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Abstract—We present MUSE (MUtation-baSEd fault local-
ization technique), a new fault localization technique based
on mutation analysis. A key idea of MUSE is to identify a
faulty statement by utilizing different characteristics of two
groups of mutants–one that mutates a faulty statement and
the other that mutates a correct statement. We also propose a
new evaluation metric for fault localization techniques based
on information theory, called Locality Information Loss (LIL):
it can measure the aptitude of a localization technique for
automated fault repair systems as well as human debuggers.
The empirical evaluation using 14 faulty versions of the five
real-world programs shows that MUSE localizes a fault after
reviewing 7.4 statements on average, which is about 25 times
more precise than the state-of-the-art SBFL technique Op2.

I. INTRODUCTION

Fault Localization (FL) is an expensive phase in the whole

debugging activity because it usually takes human effort to

understand the complex internal logic of the Program Under

Test (PUT) and reason about the differences between passing

and failing test runs. As a result, automated fault localization

techniques have been widely studied.

One such technique is Spectrum-based Fault Localization

(SBFL). It uses program spectra, i.e. summarized profile of

test suite executions, to rank program statements according

to their predicted risk of containing the fault. A developer,

then, is to inspect PUT following the order of statements in

the given ranking, in the hope that the faulty statement will

be encountered near the top of the ranking [26].

SBFL has received much attention, with a heavy emphasis

on designing new risk evaluation formulas [3, 14, 27, 31],

but also on theoretical analysis of optimality and hierarchy

between formulas [19, 28, 29]. However, it has also been

criticized for their impractical accuracy and the unrealistic

usage model that is the linear inspection of the ranking [22].

This is partly due to the limitations in the spectra data that

SBFL techniques rely on. The program spectrum used by

these techniques is simply a combination of the control

flow of PUT and the results from test cases. Consequently,

all statements in the same basic block share the same

spectrum and, therefore, the same ranking. This often inflates

the number of statements needed to be inspected before

encountering the fault.

This paper presents a novel fault localization technique

called MUSE, MUtation-baSEd fault localization technique,

to overcome this problem. MUSE uses mutation analysis

to uniquely capture the relationship between individual pro-

gram statements and the observed failures. It is free from

the coercion of shared ranking from the block structure. The

basic mutation testing is defined as artificial injection of syn-

tactic faults [1]. However, we focus on what happens when

we mutate an already faulty program and, particularly, the

faulty program statement. Intuitively, since a faulty program

can be repaired by modifying faulty statements, mutating

(i.e., modifying) faulty statements will make more failed

test cases pass than mutating correct statements. In contrast,

mutating correct statements will make more passed test

cases fail than mutating faulty statements. This is because

mutating correct statements introduces new faulty statements

in addition to the existing faulty statements in a PUT. These

two observations form the basis of the design of our new

metric for fault localization (Section II-A).

We also propose a new evaluation metric for fault local-

ization techniques that is not tied to the ranking model. The

traditional evaluation metric in SBFL literature is the Ex-

pense metric, which is the percentage of program statements

the human developer needs to inspect before encountering

the faulty one [18]. However, recent work showed that the

Expense metric failed to account for the performance of

the automated program repair tool that used various SBFL

techniques to locate the fix: techniques proven to rank

the faulty statement higher than others actually performed

poorer when used in conjunction with a repair tool [23].

Our new evaluation metric, LIL (Locality Information

Loss), actually measures the loss of information between

the true locality of the fault and the predicted locality from

a localization technique, using information theory. It can be

applied to any fault localization technique (not just SBFL)

and to describe localization of any number of faults.

Using both the traditional Expense metric and the LIL, we

evaluate MUSE against 14 faulty versions of five real-world

programs. The results show that MUSE is, on average, about

25 times more accurate than Op2 [19], the current state-of-

the-art SBFL technique. In addition, MUSE ranks the faulty

statement at the top of the suspiciousness ranking for seven

out of 14 studied faults, and within the top three for another

three faults. In addition, the newly introduced LIL metric

also shows that MUSE can be highly accurate, as well as

confirming the observation made by Qi et al. [23].

