
AVA: Supporting Debugging With Failure Interpretations

Fabrizio Pastore and Leonardo Mariani
University of Milano Bicocca

Milan, Italy
{pastore,mariani}@disco.unimib.it

Abstract—Several debugging techniques can be used to
automatically identify the code fragments or the runtime events
likely responsible of a failure. These techniques are useful, but
can help reducing the debugging effort only to a given extent.
In fact, even when these techniques are successful, software
developers still have to invest a lot of effort in understanding
if and why something detected as suspicious is really wrong.

In this paper we present the tool implementing the AVA
technique. AVA, compared to other approaches dedicated to
automatic debugging, in addition to automatically identifying
the events likely responsible of a failure, generates an explana-
tion about why these events have been considered suspicious.
This explanation can be used by developers to quickly discard
imprecise outputs and more effectively work on the relevant
anomalies.
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I. INTRODUCTION

Debugging is a difficult and time consuming task that sig-
nificantly affects the development cost of software projects.
A number of techniques have been investigated to semi-
automate and ease debugging. For instance, fault localization
techniques exploit the differences between the program
spectra of failing and successful executions to localize likely
faulty statements [1], [2]. Anomaly detection techniques
identify the suspicious events that have been produced in
a failed execution to capture the rationale of the problem
under investigation [3]–[5].

Regardless the debugging aid that is used, the output of
these techniques still requires to be interpreted by software
developers before a fault can be fixed. In particular, the
developers must still understand if and why some selected
statements should be considered faulty and if and why some
selected events should be considered anomalous. Answering
these questions is extremely time consuming and the effort
necessary to produce these answers mitigates the benefit
provided by automatic debugging techniques.

To simplify answering these critical why questions, de-
bugging solutions should go in the direction of not only
identifying the suspicious items (e.g., statements, events,
etc.) but also decorating the identified items with information
explaining why a selected element should be considered as
suspicious. This description should be both easy to check, so
that the developer can quickly discard irrelevant items, and
easy to correlate with the failure under investigation, so that

the time necessary to debug the problem can be significantly
reduced.

In this paper we present AVA [6], a tool that implements
a technique that can automatically identify the suspicious
events produced by an execution and derive descriptions that
can explain why an event should be considered suspicious.
The set of suspicious events, together with the attached
explanations, provides the rationale of a failure, which can
be quickly validated, and then either confirmed or discarded
by the developers.

The paper is organized as follow. Section II overviews the
AVA technique. Section III describes the toolset implement-
ing the technique. Section IV presents a running example.
Section V summarizes the main empirical results that we
have obtained by applying AVA on multiple faults. Section
VI discusses related work and Section VII provides final
remarks.

II. AVA: AUTOMATED VIOLATION ANALYZER

AVA is a technique that, given a Finite State Automaton
(FSA) that describes the behavior expected for a software
program and a trace obtained by monitoring the same
program, identifies the anomalous events occurred in the
trace, and produces interpretations that explain why the
detected events should be considered anomalous [6].

The FSA could be part of the program specification or
could be automatically inferred by monitoring test case exe-
cution, as it usually happens in anomaly detection techniques
that compare passing and failing executions [3], [7].

AVA detects anomalous events using KLFA1, which is
a technique that can compare the events in a trace with an
FSA, identify the sub-traces accepted by sub-automata in the
FSA, and report the events that are not accepted by any sub-
automaton as anomalous events [8]. In contrast with simply
checking the trace using the model, the way KLFA behaves
has the advantage of detecting multiple suspicious events in
a single trace. In this way the noisy events that may occur at
the beginning of the trace do not hinder the detection of the
other anomalous events occurring successively in the trace.

KLFA implements other functionalities that are relevant in
the scope of log-file analysis, such as the ability of inferring

1KLFA acronym stands for KBehavior Log File Analysis, thus indicating
that KLFA analysis is based on the KBehavior incremental inference engine.



