
Combinatorial Interaction Testing with CITLAB

Andrea Calvagna
Dip. di Matematica e Informatica

University of Catania - Italy
Email: calvagna@cs.unict.it

Angelo Gargantini
Dip. di Ingegneria

University of Bergamo - Italy
Email: angelo.gargantini@unibg.it

Paolo Vavassori
Dip. di Ingegneria

University of Bergamo - Italy
Email: paolo.vavassori@unibg.it

Abstract—In this paper the CITLAB tool for Combinatorial
Interaction Testing is presented. The tool allows importing/-
exporting models of combinatorial problems from/to different
application domains, by means of a common interchange syntax
notation and a corresponding interoperable semantic meta-
model. Moreover, the tool is a framework allowing embedding
and transparent invocation of multiple, different implementations
of combinatorial algorithms. CITLAB has been designed tightly
integrated with the Eclipse IDE framework, by means of its
plug-in extension mechanism. It is intended to easy the spread of
CIT testing both in industrial practice and in academic research,
by allowing users and researchers to apply multiple test suite
generation algorithms, each with its peculiarities, on the same
problem models, and let them compare the results in order to
select the one that best fits their needs, while alleviating from
the pain of knowing all the different details and notations of the
underlying CIT tools.

Index Terms—Combinatorial testing model, domain-specific
language, Eclipse, XTEXT.

I. INTRODUCTION

Combinatorial interaction testing (CIT) has been an active
area of research for many years. In a recent survey [12] Nie
and Leung count more than 12 research groups that actively
work on CIT area and many other groups and tools are missing
in the count. In a previous survey, Grindal et al. [10] presented
16 different combination strategies, covering more than 40
papers. There are several web sites listing tools and approaches
(like [13]), and publishing benchmarks and evaluations of
tools and algorithms (like [7]). Being each of these tools the
outcome of independent research and development processes,
every one has its own user interface (some graphical, other
textual), its own syntax, its own algorithms, and its own
benchmarks (if any). Despite they all are designed to tackle
the very same tasks, as a matter of fact,

there is not a common abstract meta-model to represent
combinatorial problems with a precise semantics for parame-
ters, values, their constraints, and related concepts, nor exists a
common modeling syntax or model exchange format between
tools.

The lack of a common syntax and semantic framework for
CIT makes harder the research in this area w.r.t. the following
issues:

• The comparison among tools and approaches, an activity
very useful and used in research literature, is instead
quite unreliable since every user must remodel in its own
language and tool the case studies taken from another tool

or from the literature, with possible errors and misun-
derstandings. If the researchers could exchange examples
using such common syntax (like XML, or textual, or
graphical), the comparison of techniques and approaches
would be facilitated and more technically sound.

• While conceptually modeling an abstract CIT task, a
research group may use a term with a meaning, while
other groups use the same term with a slightly different
meaning (for example seed or partial test).

• Limited assistance in writing the models: very often
generation tools do not offer any editing capabilities
(only a grammar and a parser) and are rarely integrated
in any IDE for programming or design. Very often the
formats accepted by algorithms and tools are quite hard
to understand1.

• All the CIT generation tools are strongly decoupled
making difficult to switch the use from one tool to another
and also difficult the reuse of information (e.g. custom
settings) and data already inserted and available in one
tool.

This situation is also an obstacle for practitioners from fully
advantage from such many different CIT generation techniques
available, other than slowing down the research in this area.

Sometimes, designers may prefer a tool or a technique
because it provides an usable graphical or a web interface
instead of searching for the best tool that suites their needs.
For instance, one the most used tools ACTS [1], has a very
nice graphical interface regardless the fact that the generation
methods it supports (IPOG [11] and variants) may be not
suitable for the design of particular combinatorial test suites
since, for instance, its support for constraints is not as powerful
as in others.

Similar difficulties rise for researchers willing to devise a
new CIT technique and compare it with existing ones. In order
to experiment a new test generation algorithm, a researcher
should define a proper grammar and a parser, develop the
libraries to manipulate the model data, and translate the bench-
marks found in literature into the newly defined language.
These activities can be error-prone and quite time consuming
without adding any actual contribution to the real problem of
generating “better” combinatorial tests.

1Consider for instance one of the best tools for Constrained CIT, CASA
[8]. CASA accepts only constraints written as a conjunction of disjunctions
over the symbols (CNF), in a quite difficult format to write for humans.