The contribution of this paper is as follows:
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• The paper presents a novel fault localization technique

called MUSE: Mutation-based Fault Localization. It

utilizes mutation analysis to significantly improve the

precision of fault localization.

• The paper proposes a new evaluation metric for fault

localization techniques called Locality Information Loss
(LIL) based on information theory. It is flexible enough

to be applied to all types of fault localization techniques

and can be easily applied to multiple faults scenarios.

• The paper presents an empirical evaluation of MUSE

using five non-trivial real world programs. The results

show that MUSE improves upon the best known SBFL

technique by 25 times on average and ranks the faulty

statement within the top 3 suspicious statements for 10

out of 14 subject program versions.

This paper is organized as follows. Section II describes

the mutation-based fault localization technique to precisely

localize a fault. Section III explains the new evaluation

metric LIL based on information theory. Section IV shows

the experiment setup for the empirical evaluation of the

techniques on the subject programs. Section V explains

the experiment results regarding the research questions and

Section VI discusses the results. Section VII presents related

work and Section VIII finally concludes with future work.

II. MUTATION-BASED FAULT LOCALIZATION

A. Intuitions

Consider a faulty program P whose execution with some

test cases results in failures and we propose to mutate P . Let

mf be a mutant of P that mutates the faulty statement, and

mc one that mutates a correct statement. MUSE depends on

the following two conjectures.

Conjecture 1: test cases that used to fail on P are more
likely to pass on mf than on mc.
The first conjecture is based on the observation that mf can

only be one of the following three cases per test suite:

1) Equivalent/dormant mutant (i.e. mutants that syn-

tactically change the program but not semantically), in

which case the faulty statement remains faulty. Tests

that failed on P should still fail on mf .

2) Non-equivalent and faulty: while the new fault may

or may not be identical to the original fault, we expect

tests that have failed on P are still more likely to fail

on mf than to pass.

3) Non-equivalent and not faulty: in which case the

fault is fixed by the mutation (with respect to the test

suite concerned).

Note that mutating the faulty statement is more likely to

cause the tests that failed on P to pass on mf (case 3)

than on mc because a faulty program is usually fixed by

modifying (i.e., mutating) a faulty statement, not a correct

one. Therefore, the number of the failing test cases whose

results change to pass will be larger for mf than for mc.

In contrast, mutating correct statements is not likely to

make more test cases pass. Rather, we expect an opposite

effect, which is as follows:

Conjecture 2: test cases that used to pass on P are more
likely to fail on mc than on mf .
Similarly to the case of mf , the second conjecture is based

on an observation that mc can be one of the following cases

per test suite:

1) Equivalent/dormant mutant, in which case the state-

ment remains correct. Tests that passed with P should

still pass with mc.

2) Non-equivalent mutant: by definition, a non-

equivalent mutation on a correct statement introduces a

fault, which is the original premise of mutation testing.

This second conjecture is based on the observation that a

program is more easily broken by modifying (i.e., mutating)

a correct statement than by modifying a faulty statement

(case 2). Therefore, the number of the passing test cases

whose results change to fail will be greater for mc than mf .

To summarize, mutating a faulty statement is more likely

to cause more tests to pass than the average, whereas

mutating a correct statement is more likely to cause more

tests to fail than the average (the average case considers both

correct and faulty statements). These conjectures provide the

basis for our mutation-based fault localization technique.

