does not handle
inter-procedural test cases (e.g., when one test calls other
functions), and it does not yet support Java Generics. This
resulted in a total of four projects from which 156 public
classes were used for the empirical study (roughly 8.9% of
the entire case study).

We considered the combination of possible val-
ues for PClone and NMutation, in particular PClone ∈
{0.2, 0.4, 0.6, 0.8} and NMutation ∈ {0, 4, 8, 16}. This
resulted in 16 configurations for EVOSUITE. We compared
the performance of these configurations with the case of no
seeding from hand-written test cases, which can be simply
represented with PClone = 0. Results of the experiments for
these configurations are presented in Table IV and Table V.

In Table IV, for each class and configuration, we cal-
culated whether Â12 > 0.5 or Â12 < 0.5, and if such
effect size is statistically significant at level α = 0.05.
Then, for each project, we calculated the difference Dbw

among the number b of classes for which we have a
significant Â12 > 0.5 and the number w of classes for
which Â12 < 0.5, and normalize this difference based on
the total number z of classes in that project used for the
experiment, i.e. Dbw = (b − w)/z. Finally, we average



Table III
FOR EACH PROJECT, AVERAGE COVERAGE ON ALL OF ITS CLASSES WHEN “ALLMETHODS” AND “TOURNAMENT” SEEDING STRATEGIES ARE
EMPLOYED. THE Â12 ARE IN RESPECT TO THE DEFAULT “RANDOM” STRATEGY, AND ARE CALCULATED BY AGGREGATING ALL RUNS OF ALL

CLASSES PER PROJECT (IN BOLD IF STATISTICALLY SIGNIFICANT). ON HIGHER GRANULARITY, IT IS REPORTED THE PERCENTAGE % OF CLASSES FOR
WHICH WE HAVE A SIGNIFICANT Â12 > 0.5 AND Â12 < 0.5.

Project AllMethods Tournament
Coverage Â12 % > 0.5 % < 0.5 Coverage Â12 % > 0.5 % < 0.5

COL 0.73 0.492 0.036 0.051 0.73 0.491 0.022 0.109
CCL 0.87 0.503 0.071 0.000 0.87 0.500 0.000 0.000
CCD 0.88 0.503 0.048 0.000 0.87 0.495 0.000 0.048
CCO 0.91 0.502 0.041 0.004 0.91 0.498 0.004 0.016
CMA 0.78 0.521 0.182 0.008 0.73 0.482 0.016 0.162
CPR 0.93 0.498 0.005 0.024 0.93 0.499 0.005 0.010
GCO 0.75 0.511 0.110 0.011 0.74 0.500 0.044 0.033
ICS 0.85 0.501 0.000 0.000 0.85 0.498 0.000 0.000
JCO 0.82 0.500 0.033 0.000 0.81 0.495 0.000 0.000
JDO 0.73 0.503 0.053 0.018 0.72 0.496 0.035 0.000
JGR 0.75 0.499 0.007 0.007 0.75 0.500 0.007 0.000
JTI 0.85 0.513 0.183 0.023 0.84 0.496 0.023 0.069
NXM 0.61 0.627 0.000 0.000 0.59 0.569 0.000 0.000
NCS 0.97 0.500 0.000 0.000 0.97 0.499 0.000 0.091
REG 0.75 0.501 0.333 0.333 0.74 0.487 0.000 0.000
SCS 0.63 0.501 0.000 0.000 0.64 0.504 0.000 0.000
TRO 0.88 0.500 0.010 0.010 0.88 0.499 0.010 0.019
XEN 0.65 0.502 0.000 0.000 0.65 0.499 0.000 0.000
XOM 0.76 0.499 0.000 0.024 0.76 0.499 0.000 0.012
ZIP 0.80 0.503 0.000 0.000 0.81 0.515 0.000 0.000

Average 0.83 0.509 0.056 0.026 0.82 0.501 0.008 0.028

Table IV
FOR EACH OF THE 16 COMBINATIONS OF PCLONE AND NMUTATION , THE

TABLE REPORTS THE RESULTING Dbw AVERAGED FOR ALL THE
EMPLOYED PROJECTS.