In this paper, we present CITLAB, a laboratory for com-
binatorial testing that tries to address all the aforementioned
issues. CITLAB features:

• A rich abstract language with a precise formal semantics
for specifying combinatorial problems.

• A concrete syntax with a well-defined grammar that
allows practitioners to write models and researchers to
share examples and benchmarks written in a "common"
notation. Besides the concrete syntax given in XTEXT,
CITLAB provides also an ANTLR grammar and an XMI
interchange format for CIT models.

• A framework based on the Eclipse Modeling Framework
(EMF) which provides tools and run-time support to
(automatically) produce a set of Java classes for com-
binatorial models, along with a set of adapter classes and
utility libraries that enable manipulating combinatorial
problems in Java application using simple APIs. This
allows developers to access combinatorial models inside
their programs and tools.

• An editor integrated in the Eclipse IDE for editing com-
binatorial problems. The editor provides users with all the
expected features in a modern programming environment
like syntax highlighting, code completion, run-time error
checking, quick fixes, and outline view.

• A simple EMF meta-model also for combinatorial test
suites.

• A rich collection of Java utility classes and methods,
specifically developed for combinatorial problems in CIT-
LAB, which can be reused for manipulating combinatorial
models and test suites. For instance, CITLAB provides
utility methods for generating all the test requirements for
a combinatorial coverage of strength t, a set of methods
to check if a test suite satisfies all the requirements, and
a set of methods for semantic validation of models and
test suites.

• A framework for introducing new test generation algo-
rithms which can be added to CITLAB as plugins. This
allows researchers to develop new generation techniques
and plug them in the framework without the burden of
defining a grammar, a parser, an abstract syntax tree
visitor, and so on.

• A framework for introducing code translators for import-
ing and exporting models and tests to other notations
based on Model to Text (M2T) or Model to Model
(M2M) transformations. This could facilitate the use of
CITLAB language as language for exchanging models
and benchmarks.

II. USING XTEXT TO DEFINE CITLAB FRAMEWORK

The core of CITLAB is its language for defining combina-
torial models. The development of a dedicated DSL (Domain
Specific Language) and its corresponding editor, using the
Xtext tool within the Eclipse framework, passed through the
following five stages:

1) Grammar definition.
2) Configuration of the artifacts generator.

Figure 1. A screenshot of the editor

3) Generation of the EMF/ecore metamodel for the lan-
guage.

4) Generation of the DSL APIs and of the editor plugin.
5) Implementation of the scope and the validation rules.
6) Refinement of the text formatting and the content pro-

posal provider.
At the end of this process, CITLAB has a grammar, a

metamodel given in terms of EMF classes and relationships,
a Java API useful to access programmatically combinatorial
models and test suites, and a fully eclipse integrated editor.

The use of Xtext in the development process of CitL DSL
eases its integration in the ui IDE context. User experience
can benefit from the default functionality for code completion,
syntax highlighting, syntactic validation, linking errors, the
outline view and find references.

a) Syntax highlighting: it gives an immediate feedback
about the use of keywords in different colors and fonts accord-
ing to the category of terms. It is also useful to immediately
detect errors to the user of the errors and typos.

b) Autocompletion: it helps the user to speedup the code
editing by providing suggestions how to complete words and
terms.

c) Outline view: it gives a graphical view of the structure
of the combinatorial model.

d) Model Validation: it finds semantic errors at typing
time.

e) Ide integration: CITLAB is integrated in eclipse since
for the UI part (dialogs, ...) it uses the JFace/SWT eclipse API.

f) New project wizard: An inexperience user can start
his/he modeling activity from a template of a simple combi-
natorial model.

III. USING CITLAB TO MODEL COMBINATORIAL PROBLEM

For details about the CITLAB language, see [9]. By means
of a small example of a cell phone, we will explain in this
section how to define a combinatorial model. A screenshot of
the editor is given in Fig. 1. A CITLAB model consists in six

parts: Definitions, Types, Parameters, Constraints, Seeds, and
TestGoals.

In the Definitions section, the user can define numerical
constants. For instance, the following statement introduces a
constant with its value. Constants can be used in constraints,
test goals, and seeds.

Number threshold = 27;

In the Parameters section the designer specifies the pa-
rameters (inputs) of the system. CITLAB language forces the
designer to name parameters and to specify their types by
listing all the values in their domain. Four kinds of parameter
type are introduced:

• Enumerative for parameters that can take a value in a
set of symbolic constants. Enumerative parameters are
declared in the following way. For instance if the display
of the cell phone can be colored (with 16 or 8 millions
colors) or black and white, we introduce the following
parameter.

