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Abstract—When testing multithreaded programs, the number
of possible thread interactions makes exploring all interactions
infeasible in practice. In response, researchers have developed
concurrent coverage metrics for multithreaded programs. These
metrics allow them to estimate how well they have exercised
concurrent program behavior, just as branch and statement
coverage metrics do for sequential program testing. However,
unlike sequential coverage metrics, the effectiveness of concurrent
coverage metrics in testing remains largely unexamined. In this
paper, we explore the relationship between concurrent coverage
and fault detection effectiveness by studying the application of
eight concurrent coverage metrics in testing nine concurrent
programs. Our results show that existing concurrent coverage
metrics are often moderate to strong predictors of concurrent
testing effectiveness, and are generally reasonable targets for
test suite generation. Nevertheless, their relative effectiveness as
predictors and test generation targets varies across programs,
and thus additional work is needed in this area.

Keywords-Software testing; software metrics; concurrent pro-
grams.

I. INTRODUCTION

Testing multithreaded programs is challenging, because in
most applications a large number of thread interactions are
possible and exploring all potential interactions is infeasible.
While several concurrent fault detection techniques [1], [2], [3]
have been developed as an alternative, these testing techniques
have limited accuracy, and thus more systematic concurrent
program testing approaches are desirable.

In response, researchers have developed concurrent cov-
erage metrics for multithreaded programs [4], [S], [6], [7].
These metrics, like existing test coverage metrics defined over
structural program elements such as branches or statements,
define a set of requirements to be satisfied. In the case
of concurrent coverage metrics, the coverage requirements
typically enumerate a set of possible interleavings of syn-
chronization operations or shared variable accesses. Just as
structural coverage metrics offer a rough estimate of how
well testing has covered the program’s structure, concurrent
coverage metrics allow engineers to estimate how well they
have exercised concurrent program behaviors.

The intuition behind all test coverage metrics is that as more
requirements for the metric are satisfied, the testing process
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becomes more likely to detect faults. Thus, to maximize the
effectiveness of testing processes, researchers create test ade-
quacy criteria based on these metrics, and develop techniques
to quickly satisfy them. The development of such techniques
has long been an active area of research in the context of
structural coverage metrics for non-concurrent programs [8],
[9], [10], [11], and as multithreaded programs have become
more common the development of techniques centered around
concurrent coverage metrics has also become an active area
of research [12], [13], [14], [15].

Unfortunately, the intuition behind concurrent coverage
metrics remains largely unexplored. While a large body of
evidence exists exploring the impact of structural coverage
metrics on testing effectiveness (e.g., [16], [17], [18]), we are
aware of no study rigorously examining the impact of pro-
posed concurrent coverage metrics. We expect that increasing
concurrent coverage will improve testing effectiveness, but we
also expect that it will increase test suite size. Thus we must
ask: does improving concurrent coverage directly lead to a
more effective testing process, or is it merely a byproduct of
increasing test suite size? Furthermore, if improving coverage
does lead to improvements, what practical gains in testing
effectiveness can we expect?

To explore these questions, we studied the application of
eight concurrent coverage metrics in testing nine concurrent
programs. For each program and metric pairing, we used a
randomized test case generation process to generate 100,000
test suites with varying levels of size and coverage, and
measured the relationships between the percentage of coverage
requirements satisfied, the number of test executions, and the
fault detection ability of test suites via correlation and linear
regression. Additionally, we compared test suites generated
to achieve high coverage against random test suites of equal
size. We measured fault detection ability using both mutation
analysis (systematically seeding concurrency faults) and real-
world faults.

Our results show that each coverage metric explored has
value in predicting concurrency testing effectiveness and as a
test generation adequacy criterion. However, in sharp contrast
to work on sequential coverage metrics [17] and the intent of
the concurrent metrics, the metrics’ results are inconsistent,



and vary across programs. In particular, we found that the
correlation between concurrent coverage and fault detection,
while often moderate to strong (i.e., 0.4 to 0.8) and stronger
than the relationship between test suite size and fault detection,
is occasionally low to non-existent. We also found that while
large increases in fault detection effectiveness (up to 9 times
more) can be found when using concurrent coverage metrics
as test case generation criteria relative to random test suites
of equal size, in some cases the results were no better than
random testing. Finally, we found that we could improve
our ability to model concurrency testing effectiveness by
considering factors other than test suite size and coverage
(e.g., test generation parameters), with improvements in linear
regression fit up to 814% as measured by adjusted R2.

Given these results, we believe that while existing con-
currency coverage metrics have value, and efforts to develop
techniques based on these metrics are justified, additional work
on such metrics is required. In particular, the variability in
metric effectiveness across programs highlights the need for
guidelines to help engineers select from among the many
metrics already proposed. Additionally, the impact of the
parameters used in random testing, which in some cases are
much stronger predictors of testing effectiveness, indicates that
the metrics can be improved to better capture the factors that
constitute effective concurrency testing.

II. BACKGROUND AND RELATED WORK

Structural coverage metrics for concurrent programs, like
their sequential counterparts such as branch and statement
coverage metrics, are used to derive a set of test requirements
from the code elements of a program under test. These test
requirements typically enumerate a set of thread interleaving
cases. Unlike sequential metrics, satisfying a test requirement
for concurrent programs requires us not only to execute spe-
cific code elements (generally synchronization and/or shared
data access operations), but also to satisfy constraints on thread
interactions. For example, the blocked metric requires every
synchronization block/method in a program to be blocked (due
to lock contention) at least once during testing [12].

In work on concurrent coverage metrics, the effectiveness of
achieving high coverage levels has been argued for primarily
through analytical comparisons between coverage definitions
and bug patterns, such as those involving data races and
atomicity violations [5], [6], [14]. Little empirical evidence
exists demonstrating that high levels of coverage correlate with
better fault detection ability.