FSAs from logs recorded during valid executions, the ability
of handling parameters associated with events, and the
ability of inferring the syntax of a log file. The interested
reader can refer to [8] for more detailed information.

AVA produces an interpretation for each sequence of
anomalous events identified with KLFA. Even if AVA is
integrated with KLFA, it can be generally applied to create
interpretations from anomalous events detected by compar-
ing a trace with a FSA, regardless the use of KLFA. AVA
works by comparing the events that occur in the trace in the
neighborhood of the anomalous events, with the behavior
expected by the automaton in replacement of the anomalous
events. The behavior in the trace (which consists of a string)
and the behaviors accepted by the FSA (which consist of
multiple strings) are compared using a customized version of
the global alignment algorithm, which is a string alignment
algorithm [9]. The customization of the algorithm serves the
purpose of classifying the differences between the actual and
expected behaviors according to a set of known patterns.

The patterns supported by AVA are:
• Delete: which is the case of an event sequence that is

expected to occur according to the FSA, but does not
occur in the trace.

• Insert: which is the case of an event sequence that is
not expected to occur according to the FSA, but occurs
in the trace.

• Replace: which is the case of an event sequence that is
expected to occur according to the FSA, but is replaced
with a different event sequence in the trace.

• Early termination: which is the case of a trace that
terminates earlier than expected.

• Anticipation: which is the case of an event sequence
that occurs earlier than expected.

• Postponement: which is the case of an event sequence
that occurs after than expected.

• Swap: which is the case of two event sequences that
are replaced one with each other in the trace.

When the detected anomalous events are reported together
with their interpretations it is quite simple to understand if
and why a given event should be considered anomalous.
For instance, if an anomalous event is decorated with the
delete interpretation, it means that another event should have
occurred before the anomalous event. An AVA interpretation
is always annotated with contextual information, in the case
of a delete interpretation the contextual information includes
the name of the event that should have occurred before.
The information reported in an interpretation is usually
enough for developers to distinguish a true anomaly from a
false alarm. In this example, if the anomalous event would
not have been decorated with the delete interpretation the
developers would have to autonomously understand that the
event has been considered anomalous because something
occurring before the event is missing.

AVA assigns a likelihood value, in the range 0 . . . 1, to

each detected interpretation. The number represents how
well a sequence of anomalous events fits a given interpreta-
tion. For instance, if a sequence of anomalous events consists
of four new events that occur in a trace and one expected
event missing from the trace, the insertion of new events is
a possible interpretation for the detected anomaly, but since
it does not perfectly fit the case, it would be assigned with
a value smaller than 1.

The anomalies, together with the detected interpretations,
are ranked according to likelihood values, and inspected in
this order by developers.

III. TOOL SUPPORT
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Figure 1. Architecture of the AVA tool.

Figure 1 shows the architecture of the AVA tool, which
consists of two main components: the AVA-core library and
the AVA-Eclipse Eclipse plug-in.

The AVA-core library implements the AVA technique and
is meant to be used by researchers who want to integrate
AVA in other tools. In particular, AVA-core implements
an API that can be invoked from third-party programs to
generate interpretations from anomalies. The API can be
used to programmatically execute AVA and retrieve the
results of the analysis, namely the interpretations.

The AVA-Eclipse plug-in is meant to be used by software
engineers and system administrators to run daily debugging
activities. AVA-Eclipse implements a GUI, which can be
used to specify the log files that must be analyzed; multiple
editors, which can be used to elaborate the AVA output;
and multiple wizards, which assist developers with the
configuration of the tool.

Our current implementation of the AVA technique is na-
tively integrated with KLFA. KLFA is transparently executed
on log files corresponding to legal executions to infer a FSA
model that captures and generalizes the behavior in the log.
KLFA is also used to compare the inferred FSA with a
log file corresponding to a failed execution to automatically
identify anomalous sequences of events. Thus, the typical
input of our tool consists of a log file with multiple legal
execution and a log file with a failed execution, and the
output consists of a set of anomalous events with the
corresponding interpretations.