Enumerative display {16MC 8MC BW};

• Boolean for parameters that can be either true or false,
which can be declared as follows. For instance if the
phone can have an email viewer, the designer can intro-
duce the following parameter.

Boolean emailViewer;

• Numerical values in a range for parameters that take any
value in an integer range. The user can also specify an
integer step. For instance, if the phone has a number of
lines between 10 and 30, but the designer want to test
only this parameter every 5 values, he/she can write:

Range textLines [10 .. 30] step 5;

Note that the step can be omitted and in that case its
value is 1, otherwise it must be a divisor of the difference
between the two extreme values.

• A list of Numbers for parameters that take any value in
a set of integers. It is like an enumerative, but mathemat-
ical comparisons and operations are allowed over these
parameters.

Numbers year {2012 2013};

Types can be implicitly introduced directly when declaring
a parameter belonging to an anonymous type or they can be
defined with their name in the Types section to be used in
parameters declaration. For instance, a type can be defined
as follows and this allows two parameters to share the same
domain.

Types:
EnumerativeType

cameraType { 2MP 1MP NOC};
end
Parameters:

Enumerative rearCamera : cameraType;
Enumerative frontCamera : cameraType;

end

A. Constraints

In most configurable systems, constraints or dependencies
exist between parameters. Constraints may be introduced for
several reasons, for example, to model inconsistencies between
certain hardware components, limitations of the possible sys-
tem configurations, or simply design choices [6]. Constraints
were first described as being important to combinatorial testing
in [5] and were introduced in the AETG system. In our ap-
proach, tests that do not satisfy the constraints are considered
invalid and do not need to be produced. For this reason, the
presence of constraints may reduce the number of tests of the
final test suite (but it may also increase it [6]). However, the
generation of tests considering constraints is generally more
challenging than the generation without them, and several test
generation techniques still do not support constraints, at least
not in a direct manner.

In CITLAB, we adopt the language of propositional logic
with equality and arithmetic to express constraints. To be
more precise, we use propositional calculus, enriched by the
arithmetic over the integers and enumerative symbols. As
operators, we admit the use of equality and inequality for any
variable, the usual Boolean operators for Boolean terms, and
the relational and arithmetic operators for numeric terms.

In the CITLAB language all the constraints must be listed
in a section called Constraints (and included between two #
symbols). For instance, assume that the user wants to model
the following two constraints

• if the display is black and white, then the phone cannot
have any camera

• if the phone has a email viewer and front camera, the
display is colored and the lines greater than the given
threshold (defined as constant).

The following declarations can be added in the model in
the Constraints section:

Constraints:

display==display.BW => rearCamera==cameraType.NOC

emailViewer==true or frontCamera!=cameraType.NOC =>
display!=display.BW and textLines>=threshold #

end

We assume that all the constraints must be satisfied by any
test case, i.e., the constraints are conjoint with an implicit
∧ operator. For a precise semantics of constraints and some
formal definitions, see [9].

B. Seeds

The testers can also force the inclusion of their favorite test
cases by specifying them as seed tests [2]. The seed tests must
be included in the generated test set without modification.
Since seeds represent tests the user has already executed or
will execute in any case, the generation algorithm should
take advantage of the seeds and avoid redundant coverage of
interactions.

In CITLAB, seeds can be added in the Seeds section and
can be expressed as a sequence of assignments as follows. For

instance, the user wants to force the inclusion of the following
combinatorial test, by writing in the model:
Seeds:
emailViewer=false , display=display.16MC,

frontCamera=cameraType.NOC, year = 2012,
rearCamera=cameraType.2MP, textLines=30 #

end

C. Test Goals
CITLAB allows the tester to introduce extra testing require-

ments by means of test goals. They must be considered in
addition to the desired t-wise coverage. In fact, the user may
be interested to test some particular critical situations or input
combinations, for instance simple incomplete combinations,
or more generic relations than simple combinations among
parameters. For instance, if the user wants to be sure that the
test suite contains at least a test in which at least one camera
is missing and the display has at least threshold lines, he can
write the following test goal:
(rearCamera == cameraType.NOC or frontCamera ==

cameraType.NOC) and textLines >= threshold #

Note that most tools do not support test goals and seeds,
however we decided to include them in the language because
one of the CITLAB aims is to provide a standard common
language capable to represent a rich variety of combinatorial
testing concepts.