Clone Probability Number of Mutations
0 4 8 16

0.2 0.15 0.13 0.15 0.15
0.4 0.14 0.17 0.17 0.19
0.6 0.18 0.17 0.19 0.17
0.8 0.18 0.20 0.18 0.18

these differences Dbw on all the four projects. Therefore,
Table IV captures how often a seeding strategy configuration
leads to get better results on a higher number of classes
compared to the cases in which it brings to worse results.
On the other hand, in Table V we show the details for the
best configuration which can be derived from Table IV, i.e.,
PClone = 0.8 and NMutation = 4. Notice that Dbw = 0.20 in
Table IV is reflected in the difference 0.50−0.30 in Table V.

C. Seeding Constants

The results in Table II show that the use of constants from
the bytecode is beneficial for the search, with an average
Â12 = 0.53, where the coverage is increased from 79%
to 81%. At first look, this improvement might not appear
significant, i.e., why bother about only a 2% increase?
However, this magnitude is in line with expectations. Non-
trivial software often have infeasible branches, and 100%
coverage is impossible. Without a manual verification (which
would not be possible due to the large number of classes

involved), for what we can know 81% might be already
the maximum (or close to) achievable average bytecode
coverage. Some branches, even if feasible, could not be
coverable (yet) by a tool such as EVOSUITE, because for
example relying on the writing/reading of files (EVOSUITE
currently has only limited support for files as test data).
Furthermore, not all software rely on numerical constants
and, even when they do, those might affect the control flow
of only few branches.

Depending on how the case study is chosen, there can be
a lot of variations in the results. This is why in this paper
we employ a large and variegated case study, and why we
present the results also grouped by project. For example, if
we look at the details Table II we can see that the improve-
ments for a project such as SCS are huge. Average coverage
increases from 63% to 85%, with a statistically significant
Â12 = 0.77. Improvements are statistically significant for
75% of the classes in SCS, and no case is present in which
we get a class for which the results are statistically worse
(this is in line with what was reported in [18], which is
the reference from which the SCS project comes from).
Therefore, the results in Table II show that, even on a large
and variegated case study, seeding is beneficial, and there
are cases in which it can be extremely beneficial. In our
empirical study, we can for example see this phenomenon
for projects that heavily rely on string manipulations.

At any rate, it is important to note that seeding, as for
any heuristics, can be harmful in some cases. Although on
average we obtained statistically better results for 18% of



Table V
DETAILS FOR THE BEST CONFIGURATION PCLONE = 0.8 AND NMUTATION = 4. THE Â12 ARE IN RESPECT TO THE DEFAULT PCLONE = 0, AND ARE

CALCULATED BY AGGREGATING ALL RUNS OF ALL CLASSES PER PROJECT (IN BOLD IF STATISTICALLY SIGNIFICANT). ON HIGHER GRANULARITY, IT
IS REPORTED THE PERCENTAGE % OF CLASSES FOR WHICH WE HAVE A SIGNIFICANT Â12 > 0.5 AND Â12 < 0.5. DETAILS OF THE CASE STUDY ARE
PRESENTED AS WELL, AS THE NUMBER OF CLASSES, THE SIZE (MEASURED IN NUMBER OF STATEMENTS) OF THE HAND-WRITTEN TEST SUITES, AND

THEIR COVERAGE.

Project # of Classes Coverage for PClone = 0 Seeding Coverage Â12 % > 0.5 % < 0.5 Seeded Test Suites
Avg. Size Avg. Coverage

CCL 10 0.89 0.96 0.64 0.50 0.40 2032 0.77
CCD 15 0.92 0.94 0.59 0.47 0.20 52 0.67
JTI 69 0.90 0.92 0.57 0.54 0.35 776 0.65
XOM 62 0.71 0.82 0.63 0.48 0.24 2281 0.33

Average 39 0.86 0.91 0.61 0.50 0.30 1285 0.61

the classes, for 4% we obtained worse results. The cases in
which we get worse results are concentrated in two projects:
COL and TRO. However, in these projects the decrease in
average coverage is only 1%. Therefore, in contrast to SCS,
we have not seen any case in which seeding has drastic
negative effects on performance. Understanding why we get
worse results for COL and TRO will be important for future
work to design better seeding strategies.

RQ1: Seeding constants from the bytecode
improves performance, particularly for

classes heavily relying on string objects.