Our tool can be easily used to analyze many different
logging formats. When the format of the log file is unknown



Figure 2. The AVA Anomaly Interpretations Editor.

or a specification is not available, users can rely upon the
KLFA capability of automatically recognizing the structure
of a log file. On the contrary, if the format is known and
can be expressed using regular expressions, AVA can exploit
such a specification to extract the relevant information from
the entries in the log files.

AVA-Eclipse processes the anomalies detected with KLFA
using the AVA-core API. The resulting interpretations are
saved in the Eclipse workspace to be later inspected by
software developers. AVA-Eclipse provides an editor that
visualizes the interpretations produced by AVA.

Figure 2 shows the Interpretations Editor. For each
interpretation, the Interpretations Editor shows: the score
associated to the given interpretation, the range of lines in
the log file that originated the anomaly corresponding to the
interpretation, the name of the interpretation, the component
affected by the anomaly (the name of the component is
reported only if this information is included in the log file,
otherwise ANY is shown in the column), a tag with the eval-
uation of the usefulness of the interpretation (assigned by
the end-user), the list of inserted events (i.e., the unexpected
events that occurred in the trace), deleted events (i.e., the
expected events that did not occur in the trace), replaced
events (i.e., the expected events that were replaced with
others in the trace), replacing events (i.e., the events that
occurred in the trace instead of some others). Depending
on the interpretation only a subset of the columns inserted,
deleted, replaced and replacing might be filled with some
value.

For a same anomaly, AVA can generate multiple in-
terpretations. This could happen because there could be
multiple ways of explaining the reason of an anomalous
event. These ways could consist of a same interpretation
referring to different subsets of events. To keep the output
manageable, when a same type of interpretation occurs
multiple times for a same sequence of anomalous events, the
Interpretations Editor shows only the one with the highest
score, assuming that the others represent a less effective way
of explaining the same case. Different interpretations are
ordered according to their score.

For example, Figure 2 shows that for the anomaly oc-
curring at line 10 (see column lines) all the four basic

interpretations could apply (insert, delete, replacement, and
swap), but the one with the highest score is insert.

Both AVA-core and AVA-Eclipse are available for down-
load at the following URL: http://www.lta.disco.unimib.it/
tools/ava/.

IV. DEBUGGING WITH AVA

In this section we describe the typical flow of activities
executed by developers when using AVA to debug programs.
The basic flow, which is shown in Figure 3, consists of three
sequential activities: collect logs, setup the analysis, inspect
results. We present these activities referring to the debugging
of a real fault reported in Tomcat version 6.04.
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Figure 3. The AVA debugging methodology.

The fault in Tomcat version 6.04 prevents the ELResolver
web application to be automatically started during the boot-
ing of the system. In particular, the web application correctly
starts just after the deployment, but does not start anymore
when Tomcat is succesively rebooted [10].

To debug a fault with AVA, software developers need
to collect logs recorded during multiple passing executions
and a failed execution. In this case, we collected correct
logs from two executions: starting Tomcat when no web
application has been deployed and starting Tomcat with few
applications deployed. We collected the log with the failure
by restarting Tomcat after having deployed the ELResolver
web application.

Developers setup the analysis by using the AVA log
analysis wizard to create a new log analysis project in
the Eclipse workspace. The wizard creates a new project
containing a configuration file, analysis.alfa, and the folders



logs/correct and logs/toAnalyze. Developers then simply
copy the logs belonging to passing and failed executions
in the appropriate folders (in the running example it is
enough to copy the two correct logs and the log with the
failure in the appropriate folders), and then start the AVA
analysis through a contextual menu. AVA runs the analysis
in the background and automatically opens the editor with
the interpretations when the analysis finishes.