D. Model validation
Besides editing capabilities (like syntax highlighting, auto-

completion, and so on), XTEXT provides several levels of
validation for models of the defined language. The first level
regards the syntactical validation done by the lexer and the
parser, a cross link validation done by a linker and a concrete
syntax validation done by the serializer that validates all
constraints that are implied by a grammar. Besides these first
three kinds of validation that are automatically introduced by
XTEXT, the user can specify additional constraints for the
model by providing generator fragments. We have introduced
the validation fragments for the following rules:

1) In each expression of kind x = y, where x is a parameter
and y is a value, y must belong to the domain of x.

2) A seed must assign a (valid) value to each parameter.
3) No seed can violate any constraint.

The validation of the last requirement (3), requires the evalua-
tion of constraints. This is performed by two classes, available
in the APIs:

• Logic Evaluator: evaluates Boolean expression starting
from the value of its operands.

• Arithmetic Evaluator: computes the integer value of a
numeric expression.

The validation is performed run-time while the user types
the model. If the validator finds an error in the model it
generates an error message. The nature of the error is indicated
in the error-log view of eclipse and the point in which the error
occurs is marked in the editor. Fig. 2 shows how the editor
checks the correctness of a seed.

Figure 2. Validation of seeds

IV. CITLAB AS EXTENSIBLE FRAMEWORK

Besides the definition of a language for combinatorial
problems, together with its editor, meta-model, and Java API to
manipulate combinatorial models, a further goal of CITLAB is
to introduce a framework for the definition and implementation
of actual test generators and a set of exporters/importers to and
from other languages to foster tools interoperability. In order
to ease the development and deployment of such components
that can extend its capabilities, CITLAB relies on the extension
techniques as defined by the Eclipse framework. In Eclipse, a
framework or platform can accept new contributions as plugins
by defining extension points. External contributors can add to
the framework new plugins by implementing extensions. One
can think of an extension point as a port – an entry point
for other plugins to offer services. An extension is a plug that
connects to the right port. An extension point defines a contract
between the platform and the service provider introduced as
plugin. The extension implementation is the actual service
which will be added to the platform by using the plugin
mechanism of Eclipse.

There are several benefits from this architecture. New plug-
ins can be dynamically added and removed from the platform
without recompiling them. Third-party tools can be easily
added to the platform by registering them as extensions. A
plugin includes some descriptive information and the platform
extension point can decide how to use it. For instance, a plugin
can declare to support a feature and the platform can decide
if it is worth loading the extension or not. The development
of a plugin is strongly decoupled with the development of the
platform, making easy for third-parties to contribute to the
framework.

An extension point can be used to introduce a Java interface
which must be implemented by its extensions. The plugin that
define the extensions must define a class implementing the
required interface in order to extend the platform with new
functionalities and register its extension into the platform. The
platform will become aware of new functionalities and will be
able to create and call instances of that class when needed.
CITLAB introduces four extension points listed in Listing 1.

These four points are mapped respectively to the following
functions: the generation of a test suite with some embedded
CIT algorithm; saving the computed test suite in some persis-
tent (file) format, and importing/exporting a CIT model, with
constraints, from/to some other notation.

CITLAB introduces the four extension points together with
the interfaces and the required methods listed in Tab. I.

A. CITLAB Architecture

CITLAB itself is a set of eclipse plugins. The overall
architecture with the main components is shown in Fig. 3.

Listing 1. CitLab extension points
< e x t e n s i o n−p o i n t i d =" i m p o r t e r s "

name=" I m p o r t e r s "
schema=" schema / i m p o r t e r s . exsd " / >

< e x t e n s i o n−p o i n t i d =" e x p o r t e r s "
name=" E x p o r t e r s "
schema=" schema / e x p o r t e r s . exsd " / >

< e x t e n s i o n−p o i n t i d =" g e n e r a t o r s "
name=" G e n e r a t o r s "
schema=" schema / g e n e r a t o r s . exsd " / >

< e x t e n s i o n−p o i n t i d =" t e s t s u i t e e x p o r t e r s "
name=" T e s t S u i t e E x p o r t e r s "
schema=" schema / t e s t s u i t e e x p o r t e r s . exsd " / >