D. Optimizing the Initial Population

In Table III we can see the results of experiments for the
“AllMethods” and “Tournament” initialization strategies. In
both cases, average coverage increases from 79% to 83% and
to 82%, respectively. However, if we look at statistical effect
sizes, those are not particular high, i.e., average Â12 = 0.509
for AllMethods, and Â12 = 0.501 for Tournament. When we
look at the number of classes for which there is statistical
difference, for Tournament it actually ends up that there
are more cases in which this seeding strategy gives worse
results (i.e., 2.8% compared to 0.8% of classes for which it
gives better results). For AllMethods, we have statistically
significant better results for 5.6% of classes compared to
2.6% in which we get worse results. If we consider projects
as a whole, AllMethods gives statistically better results for
two projects (CMA and JTI), whereas Tournament decreases
performance for one (CMA).

The better performance of AllMethods, although small,
can be explained as follows: When the class under test has
only a few methods, the initial GA population will contain
all of them with high probability, so AllMethods will have
practical no effect on such type of classes. However, there
are cases in which there are many methods in a class, as
for example “LocalDateTime” in JTI that has 121 public
methods. In EVOSUITE, a random test suite used for the
GA first population initialization would have n ∈ [1,10]
test cases, each one with length l ∈ [1,50]. On average,
a test suite will have (11/2) × (51/2) = 140 method calls

chosen at random, with a maximum of 10 × 50 = 500.
These two values (i.e., 140 and 500) might at first glance
seem high compared to 121; however, counter-intuitively,
the probability of containing at least one direct call to
each of the 121 public methods is not high, which can
be mathematically proven using the theory of the Coupon
Collector’s Problem [24]. On average, to cover all the 121
methods, we would roughly need 121×H121 = 650 method
calls (where H is the harmonic number), which is even
higher than the maximum 500. By treating n and l as random
variables, by using the theory of Coupon Collector’s problem
it would be possible to calculate the exact probability that
a random test suite contains at least one call to each of the
public methods. However, a detailed mathematical analysis
of this process is not in the scope of this paper, and we refer
the interested reader to [24] for further details.

RQ2: The AllMethods seeding strategy improves
performance for classes with a high number of methods.

The not so particularly good performance of Tournament
can have several related reasons, which would require a large
amount of background material on evolutionary computation
to be covered, which unfortunately we cannot include for
reasons of space. First, Tournament is computational expen-
sive, and it decreases the available budget for the GA search.
The motivation behind Tournament is to have an initial
population with fit individuals that are somehow diverse.
However, when the search landscape has only few deceptive
local optima (this does not mean that the search landscape is
easy, as many plateaus could be present and monotonically
connected toward the global optima, e.g., as in a ladder-
like shape [25]), there would be no need to preserve/reward
diversity in the population. A random individual that is
fitter than the others will dominate the population in few
generations, because is has higher chances to be selected for
reproduction. The population will quickly converge to very
similar and fit individuals, but that would not be a problem if
there is no need to escape from deceptive local optima (i.e.,
in that case it is better to focus on the exploitation rather
than the exploration of the search landscape).



Depending on details of the crossover operator, a pre-
mature convergence of the population to similar individuals
would reduce its effects on the fitness of the offspring
and the exploration of the search landscape. For example,
crossing over two similar individuals might result in the
same genotype with no visible effect on the phenotype,
and so the search would be mainly driven by the mutation
operator, which would put more focus on the exploitation of
the search landscape. On the other hand, a crossover on two
different but fit individuals would result in a very different
genotype, whose phenotype quality would strongly depend
on the effectiveness of the crossover operator to preserve
and recombine building blocks.

EVOSUITE features the novel approach of evolving whole
test suites at the same time, and there is still plenty of
opportunities to improve search operators such as crossover.
Therefore, future improvements on the crossover operator
for test suite evolution would warrant the replication of this
study on Tournament in the feature.

RQ2: The Tournament seeding strategy did not improve
performance, although its performance might be strongly

dependent on the crossover operator.

E. Incorporating Previous Solutions

The data in Table IV show that seeding from hand-written
JUnit test cases is highly beneficial for any combination of
PClone and NMutation. The data suggest that higher values for
PClone are preferable, whereas NMutation does not show a clear
trend.