Trainin et al. [6] note that concurrency faults are related
to certain test requirements for the blocked-pair and follows
concurrent coverage metrics, which suggests that achieving
high levels of coverage should correlate with testing ef-
fectiveness. Wang et al. [14] highlight how data races or
atomicity violations may be triggered by satisfying HaPSet
test requirements. Neither analysis empirically demonstrates
the benefits of achieving higher coverage.

The study most similar to the one we present in this
paper is by Tasiran et al. [19], who evaluate the location-

pair metric empirically, and compare it to two other cov-
erage metrics (method-pair and def-use) with respect to the
correlation between coverage and fault finding ability. The
study uses two case examples and generates faulty versions
via concurrent mutation operators and manual fault seeding.
Our study’s scope is more comprehensive, encompassing nine
case examples and eight concurrent coverage metrics, and we
apply a broader set of analyses.

III. STUDY DESIGN

The purpose of this study is to rigorously investigate
existing concurrent coverage metrics, and to either provide
evidence of each metric’s usefulness or demonstrate that the
metric is of little value. The usefulness of a coverage metric,
concurrent or otherwise, invariably relates to many factors,
such as the testing budget available, the characteristics of the
program under test, and the goals of the testing process. Nev-
ertheless, to show that any coverage metric can be considered
useful, we should at minimum demonstrate two things:

1) increased levels of coverage correspond to increased
fault detection effectiveness;

2) these increases are due in part to increasing coverage
levels, not merely larger test suite sizes.

Furthermore, to aide practitioners in selecting a coverage
metric for use, we should attempt to quantify the relationship
between coverage, size, and fault detection effectiveness. In
particular, we are interested in the predictive value of each
metric, the cost of achieving high levels of coverage, and the
expected improvements over random testing.

Our study is thus designed to address two core questions.

Research Question 1 (RQ1): For each concurrent coverage
metric studied, does the coverage achieved positively impact
the effectiveness of the testing process for reasons other than
increases in test suite size? In other words, we would like
to provide evidence that given two test suites of equal size,
the test suite with higher coverage will generally be more
effective.

Research Question 2 (RQ2): For each concurrent coverage
metric studied, how does the fault detection effectiveness of test
suites achieving maximum coverage compare to that of random
test suites of equal size? While coverage levels may relate to
effectiveness, the practical impact of achieving high coverage
for some metric over random test suites may be insignificant.

The objects for this study have been drawn from existing
work on testing concurrent software [20], [21], and include
objects without faults, and objects with faults detected in
previous studies. We list the objects with the lines of code,
numbers of threads, and mutants used in Table I.

A. Variables and Measures

1) Independent variables: In this study, we manipulate two
independent variables: the concurrent coverage metric, and the
method of test suite construction.

Concurrent Coverage Metrics. Numerous concurrent cov-
erage metrics have been proposed, each based on some unique



TABLE I
STUDY OBJECTS

TABLE II
CONCURRENT COVERAGE METRICS USED IN STUDY

intuition about how to capture different aspects of concur-
rent executions. We view these metrics as having two key
properties: the number of code elements the test requirements
consider (either a single element or a pair of elements), and
the elements the metric is defined over (either synchronization
elements or shared data access operations). For example, the
blocking and blocked coverage metrics define requirements
based on individual synchronized blocks/methods in a
Java program [12], and are thus singular concurrent coverage
metrics, while the blocked-pair metric is defined over pairs
of blocks, and is thus a pairwise metric. All of these met-
rics are defined over synchronized blocks, and thus are
synchronization metrics [6].

We selected eight coverage metrics for use in our study,
focusing on well-known coverage metrics while also ensuring
that we considered every possible combination of our two key
properties. We list the metrics selected in Table II.

We concentrated on metrics that generate modest numbers
of test requirements, as this makes achieving high levels of
coverage feasible in a reasonable time. Thus, coverage metrics
that produce very large numbers of test requirements are not
included in this study. These include metrics defined over
memory addresses or exhaustive sets of interleavings (e.g.,
all-du-path [7], ALL, SVAR [5]) and the series of extended
coverage metrics proposed by Sherman et al. [22]. Access-
pair [22] and location-pair [19] are omitted as they are almost
equivalent to the PSer metric. We interpret the LR-Def metric
as generating two test requirements for read accesses: one for
the use of memory defined by a local thread and the other for
the use of memory defined by any remote thread.

Test Suite Construction. We used two methods of test suite
construction: random selection and greedy test suite reduction.
In random selection, test suites are constructed by randomly
selecting test executions to construct test suites of specified
sizes. In greedy selection, test suites are constructed to achieve
maximum achievable coverage using a small number of test
executions. These test suite construction methods are used to
address RQ1 and RQ2, respectively.

2) Dependent Variables: We measure three dependent vari-
ables computed over generated test suites: coverage achieved,
test suite size, and fault detection effectiveness.

Achieved concurrent coverage. For a give metric M,
each test suite S’s coverage is computed as the ratio of
M'’s test requirements that are satisfied by S to the total

Type Program LOC Num. | Incorrect [ Test [ [[ Synchronization operation | Data access operation |
threads | versions | exec. - blocking [12],
Moation | AmayList 3366 % 32 | 2000 Singular blocked [12] LR-Def [3]
testin BoundedBuffer 1437 31 34 | 2000 Pairwi blocked-pair [6], PSet [23],
2 Vector 709 51 88 | 2000 airwise follows [6], sync-pair [15] Def-Use [19]
Alarmclock 125 4 1 1000
Single Clean 51 3 1 | 1000
fault | Piper 71 9 1 | 1000 number of test requirements satisfied across all executions
program | Producerconsumer 87 5 1 | 1000 f . . Wi truct test ti
Stringbuffer 716 3 1 1000 OI'. a glvep program version. e construct test executions
Twostage 52 3 T | 1000 while holding random test generation parameters constant (see

Section III-B); because different parameters can result in cov-
ering different requirements, the coverage of M’s requirements
is often less than 100%, and our measurements reflect this.
However, for the purpose of greedy test suite construction,
we define maximum achievable coverage as the number of
requirements than can be covered for a specific set of test
generation parameters.