Extension Point Attribute and interfaces required

TestGenerator ICitLabTestGenerator
TestSuite generateTestsAndInfo(CitModel model,
boolean ignoreConstraints, boolean ignoreSeeds,
boolean ignoreTestGoals, int nWise,
String generatorName);
String Name
String Algorithm
boolean supportConstraints
boolean supportSeeds
boolean supportTestGoals

Exporter ICitLabExporter
void convertModel(CitModel citModel, Boolean
constraintUse, int nWise);
String Name
String OtherToolLanguage

Importer ICitLabImporter
CitModel importModel (String path)
throws NotImportableException;
String Name
String OtherToolLanguage
String FileExtension

TestSuiteExporter ICitLabTestSuiteExporter
void generateOutput(TestSuite input,
String FileName);
String ExporterName
String FileExtension

Table I
EXTENSION POINTS DEFINED BY CITLAB

citlab.model

org.eclipse.uixtext

citlab.core

citlab.model.ui

emf/ecore

citlab.core.ui

citlab.testsuite

citlab.generator.*

citlab.importer.*

citlab.tsexporter.*

citlab.externaltool.*

org.eclipse.core.runtime

Figure 3. CITLAB Architecture

The project citlab.model contains the definition of the language
and the Xtext utilities. The companion project citlab.model.ui
contains the user interface for the language. The project
citlab.testsuite introduces a simple meta-model, based on EMF,
for tests and test suites. The project citlab.core introduces the
extension points. Every plugin can extend the extension points
defined in this component. The core plugin introduces also
some APIs that can be used in order to implement specific
generators. For instance, the following method:
Iterator<List<Pair<Parameter, String>>>

getTuples(CitModel m, int k)

can be used to list all the k-tuples for a model m, where
each tuple is a List of pairs (Parameter,String). The
utilities include methods for converting expression to CNF
and checking if a test satisfies the constraints.

We use the following conventions for plugin names. We
use citlab.importer.* projects to define importer components,
which are able to translate combinatorial problems into the
CITLAB language (for instance, we have defined an importer
from feature models in [4]), while packages citlab.generator.*
define algorithms and techniques for test generation (some are
presented in the next section). The packages citlab.tsexporter.*
define exporters for test suites (up to now CITLAB provides
the tester with two pre-built exporters to Excel and to CSV
format). We decided to define in citlab.externaltool.* generators
which use external tools for test generation. They define an
exporter from CITLAB combinatorial model to the notation
of an external tool and then use that tool to perform the test
generation.

All the code for CITLAB is available under the Eclipse
Public License2.

V. USING CITLAB FOR TEST GENERATION

CITLAB currently supports the following test generators,
each defined as generator plugin.

• AETG is a plugin developed by us following the pseudo
code for the greed algorithm of AETG published in [5].

• IPO is a plugin developed by us following the pseudo
code for IPO published in [11]

2All the source code is available at http://code.google.com/a/eclipselabs.
org/p/citlab/.

http://code.google.com/a/eclipselabs.org/p/citlab/
http://code.google.com/a/eclipselabs.org/p/citlab/

• Random is a simple random algorithm that adds new
randomly built tests until all the n-wise combinations are
covered. It avoids duplicates. It is useful as example for
developing new plugins and for comparison with other
new generation algorithms since it may represent the
worst case in terms of test suite size in test generation.

• ACTS is ab external test generator tool developed by the
NIST [1].

• CASA is an external tool for test generation based on
simulated annealing [8].

• ATGT_SMT is an external tool combining heuristics and
SMT solving [3].

ACTS IPOG ACTS IPOF Cover CASA
Model Name size time size time size time

GCC 25 0,56 24 0,44 22 3962
SPIN SIMULATOR 23 0,04 23 0,02 19 8,98
Dell Laptops 2009 36 3,60 38 3.92 51 70.9
Mobile Phone 12 0,01 10 0,01 9 0,76

Table II
GENERATOR COMPARISON (PAIRWISE COVERAGE TIME IN SECONDS)

CITLAB is able to query the eclipse installation and gather
all the generator plugins available. To generate a test suite, the
user simply selects the model and a test generator from those
registered as plugin in CITLAB, and starts the job. When the
test generator finishes, CITLAB shows the resulting test suite.
Fig. IV-A shows a test suite. The user can export the test suite
as excel or text file.

Note that test goals and seeds are not supported by all the
generators. For this reason, before starting the test generation,
CITLAB generation process ignores them if the chosen gen-
erator does not support. On the other hand, if the generator
supports such construct, CITLAB permits the user to ask the
test generation to consider them.