The best configuration from Table IV is for PClone = 0.8
and NMutation = 4. Its performance details are presented in
Table V. For all projects, there is strong statistical evidence
that seeding provides better results (average Â12 = 0.61,
and Â12 values are statistically significant on each project).

However, it is important to notice that in this case, in
contrast to the experiments that we ran for the other research
questions, there is a human factor involved, i.e., the quality
of the hand-written test cases. On one hand, if the test cases
are poor, then even the best seeding strategy would likely
have little impact on performance. On the other hand, if
the hand-written test cases are optimal, then it would be
pointless to try to improve upon them.

In our case study, the hand-written test cases have lower
coverage (average 61%) compared to what can be obtained
with EVOSUITE without any seeding (average coverage
86%). If we use seeding, then on average we obtained 91%
coverage. This clearly shows the ability of SBST techniques
to successfully exploit existing solutions and improve upon
them.

RQ3: Seeding from existing hand-written test cases
improves performance with high statistical confidence.

F. Search Budget

As discussed earlier, EVOSUITE is stopped after either
executing up to one million statements or a 10 minutes
timeout. However, the choice of this so called search budget
can have large impact on the comparison of algorithms and
their variants [26]. If the search budget is very “large”, likely
(of course, exceptions exist) all the compared algorithms will
solve the problem at hand with “high” probability (where
what can be considered “large” and “high” is problem
dependent). If the search budget is “low”, then none of
the algorithms would solve the problem anyway, and so
detecting differences could be difficult.

Ideally, one would compare search algorithms based on
realistic values for the search budget, which could be derived
from how practitioners actually use SBST tools. For exam-
ple, a practitioner could run EVOSUITE while he is having
a coffee break (e.g., five minutes), while at lunch (e.g., 40
minutes) or let it run on a Friday evening before leaving
and collect the results on the next Monday morning (e.g.,
66 hours).

One could suggest to run the algorithm only with a
high search budget (e.g., 60 minutes), and then report
performance at each predefined time interval (e.g. every five
minutes). This would result in a graph of the performance (Y
axis) over time (X axis). It would then be left to the readers
and practitioners to decide which search budget applies
to their testing contexts (e.g., 10 minutes rather than 30).
Unfortunately, this argument would only apply on tools/tech-
niques that are not tuned [26]. In fact, the performance of an
algorithm is strongly correlated to its parameter settings, and
the right tuning of parameters settings is correlated to the
search budget [26]. For example, with a low search budget,
one would use a smaller population size in GAs (to put more
emphasis on the exploitation rather than the exploration of
the search landscape) because, even if the search gets stuck
in a local optimum, at any rate there would not be much
budget left to explore other areas of the search landscape.

The choice of the search budget has an impact on the
effect sizes we reported in the empirical analyses in this
paper. As a clarifying example, in Figure 1 we show the per-
formance of EVOSUITE at different search budget intervals
for a specific class (all the other classes that we manually
investigated resulted in similar graphs). In particular, we
consider four different seeding strategies and no seeding.
Figure 1 clearly shows that the differences in performance
of the seeding strategies are more marked for low budgets,
whereas they nearly disappear for higher search budgets.

The choice of search budget for the empirical analyses
in this paper is based on our previous articles in which we
used EVOSUITE, and it was rather arbitrary. However, at the
current moment, it is hard to choose which representative
budget to use, as usage statistics from practitioners are
missing in the literature of SBST.



0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Results for org.joda.time.LocalDateTime

Number of Executed Statements

A
ve

ra
g
e
 C

o
ve

ra
g
e

P0_Random

P0.2_Random

P0.0_AllMethods

P0.0_Tournament

P0.0_JUnit

Figure 1. Coverage of the best individual during the search: Earlier during the search the difference between the seeding strategies is more significant,
while at later points all strategies converge. P0 Random denotes random initial tests with no constant seeding, P0.2 Random uses constants with probability
0.2, etc.

V. THREATS TO VALIDITY

Threats to construct validity are on how the performance
of a testing technique is defined. We gave priority to the
achieved coverage, with the secondary goal of minimizing
the length. In this paper, for reasons of space, we have not
considered the potential cases where, even if a seeding strat-
egy leads to higher coverage, it might also lead to larger test
suites. This yields two problems: (1) in practical contexts,
we might not want a much larger test suite if the achieved
coverage is only slightly higher, and (2) this performance
measure does not take into account how difficult it will be to
manually evaluate the test cases for writing assert statements
(i.e., checking the correctness of the outputs).