Test suite size. Test suite size is the number of test
executions in the test suite, and estimates testing cost.

Fault detection effectiveness. When computing the fault
detection effectiveness of the testing process, we use con-
current mutation operators with correct objects (see Sec-
tion III-B1). We then compute the fault detection effectiveness
of a testing approach as the number of mutants killed/detected.
When computing fault detection effectiveness for objects that
contain known faults, detection of the fault is treated as
success, and failure to detect the fault is treated as failure.

B. Experiment Setup

Conducting our experiment requires us to (1) generate mu-
tants for programs without faults, (2) conduct a large number
of random test executions, (3) for each execution record the
requirements covered for all metrics and whether a fault is
detected, (4) perform resampling over executions to construct
test suites and finally (5) measure the resulting coverage and
fault detection effectiveness of each test suite.

1) Mutant Generation: We wished to study fault detection
in the presence of many diverse fault types, which is not
possible when using single-fault programs. Accordingly, for
several of our object programs we corrected known faults [21]
and applied mutation analysis. To choose mutation operators
for our study, we drew on concurrent mutation operators
used in a recent survey on concurrent mutation testing [24].
These operators are similar to traditional syntactic mutation
operators commonly used in other studies [16], [25], but focus
on manipulating concurrency constructs, e.g., adding/removing
synchronization primitives. Table III describes the operators.
We applied these operators to generate mutants. We then
discarded any mutants that (1) did not fail for any generated
test execution, (2) were malformed, e.g., resulted in code
that could not be executed, or (3) were killed by every test
execution.

We list the final number of mutants used in Table I. Note that
we also use objects containing real faults, thus mitigating the
risk present when using concurrent mutation operators, whose



TABLE III
MUTATION OPERATORS [24]

[ Category | Description |
Change Exchange Synchronized Block Parameter
Synchronization | Remove wait ()

Operations Replace notifyAll () with notify ()
Expand Synchronized Block
Modify Remove Synchronized Block
Synchronized Remove synchronized Keyword from Method
Block Shift Synchronized Block
Shrink Synchronized Block
Split Synchronized Block

usage is less established and studied than structural mutation
operators [16].

2) Test Generation and Execution: We used a randomized
test case generation approach to avoid bias that might result
from using a directed test case generation approach such as
those proposed in [12], [26]. Our approach selects an arbitrary
test input and generates a large number of test executions by
executing a target program on the test input with varying
random delays (i.e. calls to sleep ()) inserted at shared
resource accesses and synchronization operations.

We control two parameters of this approach: the probability
that a delay will be inserted at each shared resource access
or synchronization operation (0.1, 0.2, 0.3, and 0.4), and the
maximum length of the delay to be inserted (5 msec, 10 msec,
and 15 msec). We used these controls because previous work
indicates that they can impact the effectiveness of the testing
process [13]. The specific values used were selected based on
our previous experience in this domain [15] and pilot studies,
both of which indicated that larger or finer grained delays
and probabilities did not yield significantly different results.
In addition to the twelve random scheduling techniques, we
ran test executions without inserting any delay noise.

We began by estimating the number of test executions E
required to achieve maximum coverage for all eight coverage
metrics used. This was done by executing the original object
for several hours and recording the rate of coverage increase
for each metric. For each object, we required either 1000 or
2000 test executions. Following this, for each parameter setting
(13 (=4x3+1) in total) we conducted E executions for each
mutant (for objects with mutants) or each object program (for
objects without mutants). During each execution, we recorded
(1) the test requirements covered for each coverage metric
studied, and (2) whether a fault was detected. We recorded an
execution as detecting a fault if (1) an uncaught exception is
thrown by the program (i.e., a crash fault), (2) the program
deadlocks, determined by checking whether execution time
is exceptionally long, or (3) a program-specific assertion is
violated.

3) Data Collection: After each test execution we know (1)
which test requirements are covered for each coverage metric
and (2) whether the program failed. Using this information we
can, via random resampling, construct test suites of varying
sizes and levels of coverage. Ideally, we would like to construct
test suites encompassing all possible combinations of size
and coverage. Unfortunately, as coverage and size tend to be

highly correlated this is impossible; small test suites with high
coverage (or vice-versa) are extremely rare in practice. We
instead generated, for each combination of object and coverage
metric, 100,000 test suites ranging in size (i.e. number of test
executions) from 1 to the maximum size via random sampling
of executions. This results in a set of test suites with increasing
size and, within each level of size, varying coverage. These
test suites are used to address RQI.

To address RQ2, we also generated 100 test suites achieving
maximum achievable coverage for each coverage metric. We
generated these using a mostly greedy test suite reduction ap-
proach: from the set of executions, repeatedly select either (1)
the test execution satisfying the most unsatisfied requirements
(80% chance) or (2) a random test execution (20% chance)
until all requirements are satisfied. This results in a test suite
that achieves maximum coverage using fewer test executions
than are required by simple random test suite construction.
The randomization adds noise, ensuring some variation in the
generated suites.

Selecting a test suite for a single-fault program is straight-
forward: we have one set of executions over the program, and
we resample from this set to construct test suites.! Each test
suite becomes a data point for analysis, having an associated
level of coverage, size, and fault detection result (killed/not
killed).