VI. USING CITLAB FOR RESEARCH PURPOSES

Using a common language and framework for test gener-
ators, allows researchers to have a set of benchmarks and
to compare several tools in a fair and objective way. We
have defined a rather big set of benchmarks taken from the
literature and freely available now on CITLAB site. Researcher
can download them and test inside CITLAB their algorithms.
For instance, we have run some preliminary experiments using
several examples and obtained the results shown in Table II3.

REFERENCES

[1] Advanced Combinatorial Testing System (ACTS).
http://csrc.nist.gov/groups/SNS/acts/.

[2] Renée C. Bryce and Charles J. Colbourn. Prioritized interaction testing
for pair-wise coverage with seeding and constraints. Information &
Software Technology, 48(10):960–970, 2006.

[3] Andrea Calvagna and Angelo Gargantini. Combining satisfiability
solving and heuristics to constrained combinatorial interaction testing.
In Catherine Dubois, editor, TAP, volume 5668 of Lecture Notes in
Computer Science, pages 27–42. Springer, 2009.

3Because all the models in the table present constraints, their testsuites have
been generated using algorithms that support constraints.

[4] Andrea Calvagna, Angelo Gargantini, and Paolo Vavassori. Combinato-
rial testing for feature models using citlab. In International Workshop
on Combinatorial Testing (IWCT) 2013. IEEE, 2013.

[5] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton. The AETG
system: An approach to testing based on combinatorial design. IEEE
Transactions On Software Engineering, 23(7):437–444, 1997.

[6] Myra B. Cohen, Matthew B. Dwyer, and Jiangfan Shi. Interaction testing
of highly-configurable systems in the presence of constraints. In ISSTA
International symposium on Software testing and analysis, pages 129–
139, New York, NY, USA, 2007. ACM Press.

[7] Charlie Colbourn. Covering array tables
http://www.public.asu.edu/ ccolbou/src/tabby/catable.html.

[8] Covering Arrays by Simulated Annealing (CASA).
http://cse.unl.edu/citportal/tools/casa/.

[9] Angelo Gargantini and Paolo Vavassori. Citlab: a laboratory for
combinatorial interaction testing. In Workshop on Combinatorial Testing
(CT) In conjunction with International Conference on Software Testing
(ICST 2012, April 17-21), pages 559–568, Montreal, Canada, 2012.
IEEE Computer Society.

[10] Mats Grindal, Jeff Offutt, and Sten F. Andler. Combination testing
strategies: a survey. Softw. Test, Verif. Reliab, 15(3):167–199, 2005.

[11] Yu Lei, Raghu Kacker, D. Richard Kuhn, Vadim Okun, and James
Lawrence. IPOG/IPOG-D: efficient test generation for multi-way combi-
natorial testing. Software Testing, Verification and Reliability, 18(3):125–
148, September 2008.

[12] Changhai Nie and Hareton Leung. A survey of combinatorial testing.
ACM Comput. Surv, 43(2):11, 2011.

[13] Pairwise web site. http://www.pairwise.org/.

APPENDIX

In this Appendix we describe the plan for the live demon-
stration.

A. Install CITLAB

We will show how to install CITLAB from the
update site http://svn.codespot.com/a/eclipselabs.org/citlab/
CitLabPlugins/.

B. Using CITLAB to model combinatorial problems

We will demonstrate how to model a combinatorial inter-
action problem, by creating a CITLAB model, using a case
study as example (for instance a cell phone). We will show:

1) How to define parameters of different kinds (Boolean,
enumerative, and integer range).

2) How to introduce types to reuse definitions of enumer-
ative parameters.

3) What is the meaning and possible use of constraints
and how to introduce them.

4) What is the meaning of seeds and how to introduce
them.

5) What is the meaning of test goals and how to introduce
them.

C. Using CITLAB for tests generation

We will show how to generate tests suites using several test
generators (like ACTS, IPO, etc.). We will show how to export
test suite to excel files.

D. Extending CITLAB

We will show how to download the CITLAB source (con-
sisting of several Eclipse projects), how to organize the
workspace, and to build the entire system. We will show how
the designer can introduce a new test generation algorithm by

http://svn.codespot.com/a/eclipselabs.org/citlab/CitLabPlugins/
http://svn.codespot.com/a/eclipselabs.org/citlab/CitLabPlugins/

extending CITLAB with a small test generation technique (for
instance a random generator).