Threats to internal validity might come from how the
empirical study was carried out. To reduce the probability of
having faults in our testing framework, it has been carefully
tested. But it is well known that testing alone cannot prove
the absence of defects. Furthermore, randomized algorithms
are affected by chance. To cope with this problem, we
ran each experiment 30 times, and we followed rigorous
statistical procedures to evaluate their results.

Another possible threat to internal validity is that we
did not study the interactions/relations of the different pa-
rameter configurations of EVOSUITE (e.g., population size
and crossover probability) with the seeding strategies and
the chosen search budget. In this paper we claim that
seeding strategies help EVOSUITE (and SBST in general)
to achieve higher code coverage. However, in theory it
might be possible that there exist parameter settings for
which EVOSUITE gives better results, and seeding might not

improve upon them. To shed light on this possible issue, we
would need to carry out large tuning phases and studying
the possible correlations among all the different parameters
(i.e., seeding strategies could be seen as further parameters
to tune), but this would be very time consuming. At any
rate, “default” parameter settings coming from the literature
already tend to lead to reasonable performances [26].

Although we used a large case study consisting of
1,752 classes from both open source projects and industrial
software, there is the threat to external validity regarding
the generalization to other types of software, which is
common for any empirical analysis. Furthermore, in this
paper we evaluated the different seeding strategies only for
EVOSUITE. Therefore, the effectiveness of these seeding
strategies might not generalize to other SBST techniques.

VI. CONCLUSIONS

Search-based testing techniques are dependent on a mul-
titude of parameters and individual choices throughout the
search. Seeding is one such technique that may strongly
influence the result of an evolutionary search. In this paper,
we analyzed the effects of different seeding techniques
in the context of search-based testing for object-oriented
languages. Our results provide evidence that a good choice
of seeding techniques can lead to an overall improvement
of the search results. In general, the more domain specific
information can be included in the seeding strategies (e.g.,
previous solutions), the better the results will be. Assuming
the search can find an optimal solution, the effects of seeding
are larger during earlier phases of the search, while during



later phases weaker seeding strategies may catch up.
In our experiments, we have considered several seeding

strategies, and applied them to the context of testing object-
oriented code in terms of the EVOSUITE tool. Further seed-
ing strategies are possible, and these as well as investigations
of how individual seeding strategies interact will be part of
our future work.

To learn more about EVOSUITE, visit our Web site:

http://www.evosuite.org

Acknowledgments. This project has been funded by
Deutsche Forschungsgemeinschaft (DFG), grant Ze509/5-1,
and by a Google Focused Research Award on “Test Amplifi-
cation”. Andrea Arcuri is funded by the Norwegian Research
Council. Thanks go to Yury Pavlov for his contributions to
the JUnit parser, and Eva May for comments on an earlier
version of this paper.

REFERENCES

[1] M. Harman and B. F. Jones, “Search-based software engineer-
ing,” Journal of Information & Software Technology, vol. 43,
no. 14, pp. 833–839, 2001.

[2] P. McMinn, “Search-based software test data generation: A
survey,” Software Testing, Verification and Reliability, vol. 14,
no. 2, pp. 105–156, 2004.

[3] P. Tonella, “Evolutionary testing of classes,” in ACM Int.
Symposium on Software Testing and Analysis (ISSTA), 2004,
pp. 119–128.

[4] G. Fraser and A. Arcuri, “Evosuite: Automatic test suite
generation for object-oriented software.” in ACM Symposium
on the Foundations of Software Engineering (FSE), 2011.

[5] ——, “Evolutionary generation of whole test suites,” in
International Conference On Quality Software (QSIC). Los
Alamitos, CA, USA: IEEE Computer Society, 2011, pp. 31–
40.

[6] ——, “It is not the length that matters, it is how you control
it,” in IEEE International Conference on Software Testing,
Verification and Validation (ICST), 2011, pp. 150 – 159.

[7] Y. Li and G. Fraser, “Bytecode testability transformation,”
in Search Based Software Engineering, ser. Lecture Notes
in Computer Science, M. Cohen and M. O’Cinneide, Eds.
Springer Berlin / Heidelberg, 2011, vol. 6956, pp. 237–251.