The construction of test suites for objects using mutation
generation is more complex. Each mutant differs in the syn-
chronization primitives present, and thus we cannot replicate
a sequence of interleavings (i.e., run the same test execution)
across all mutants. Therefore, when constructing test suites
for objects with mutants, we began by generating 100,000
separate test suites for each mutant. To compute the fault
detection effectiveness of combinations of coverage levels and
sizes across mutants, we randomly selected a mutant and a
test suite associated with that mutant. Following this, for all
remaining mutants we randomly selected test suites with the
same (or as similar as possible) level of coverage and size,
and computed the average coverage and size (which may vary
slightly across mutants) and the number of mutants detected.
These aggregated values become a data point for analysis. We
repeated this cross-mutant selection 100,000 times.

C. Threats to Validity

External: We conducted our study using only Java pro-
grams with standard synchronization operations. These pro-
grams are relatively small but have been chosen from existing
work in this area, and thus we believe that our results are at
least generalizable to the class of programs concurrent testing
research focuses on.

For concurrent coverage metrics, it is difficult to accurately
determine satisfiable requirements. For all coverage metrics,
however, we appear to have reached saturation during test case
generation (see Sec. IV-A) [22], and thus a larger number of
executions is unlikely to significantly alter our results.

'When constructing each test suite, we held probability and delay constant.
We did this to facilitate later analysis considering the impact of these factors.



The random testing technique we use is implemented in-
house, but we have attempted to match the behavior of
other random testing techniques by constructing a general
technique and varying the parameters of probability and delay.
Our study employs only a single test input value, varying
scheduling, and thus we do not consider the impact of test
input value on concurrent testing. However, most concurrent
testing techniques assume that intensive testing is required for
each test input value, and thus our study reflects the current
approach to concurrent testing.

Internal: Our random testing technique is implemented
upon Java’s internal thread scheduler, and when using other
thread schedulers results may vary. Additionally, while we
have extensively tested our experimentation tools, it is possible
that faults in our tools could lead to incorrect conclusions.

Construct: Our method of detecting faults may miss faults,
e.g., errors not captured by an assertion violation or not leading
to an exception. In practice, however, much of concurrent
testing focuses on detecting faults via imperfect test oracles
and thus our study uses a realistic approach to fault detection.

We used mutation analysis to measure testing effectiveness
for some objects. Our seeded faults are designed to mimic
actual concurrent faults, and of course are indeed faults,
but the relationship between faults generated by concurrent
mutation operators and real concurrency faults has not been
thoroughly investigated. Nevertheless, the results for mutation-
based objects and objects with real faults are similar.

Conclusion: For each object, we constructed from 1 to 88
faults and 100,000 test suites per coverage metric. While more
mutants/faults/test suites could in theory alter our conclusions,
in practice our conclusions remain the same for both single
fault programs, mutation-testing driven programs, and larger
numbers of test suites.

IV. RESULTS AND ANALYSIS

Our analyses are designed to study how each coverage
metric impacts fault detection effectiveness. Towards RQI,
we visualized the pairwise relationship between variables;
measured the correlation between coverage, size, and fault
detection effectiveness; and performed linear regression to
better understand how both coverage and size contribute to
fault detection effectiveness. Towards RQ2, we compared the
fault detection effectiveness of test suites satisfying maximum
achievable coverage and random test suites of equal size.

A. Visualization

To understand the relationship between test suite size, cov-
erage, and fault detection effectiveness, we began by plotting
the relationship between each pair of variables. In Figures 1
and 2 we show how each pair of factors interacts for the Vecror
and Stringbuffer objects (elements on the y-axis are average
coverage and fault detection levels for elements on the x-axis).
Note that the figures for each object vary, in particular those

2Applying these analyses to nine objects and eight coverage metrics
produces more results than we can include; we have summarized the data
and released the full data at http:/pswlab.kaist.ac.kr/data/conc-cov-impact

figures relating to single-fault objects (which have significant
levels of noise). However these figures capture the core behav-
ior typical across all objects: an initial rapid increase in fault
detection (coverage) as coverage (size) increases, followed by
a continued, but subdued increase for higher coverages or
larger sizes.

The concurrent coverage metrics exhibit behavior similar
to what we expect from sequential coverage metrics and
testing: broadly logarithmic behavior, with a rapid increase
in both fault detection and coverage for small test suite sizes,
and smaller increases as test suite size grows. Here we see
strong differences in coverage metrics: some coverage metrics
begin with very high levels of coverage for even small test
suites, and thus quickly achieve close to maximum coverage,
while others grow in coverage more slowly. For example, LR-
Def is an extreme case, achieving maximum coverage almost
immediately for both programs. In constrast, the relationship
between coverage and fault detection is positive and essentially
linear. Here differences are mostly related to the number of
“easy” requirements to satisfy — those metrics that are easier to
satisfy have high coverage even for very small test suites, e.g.,
blocking, blocked, LR-Def when used with Vector. For single-
fault programs (like Stringbuffer), there are fewer requirements
and only a single fault, and thus the increase observed is less
consistent (though the relationship is positive overall).

Perhaps most striking is the tendency for metrics to cluster,
exhibiting similar levels of coverage for all test suite sizes.
These clusters correspond roughly to the metric properties
of singular/pairwise and synchronization/data access first
discussed in Section II. This grouping is natural: pairwise
metrics, being defined over pairs of elements rather than single
elements, naturally have more requirements and thus require
more tests. Metrics defined over a specific type of primitive are
likely to have similar fault detection effectiveness and coverage
behavior, but their fault detection effectiveness varies depend-
ing on program behavior. For example, for Vector, the sync-
pair and follows metrics — both pairwise, synchronization-
based metrics — achieve coverage the most slowly, with a
rate of increase similar to that of fault detection.