Figure 2 shows the editor with the results generated for the
Tomcat case. The first two interpretations explain the failure
cause. The first interpretation, an insert, indicates that the
events Setting JspRuntimeContext and Setting
default factory were not expected in line 10. The
second interpretation, a delete, shows that in line 8 the same
events (and few others) are missing, which clearly indicate
that the default factory has been set too late.

Figure 4 shows an excerpt of the faulty log. The failure
occurs because the default factory object is set in line 11,
while the ELResolver application requests the factory before,
as shown by log line 9. Tomcat should have set the factory
in line 8 to run properly.

AVA users inspect the results downward from the top
of the list. Each item of the list can be expanded using
a detailed view, which shows the list of deleted, inserted,
replaced and replacing events, and also the result of the
alignment between the observed and expected events, with
the mismatching events highlighted. Figure 5 shows the
detailed view for the first result of the list. The highlighted
lines show that the alignment of the expected and observed
sequences lead to the identification of two unexpected
events.

Figure 4. The faulty log with the first anomaly of Figure 2 highlighted.

Figure 5. The detailed view for the first interpretation of Figure 2.

To properly understand the cause of a failure it is often

Figure 6. The passing log with the expected behavior highlighted.

necessary to inspect the place in the log where the anomaly
has been detected, to better understand the failure context.
To this end, the interpretations editor can be used to directly
access the logs with the failed and the passing runs. If the
log with the failed execution is opened, the editor highlights
the lines that produced the anomaly that originated the
selected interpretation (lines 10 and 11 in the case of the
first interpretation in Figure 2, see Figure 4). If the log
with passing executions is opened, the editor highlights
an example of expected behavior detected in one of the
passing runs which is close to the behavior that produced
the anomaly in the failed execution. Figure 6 shows a log
with passing executions and the expected behavior that is
close to the second interpretation in Figure 2. In practice,
the behavior in the passing log shows that the default factory
must be set before deploying the ElResolver.

To understand the cause of a failure developers may
need to inspect multiple anomalies. To help end users in
this process the editor supports tagging of anomalies (see
Figure 7). Four tags are supported: failure, which indicates
an interpretation that is a consequence of the observed
failure; failure cause, which indicates an interpretation that
points at the failure cause; wrong, which indicates a false
alarm; and maybe related, which indicates an interpretation
with an unclear role.

V. EMPIRICAL RESULTS

So far, the AVA tool has been used to analyze faults
experienced in enterprise applications [6]. Table I shows 5
case studies regarding Glassfish [11], which is a JavaEE
Application Server (about 2 millions lines of code), and
Tomcat (about 300.000 lines of code). The case studies
consist of known faults and typical configuration issues
affecting Glassfish and Tomcat. The logs processed by
AVA in such an empirical experience are the logs natively
produced by these systems.



Figure 7. Anomalies editor with the anomalies tagged by the developers.

ID Case study Failure Cause
G1 GlassFish

(v. 2-GA)
The Java Petstore cannot be correctly deployed
because of a configuration error [12]

G2 GlassFish
(v. 2-GA)

The Java Petstore cannot be correctly deployed
because of a configuration error [13]

G3 GlassFish
(v. 3-b01)

The server hangs because of a fault related to
classloading [14]

T1 Tomcat
(v. 6.0.4)

A web application cannot be started because of
a fault in the classloader [10]

T2 Tomcat
(v. 6.0.14)

Tomcat is not starting because the default port
is already in use [15]

Table I
CASE STUDIES

AVA demonstrated to be useful in all the considered
cases. Table II shows summary data about the results that
we obtained. Column ID indicates the case study reported
in Table I. Column Most useful interpretation shows the
position in the ranking returned by AVA of the interpretation
that better describes the problem under analysis. Assuming
that the tester is able to recognize the relevance of this
interpretation this number is usually also the overall number
of interpretations that must be evaluated by the tester before
discovering the failure cause. Column First true positive
indicates the position of the first interpretation related with
the fault, such as the logging of an exception caused by
the fault. Column False positives shows the number of
interpretations not related with the fault returned by AVA.