[8] G. Fraser and A. Zeller, “Mutation-driven generation of unit
tests and oracles,” in ISSTA’10: Proceedings of the ACM
International Symposium on Software Testing and Analysis.
ACM, 2010, pp. 147–158.

[9] A. Arcuri and L. Briand, “A practical guide for using statis-
tical tests to assess randomized algorithms in software engi-
neering,” in ACM/IEEE International Conference on Software
Engineering (ICSE), 2011, pp. 1–10.

[10] W. B. Langdon and P. Nordin, “Seeding genetic programming
populations,” in Proceedings of the European Conference on
Genetic Programming (EuroGP), 2000, pp. 304–315.

[11] D. White, A. Arcuri, and J. Clark, “Evolutionary improvement
of programs,” IEEE Transactions on Evolutionary Computa-
tion (TEC), vol. 15, no. 4, pp. 515–538, 2011.

[12] J. Wegener, A. Baresel, and H. Sthamer, “Evolutionary test
environment for automatic structural testing,” Information and
Software Technology, vol. 43, no. 14, pp. 841–854, 2001.

[13] M. Tlili, S. Wappler, and H. Sthamer, “Improving evolution-
ary real-time testing,” in Genetic and Evolutionary Compu-
tation Conference (GECCO), 2006, pp. 1917–1924.

[14] S. Yoo and M. Harman, “Test data regeneration: Gen-
erating new test data from existing test data,” Soft-
ware Testing, Verification and Reliability (STVR), 2010,
http://dx.doi.org/10.1002/stvr.435.

[15] P. McMinn, M. Stevenson, and M. Harman, “Reducing
qualitative human oracle costs associated with automatically
generated test data,” in Proceedings of the First International
Workshop on Software Test Output Validation, ser. STOV ’10.
New York, NY, USA: ACM, 2010, pp. 1–4.

[16] G. Fraser and A. Zeller, “Exploiting common object usage
in test case generation,” in ICST 2011: Proceedings of the
International Conference on Software Testing, Verification,
and Validation. Los Alamitos, CA, USA: IEEE Computer
Society, 2011, pp. 80–89.

[17] M. Miraz, P. Lanzi, and L. Baresi, “Improving evolutionary
testing by means of efficiency enhancement techniques,” in
IEEE Congress on Evolutionary Computation (CEC), 2010,
pp. 1–8.

[18] M. Alshraideh and L. Bottaci, “Search-based software test
data generation for string data using program-specific search
operators: Research articles,” Software Testing, Verification,
and Reliability, vol. 16, no. 3, pp. 175–203, 2006.

[19] P. McMinn, M. Shahbaz, and M. Stevenson., “Search-based
test input generation for string data types using the results of
web queries,” in IEEE International Conference on Software
Testing, Verification and Validation (ICST), 2012.

[20] N. Alshahwan and M. Harman, “Automated web applica-
tion testing using search based software engineering,” in
IEEE/ACM Int. Conference on Automated Software Engineer-
ing (ASE), 2011, pp. 3–12.

[21] A. Arcuri and L. Briand, “Adaptive random testing: An illu-
sion of effectiveness?” in ACM Int. Symposium on Software
Testing and Analysis (ISSTA), 2011.

[22] A. Arcuri, M. Z. Iqbal, and L. Briand, “Black-box system
testing of real-time embedded systems using random and
search-based testing,” in IFIP International Conference on
Testing Software and Systems (ICTSS), 2010, pp. 95–110.

[23] R. Sharma, M. Gligoric, A. Arcuri, G. Fraser, and D. Mari-
nov, “Testing container classes: Random or systematic?” in
Fundamental Approaches to Software Engineering (FASE),
2011.

[24] W. Feller, An Introduction to Probability Theory and Its
Applications, Vol. 1, 3rd ed. Wiley, 1968.

[25] A. Arcuri, “Insight knowledge in search based software test-
ing,” in Genetic and Evolutionary Computation Conference
(GECCO), 2009, pp. 1649–1656.

[26] A. Arcuri and G. Fraser, “On parameter tuning in search based
software engineering,” in International Symposium on Search
Based Software Engineering (SSBSE), 2011, pp. 33–47.