B. Correlation Between Variables

Figures 1 and 2 indicate that both test suite size and cover-
age appear to be positively correlated with fault detection ef-
fectiveness, and that size is positively correlated with coverage.
To measure the strength of these relationships, for each object
and coverage metric we measured the correlation between
each variable using Pearson’s r.> We selected Pearson’s r
for two reasons. First, we are interested in the application of
concurrent coverage metrics as predictors and thus measuring
the strength of the linear relationship between variables is
desirable. Fault detection is guaranteed to increase monotoni-
cally with size and coverage, and thus establishing this using
rank correlation (e.g. Spearman or Kendall’s tau) yields less

3Note that while for small samples conclusions based on Pearson’s can be
unsound for non-normal data, in our case the use of very large number of
samples, 100,000 per correlation computed, mitigates this risk.
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new information [27]. Second, single-fault programs can only
fail or pass for each test suite; computing correlation over
such data is a special case known as point-biserial correlation,
for which rank correlation (due to the many ties present) is
unsuitable. For every non-zero correlation computed, the p-
value was (far) less than 0.05 and thus statistically significant
at a = 0.05.

The computed correlations are presented in Table IV. For
example, for ArrayList the correlation between blocked cov-
erage and fault detection/test suite size is (0.77,0.33), while
the correlation between size and fault detection (S-FF) is
0.48. Across all programs using mutation faults, the correlation
between each pair of variables in mutation testing is moderate
to high (above 0.52) for all programs and coverage metrics.
However, for every single-fault program, several metrics have
low correlation with fault detection. We believe this occurs
because the metric’s intuition does not capture the single fault
present. In contrast, the diversity of mutation-derived faults
leads to more consistent correlations for other objects.

For each metric there exists at least one program for
which the correlation with fault detection is at or above
0.87. Furthermore, coverage is often more strongly correlated

with fault detection than size (S-FF). These results provide
evidence that each metric is a useful predictor of concurrency
testing effectiveness, depending on program. The best metric,
however, varies across programs, and no single metric is a
consistent predictor of effectiveness, though PSer with a low of
0.27 for producerconsumer is often quite strong. This indicates
that selecting an effective metric for a given program may
be challenging. Furthermore, the occasional low and often
moderate correlation between coverage and fault detection
(and somewhat surprisingly, size and fault detection) hints that
factors other than those captured by the concurrent coverage
metrics may relate to fault detection effectiveness.

C. Models of Effectiveness

Based on the previous two analyses we can see that for
every metric, coverage levels do correspond (somewhat) to
testing effectiveness. However, we can also see that test suite
size and coverage are often similarly correlated, and thus
the relationship between size, coverage and fault detection is
unclear; does coverage predict fault detection effectiveness, or
merely reflect test suite size? To address this we used linear
regression to attempt to model how test suite size and coverage



TABLE IV
CORRELATIONS: EACH CELL = (COVERAGE & FAULT DETECTION CORR., SIZE & COVERAGE CORR.), S-FF = S1ZE & FAULT DETECTION CORR.

[ ][ blocked | blocked-pair | blocking | Def-Use | follows | TLR-Def [  PSet | sync-pair [ S-FF |
ArrayList 0.77,033 | 081,055 | 0.71,0.51 | 0.75,0.49 | 0.79,0.53 | 0.84,0.39 | 0.81,0.54 | 0.79,0.53 || 0.48
BoundedBuffer 0.55,0.44 | 060,045 | 0.54,0.35 | 0.60,0.50 | 0.60,0.46 | 0.52,0.39 | 0.61,0.53 | 0.60,0.46 || 0.38
Vector 0.82,0.40 | 091,0.64 | 0.76,0.39 | 0.88,0.65 | 0.86,0.70 | 0.91,0.51 | 0.89,0.66 | 0.87,0.70 || 0.54
Alarmclock 0.77,025 | 0.67,029 | 028,022 | 0.55,0.22 | 0.19,0.26 | 0.19,0.12 | 0.59,0.35 | 0.19,0.26 || 0.05
Clean 0.15,0.16 | 0.17,041 | 0.19,0.40 | 0.97,0.29 | 0.10,0.05 | 0.0,0.00 | 0.85,0.29 | 0.11,0.05 || 0.30
Piper 0.01,0.00 | 059,049 | 048,025 | 0.06,0.02 | 0.62,0.45 | 0.20, 0.09 | 0.67,0.27 | 0.62,045 || 0.38
Producerconsumer || 0.14,0.02 | 0.19,043 | 0.13,0.16 | 0.55,0.15 | 0.10,0.20 | 0.63,0.29 | 0.27,0.25 | 0.09,0.19 || 0.11
Stringbuffert 0.57,0.18 | 042,035 | 0.56,030 | 0.42,0.11 | 065,023 | 00,004 | 087,0.15 | 0.63,0.22 || 0.12
Twostage 0.87,023 | 0.87,023 | 0.87,023 | 0.95,0.13 | 0.96,0.13 | 0.04,0.02 | 0.96,0.13 | 0.96,0.13 || 0.10
* FF = SZ + log(CV) . FF=CV+SZ X FF =1log(CV) + log(S2) A FF = log(S2)
— + FF = CV + log(S2) ’
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Fig. 3.

jointly influence the effectiveness of the testing process, with
the goal of determining whether coverage has an independent
explanatory ability with respect to fault detection.

In linear regression, we model the data as a linear equation
y = Bz + Baxza + ... + Bpxp + €; where variables x;
correspond to explanatory factors and variable y denotes the
dependent variable. In many cases, the goal of linear regression
is model selection: from a set of candidate models, select the
model that offers the highest goodness of fit, while omitting
unneeded explanatory variables.