ID Most useful First true positive False positives
interpretation

G1 5 1 2
G2 16 1 4
G3 5 5 4
T1 1 1 0
T2 1 1 0

Table II
RESULTS WITH REAL FAULTS

Results show that AVA frequently returns true positives
on the highest positions of the list and that the number of
interpretations that must be inspected before discovering a
fault is usually small (five at most in four out of five case
studies). On the other hand the number of false positives
returned by AVA in this set of experiments has been limited:

four in the worst case. These results suggest that AVA could
be a valid debugging support, returning a focused list of
candidate failure causes (the anomalous events) decorated
with interpretations that ease their analysis.

VI. RELATED WORK

In this section we compare AVA with debugging tools
and techniques based on statistical approaches, model based
approaches, and self-repairing approaches.

A. Statistical Approaches

Several approaches use statistical indexes to identify the
instructions that are better correlated with failed executions.
Two notable examples are Tarantula [1] and Crosstab [16],
which use statement coverage, and Sober [2], which uses
conditions coverage. The output of these techniques is a list
of statements ranked according to the likelihood of being
faulty. These approaches are useful, but can be applied
only when the execution space is nicely covered (e.g., the
exception handling code not covered by passing executions
might mask faulty lines) and they identify suspicious lines
of codes without providing any additional information about
why these lines should be considered as suspicious; and this
is a known limitation [17]. On the contrary AVA provides
not only an indication of the suspicious events that could
be responsible of a failure, but also a description (i.e., the
interpretation) that facilitates understanding why an event
has been selected as suspicious.

B. Model Based Approaches

Model based approaches derive models that generalize
the characteristics of data recorded in passing executions,
and use these models to identify anomalous events occurred
in failing executions. Daikon [18] and DIDUCE [5] are
examples of engines that can derive likely program invari-
ants from data recorded during passing executions. These
invariants can be checked in failed executions to identify
anomalous data values.

Other approaches focus instead on the identification of
anomalous event sequences. Both ADABU [19] and GK-
Tail [20] for example derive FSAs that capture legal method
invocation sequences, and use these FSAs to identify anoma-
lous event sequences.

A few techniques address debugging combining multiple
types of models. For instance, BCT [3] and RADAR [7] use
both models on data values and operation sequences. Prob-
abilistic Program Dependency Graph combines bayesian
probabilities with structural information to capture anoma-
lies in the flow of the data [21].

Model based approaches identify the data and the events
that differ from the common behavior of the system under
analysis and the software developers are asked to understand
the failure causes from these misbehaviors. However, these



techniques, contrarily to AVA, do not assist software devel-
opers with additional information about why each anomalous
event should be considered as a misbehavior.

C. Self-Repairing approaches

Self-Repairing approaches automatically suggest fixes that
can repair programs. For example, PACHIKA can auto-
matically add the method calls necessary to satisfy a pre-
condition that has been violated by a given method [22].
Other approaches iteratively alter code fragments using
genetic algorithms until a fix is synthesized [23].

Self-repairing approaches are quite close to AVA. In fact a
synthesized fix could be considered as an explanation of the
failure, indeed a fix includes both the identification of the
problem and its solution. However, self-repairing approaches
and AVA work at different levels. The former has been
demonstrated to be useful to address small unit faults. The
latter has been applied to system logs and used to address
faults derived from the interactions of multiple components
of a system.

VII. CONCLUSION

In this paper we presented the tool that implements AVA,
a technique that can automatically identify the suspicious
events produced by a software execution and automatically
generate the descriptions that can explain why these events
should be considered suspicious.

AVA is available for download at http://www.lta.disco.
unimib.it/tools/ava/. Our AVA implementation includes both
an API, which can be invoked from third party tools, and an
Eclipse plug-in, which can be used by developers to analyze
failures traced in log files.
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