In this case we would like to model fault detection effective-
ness for each object and coverage metric using test suite size
and/or coverage as explanatory variables. If the best models
always employ coverage levels as an explanatory factor, this
indicates that coverage has an independent ability to predict
fault detection effectiveness. Accordingly, for every combina-
tion of object and coverage metric where coverage varies, we
fit all possible linear models employing combinations of T,
log(TS), CV, and log(CV) as explanatory variables (with fault
detection (FF) as the dependent variable).

We next computed the adjusted R? to determine the good-
ness of fit for each model; this is a measure of fitness that
adjusts for the number of explanatory variables. When com-
paring two models, a model with more explanatory variables
will have a higher adjusted R? only when additional variables
significantly contribute.* Strictly speaking, adjusted R? cannot
be used to indicate the proportion of variance captured, but as

4We also used Mallow’s C) to determine goodness of fit [28]. The results
when using Mallow’s led to the same conclusions, and we have presented
results using adjusted R? as we believe this metric is easier to interpret.

Adjusted R? for Every Best Fit Model, All Combinations of Objects & Coverage Metrics

adjusted R? is always less than or equal to R?, we can infer
that the proportion of variance captured by a model is equal
to or greater than that given by adjusted R?.

Our fitting process results in a large number of regression
models and thus listing regression models with computed
coefficients is infeasible; additionally, we are interested in
exploring how well size and coverage levels model fault
detection effectiveness, not the specific models. To summarize
our data, we began by selecting the best fitting model for each
object/coverage metric pair. We plot the associated adjusted
R? in Figure 3 for each coverage metric, across all objects,
indicating which set of explanatory variables had the highest
fit. For example, we see that for the sync-pair metric, for
two objects adjusted R? was less than 0.2, indicating very
low fit, while for one object fit was roughly 0.9, suggesting
a high fit with model FF = a x CV 4+ § x log(5Z2).
Here we can clearly see the variation in metric effectiveness,
with fit ranging from less than 0.2 to over 0.8, indicating a
wide variation in predictive power. However, for all coverage
metrics, for at least one object an adjusted R? of 0.8 or above
was observed, indicating high fit.

Our results indicate that while no single set of explanatory
variables is best, in all instances but one, models based on
both coverage and size are preferable to models using only
one explanatory variable. This provides evidence that coverage
metrics have a predictive ability separate from test suite size.
However, the adjusted R? is generally less than 0.8, indicating
that while our models do have reasonable predictive power, a
significant proportion of variability is not accounted for by the



TABLE V
MAXIMUM ACHIEVABLE COVERAGE TEST SUITE STATISTICS.

(* = Not statistically significant difference at o = 0.05)
(MFF = MAX CV FF, RFF = Random FF, Cv = % Increase in Coverage Over Random, Sz = Test Suite Size)

blocked blocked-pair blocking Def-Use
MFF RFF Cv Sz MFF RFF Cv Sz MFF RFF Cv Sz MFF RFF Cv Sz
ArrayList 7.15 0.75 | 242% | 2.02 7.23 421 | 50.5% | 26.2 || 5.76 1.19 | 37.6% | 3.26 || 746 | 1.73 | 24.0% | 5.18
BoundedBuffer 3.38 317 | 32.5% | 4.35 4.26 3.96 105% | 439 || 3.69 | 3.49 122% | 5.64 || 438 | 3.61 | 26.3% | 109
Vector 7.78 8.33 14.8% | 3.25 23.6 223 | 38.5% | 974 || 9.06 10.1 31.5% | 540 || 27.8 | 182 | 64.4% | 33.1
Alarmclock 092 | 006 | 94.0% | 1.17 0.92 0.20 100% | 1.67 || 0.29 | 0.12 103% | 1.43 092 | 0.25 | 21.2% | 3.23
Clean 0.0* | 0.02* | 58.9% | 1.25 0.0 0.13 | 93.8% | 2.13 0.0* | 0.02* | 65.0% | 1.76 1.0 | 0.09 | 6.13% | 2.01
Piper 0.0* 0.0% | 2.24% 1.0 0.38 0.0 438% | 1.24 || 0.15 | 0.03 | 31.8% | 1.17 0.0 | 0.03 | 0.80% | 1.02
Producerconsumer || 0.08 0.19 | 581% | 1.03 || 0.59* | 0.56* | 57.8% | 3.81 046 | 0.16 | 39.5% | 1.48 1.0 | 021 | 6.79% | 1.14
Stringbuffer 0.83 0.57 230% | 2.06 1.0 0.87 229% | 6.27 || 098 | 0.63 306% | 2.37 || 0.04 | 0.59 | 7.28% | 2.04
Twostage 092 | 0.14 366% | 2.93 0.92 0.12 407% | 2.95 092 | 0.07 379% | 2.93 092 | 0.21 | 6.95% | 2.92
follows LR-Def PSet sync-pair

MFF RFF Cv Sz MFF RFF Cv Sz MFF RFF Cv Sz MFF RFF Cv Sz
ArrayList 723 | 406 | 47.0% | 20.2 7.46 0.78 | 2.68% | 1.41 7.38 272 | 28.1% | 856 || 7.23 | 3.94 | 46.8% | 20.3
BoundedBuffer 4.23 395 | 87.0% | 42.7 2.72 2.93 133% | 296 || 4.38 380 | 324% | 17.7 || 417 | 404 | 85.0% | 42.4
Vector 21.0 | 23.1 | 56.2% | 121 27.8 785 | 5.15% | 2.93 27.8 19.7 | 53.8% | 45.5 20.7 | 229 | 623% | 121
Alarmclock 049 | 0.16 | 16.8% | 1.79 0.12 0.17 12.1% | 2.01 092 | 026 | 38.8% | 4.51 047 | 0.17 | 13.4% | 1.75
Clean 0.0 0.04 | 16.1% | 1.09 0.0%* 0.0* 0.0% 1.0 1.0 0.08 13.9% | 2.18 || 0.01 | 0.04 | 13.5% | 1.02
Piper 0.69 | 0.05 | 534% | 3.0 0.0 0.12 14.6% | 1.21 046 | 0.0l | 6.01% | 1.25 0.68 | 0.04 | 487% | 3.0
Producerconsumer || 0.50 | 0.57 | 29.3% | 3.65 1.0 0.29 16.9% | 1.60 1.0 032 | 6.60% | 1.68 || 0.47 | 0.53 | 28.0% | 3.65
Stringbuffer 1.0 0.75 | 41.5% | 4.68 0.08 0.34 1.56% | 1.08 1.0 0.59 10.3% | 3.0 1.0 | 0.86 | 37.0% | 4.82
Twostage 092 | 0.15 | 558% | 2.92 0.0 0.06 | 229% | 1.06 || 092 | 0.12 | 22.8% | 2.92 || 092 | 0.12 | 47.5% | 2.92

models.> We discuss this further in Section V-B.

D. Effectiveness of Maximum Coverage

Our first three analyses have characterized the relationship
between test suite size, coverage and fault detection and
statistically established that for each metric, coverage level
has a predictive ability for fault detection apart from that of
test suite size. From these results, we can see that while not
every coverage metric is highly effective for all case examples,
all coverage metrics do appear to have value. Thus, it is
worthwhile to use concurrent coverage metrics (in addition
to test suite size) as methods for estimating the concurrent
fault detection effectiveness of a testing process.

However, per RQ2, we also would like to quantify the
ability of test suites generated to quickly achieve high levels
of concurrent coverage. To do this, for each case example and
coverage metric, we compared test suites of maximum achiev-
able coverage, generated using a greedy algorithm described
in Section III-B3, against random test suites of equal size.
The expectation is that if a metric is a reasonable target for
test case generation, holding the method of test case generation
constant while reducing generated test cases to construct small,
high coverage test suites should result in more effective test
suites than pure random test case generation.

We began by formulating hypothesis H: test suites satis-
fying maximum achievable coverage will outperform random
test suites of equal size in terms of fault detection. We eval-
uvated H for each combination of case example and coverage
criteria using a two-tailed bootstrapped paired permutation
test, a non-parametric statistical test that calculates the prob-
ability p that two paired sets of data come from the same
population [27].

SComputed R? values, omitted for space reasons, support this statement.
5The null hypothesis Hy is that test suites achieving maximum achievable
coverage are equally effective as random test suites of equal size.

Each test suite generated to achieve maximum achievable
coverage (hereafter referred to as maximum coverage) was
paired with a randomly selected test suite of equal size.
Following this, the permutation test was applied using 250,000
permutations for each p-value [27]. Following the test, we
computed the average fault detection when using test suites
reduced to achieve maximum coverage, the average relative
improvement in coverage over random test suites, and the
average fault detection for the random test suites.

Table V lists the results of this analysis.” Initially we were
surprised that there were object / coverage metric pairs for
which the reduction to maximize coverage had a negative im-
pact on the fault detection effectiveness of the testing process.
For example, we see for Stringbuffer that test suites reduced
to satisfy LR-Def found the fault 8% of the time, as compared
to 34% when using random test suites of equal size. However,
these scenarios correspond to very low correlations with fault
detection (0.3 <) and are thus reasonable. The case of Vector
was more surprising. We hypothesize that when achieving
maximum coverage for complex coverage metrics (e.g. sync-
pair), there exist several hard-to-cover test requirements which
are satisfied only by specific test executions that do not detect
mutants. During greedy test suite reduction, these executions
must be selected to achieve maximum coverage, and are thus
useless with respect to fault detection, but always present.

Nevertheless, achieving high coverage generally yields not
only statistically significant, but also practically significant
increases in fault detection: large, often twofold or more
increases can be observed. For example, for the ArrayList
object, we observed increases in average fault detection of 1.7
to 9.5 times at maximum coverage. Similar patterns can be
seen for many combinations of objects and coverage metrics,

7For single fault programs fault detection is the ratio of test suites detecting
the fault to the total number of test suites.



providing evidence that achieving high concurrent coverage
has merit.

V. DISCUSSION

Our results have addressed our original research questions
RQ1I and RQ2: for every coverage metric, we have shown that
for some programs (1) the metric is a moderate, independent
predictor of fault detection, and (2) the testing process can
be made more effective by using test suites that achieve
maximum coverage instead of random test suites of equal size.
In short, we have provided evidence that existing concurrent
coverage metrics can be useful. Consequently, testers can use
concurrent coverage metrics as part of their testing process
with confidence, either to estimate testing effectiveness, or as
a goal for the testing process. Furthermore, testing researchers
can justify as worthwhile the effort spent developing tools and
techniques based on concurrent coverage metrics.

Nevertheless, the variation in the relative effectiveness of
coverage metrics raises issues concerning how to apply these
metrics in practice. Additionally, the generally moderate levels
of correlation and fit observed hint that while these metrics
appear effective, improvements to these metrics are both
possible and desirable. In the remainder of this section, we
discuss the practical implications of the study and highlight
additional areas of research that we believe must be explored.

A. Practical Implications for Testers

Following a study of several coverage metrics, the question
every tester naturally asks is: which metric should 1 use?
Examining Tables IV and V, we see that if a tester must
select a “best” metric, PSet seems to be the only possible
choice. For eight objects, PSet coverage’s correlation with fault
detection is over 0.59. Additionally, PSetr always achieves a
greater correlation with fault detection than size (S-FF), and
is the only metric whose greedy reduced test suites always
achieve better fault detection than random test suites of equal
size. PSet is clearly not ideal in many scenarios — Def-Use
is similarly effective as a generation target for Vector while
requiring fewer test executions and sync-pair is more effective
as a generation target for Alarmclock — but on the whole it
is consistently effective as both a predictor and for test case
generation.

With respect to the other metrics, our results suggest basic
guidelines. Recall from Table II the coverage metric properties
of singular/pairwise. Comparing the results for singular and
pairwise metrics while holding the other metric property (syn-
chronized/data access) constant reveals two patterns hinted
at in Section IV-A. Generally speaking, the correlation with
fault detection for pairwise metrics tends to be approximately
equal or higher (sometimes much higher, e.g., Def-Use and
PSet versus LR-Def) than when using singular metrics. Thus
as predictors of testing effectiveness, it is preferable to select
pairwise metrics.

Second, pairwise metrics also excel as targets for test
case generation. For example, for BoundedBuffer, singular
metrics detect on average no more than 3.69 faults, while all

pairwise metrics detect on average at least 4.17 faults. For
Clean, only two metrics, both pairwise, detect the fault with
probability over 0.01 (PSet and Def-Use). Of course, as noted
previously, pairwise metrics have more requirements, and thus
require more test executions to achieve maximum coverage.
Nevertheless, even if for budget reasons we must settle for test
suites with less than maximum coverage, given the relatively
strong relationship between pairwise metric coverage and fault
detection, we see no reason to select singular metrics. Instead
we recommend achieving as much coverage as possible with a
pairwise metric, rather than, for example, achieving maximum
coverage for a singular metric and then stopping testing or
switching to simple random testing.

Finally, for some objects, there is a large difference in fault
detection depending on the primitive (synchronization/data
access) used to define the metrics. For example, when us-
ing data access-based metrics (PSet, Def-Use and LR-Def)
with producerconsumer, the correlation with fault detection is
roughly three times that of synchronization-based metrics, with
similarly dramatic increases in fault detection over random
testing at maximum coverage. However, for Piper the opposite
is true; data-access based metrics perform poorly.

Thus, while PSet is perhaps the most consistent metric,
our results offer no universal recommendation — in addition
to the usual caveats (e.g., the choice of metric depends on
testing budget, testing goals, etc.) metrics that appear excel-
lent in some circumstances perform poorly in others, with
corresponding variance in relative effectiveness. We found
this surprising: while in theory such behavior can also exist
between foundationally different sequential coverage metrics
(e.g., metrics defined over def-use pairs versus those defined
over branch constructs), in our experience such dramatic
differences do not occur. This provides evidence that calls to
use concurrency metrics in tandem [14] — specifically PSet
and follows — should be heeded, and that additional work to
understand how to select metrics is required.

B. Limits of Existing Concurrency Metrics

As noted, in some cases the concurrent coverage metrics
explored exhibit low correlation with fault detection and/or
poor fit during linear regression. These results stand in sharp
contrast to results related to sequential coverage criteria, where
for example much better linear regression fit has been achieved
using only test suite size and coverage levels, with adjusted
R? values over 0.90 being typical [16], [17]. In contrast, we
observed few adjusted R? values greater than 0.8, indicating
that a great deal of effectiveness is unaccounted for by test
suite size and coverage. By uncovering additional factors that
contribute to fault detection effectiveness, we may improve
our concurrent coverage metrics and testing techniques.

As an initial step towards this, we extended our linear
regression analysis to consider two additional factors: the
probability of a delay being inserted (PB), and the length of the
delay inserted (DL) (see Section III-B2). These factors were
controlled for during test execution, and have been observed
to impact the effectiveness of concurrent testing in previous



work [13], [15]. We then repeated our regression analysis,
selecting the model with the highest fit for each combination
of coverage metric and program.

Following this, we compared each selected model’s fit
against the same model with PB and DL omitted as explana-
tory variables. We found that while sometimes the improve-
ment when using PB and DL as explanatory variables was
small (< 0.01), often the improvement was significant: the
average relative increase in adjusted R? was 50.5% (maximum
814%) and the average improvement in adjusted R? was 0.05
(maximum 0.37). In some cases, PB and DL account for the
bulk of the predictive power; for example, for alarmclock
the best adjusted R? for the (usually effective) PSet metric
increased from 0.45 to 0.78, an improvement of 75.1%.

We believe these results highlight the need to further im-
prove concurrency coverage metrics to provide better guidance
to testers and testing techniques. Ideally, a coverage metric
should perfectly capture the effectiveness of the testing pro-
cess, providing a highly accurate estimate of testing effective-
ness, upon which techniques for improving coverage can be
built. At a minimum, we would like concurrency coverage
metrics to be better predictors than PB and DL, as the most
effective set of parameters — much like the metrics explored
— varies unpredictably depending on program.

VI. CONCLUSION AND FUTURE WORK

In this work, we have evaluated the relationship between
eight concurrency coverage metrics and fault detection effec-
tiveness using nine concurrent programs drawn from previous
work in concurrency testing. We observed moderate correla-
tions between coverage and fault detection effectiveness (up
to 0.96), established via linear regression that each coverage
metric has a predictive value separate from test suite size,
and found statistically and practically significant increases in
fault detection effectiveness when using test suites reduced to
achieve maximum coverage relative to random test suites of
equal size. These results thus demonstrate that existing concur-
rent coverage metrics — in particular PSet — can be effective
metrics for evaluating concurrency testing effectiveness, and
thus provide key evidence supporting the construction of
techniques based on these metrics.

Nonetheless, while each metric explored was useful in some
contexts, the predictive and test case generation value of each
metric often varied considerably from program to program,
indicating that more work in this area is required. We hope to
explore methods for improving these metrics in the future and
encourage others to do the same.
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