B. Suspiciousness Metric of MUSE

Based on the conjectures, we now define the suspicious-

ness metric for MUSE, μ. For a statement s of P , let

fP (s) be the set of tests that covered s and failed on P ,

and pP (s) be the set of tests that covered s and passed

on P . With respect to a fixed set of mutation operators,

let mut(s) = {m1, . . .mk} be the set of all mutants of P
that mutates s with observed changes in test results (we use

only non-dormant mutants since dormant mutants do not

provide useful information to utilize the conjectures). After

each mutation mi ∈ mut(s), let fmi
and pmi

be the set

of failing and passing tests on mi respectively (fP and pP
defined on P similarly). Given a weight α, the metric μ is

defined as follows:

μ(s) =
1

|mut(s)|
∑

m∈mut(s)

(
|fP (s) ∩ pm|

|fP | − α · |pP (s) ∩ fm|
|pP | )

(1)

The first term,
|fP (s)∩pm|

|fP | , reflects the first conjecture: it

is the proportion of tests that failed on P but now pass

on a mutant m that mutates s over tests that failed on P .

Similarly, the second term,
|pP (s)∩fm|

|pP | , reflects the second

conjecture, being the proportion of tests that passed on P
but now fail on a mutant m that mutates s over tests that

passed on P . When averaged over mut(s), they become the

probability of test result change per mutant, from failing to

passing and vice versa respectively.
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Coverage of Test Cases (x, y) Jaccard Ochiai Op2

int max;
void setmax(int x, int y){

TC1
(3,1)

TC2
(5,-4)

TC3
(0,-4)

TC4
(0,7)

TC5
(-1,3)

|fP (s)| |pP (s)| Susp. Rank Susp. Rank Susp. Rank

s1: max = -x; //should be ‘max = x;’ • • • • • 2 3 0.40 5 0.63 5 1.25 5

s2: if(max < y){ • • • • • 2 3 0.40 5 0.63 5 1.25 5

s3: max = y; • • • • 2 2 0.50 2 0.71 2 1.50 2

s4: if(x*y<0) • • • • 2 2 0.50 2 0.71 2 1.50 2

s5: print(‘‘diff.sign’’);} • • 1 1 0.33 6 0.50 6 0.75 6

s6: print(max);} • • • • • 2 3 0.40 5 0.63 5 1.25 5

Test Results Fail Fail Pass Pass Pass

Test Result Changes MUSE

Statements Mutants TC1
(3,1)

TC2
(5,-4)

TC3
(0,-4)

TC4
(0,7)

TC5
(-1,3)

|fP (s)
∩
pm|

|pP (s)
∩
fm|

Suspiciousness Rank

s1: max = -x;
m1: max -= x-1; P→F 0 1

0.46 1
m2: max=x; F→P F→P 2 0

s2: if(max < y){
m3: if(!(max<y)){ P→F P→F P→F 0 3

0.09 2
m4: if(max==y){ F→P P→F 1 1

s3: max = y;
m5: max = -y; P→F P→F 0 2

-0.16 5
m6: max = y+1; P→F P→F 0 2

s4: if(x*y<0){
m7:if(!(x*y<0)) P→F P→F 0 2

-0.12 4
m8:if(x/y<0) P→F 0 1

s5: print(‘‘diff.sign’’);}
m9:return; P→F 0 1

-0.08 3
m10:; P→F 0 1

s6: print(max);}
m11:printf(0);} P→F P→F 0 2

-0.20 6
m12:;} P→F P→F P→F 0 3

Figure 1: Example of how MUSE localizes a fault compared with different fault localization techniques

Intuitively, the first term correlates to the probability of s
being the faulty statement (it increases the suspiciousness of

s if mutating s causes failing tests to pass, i.e. increase the

size of fP (s)∩pm), whereas the second term correlates to the

probability of s not being the faulty statement (it decreases

the suspiciousness of s if mutating s causes passing tests to

fail, i.e. increase the size of pP (s) ∩ fm).
Since it is more likely that a passing test case on P will

fail on m than a failing test case on P will pass on m (i.e.,

breaking a program is easier than correcting the program),

we expect the average of the second term to be different from

that of the first term. In order to balance the two terms, we

use the weight α to adjust the average values of the two

terms to be the same. Thus, when we subtract the weighted

second term from the first term as in Equation 1, we get

the baseline of value 0. For a faulty statement, the first term

is likely to be larger and the second term is likely to be

smaller than for a correct statement (we assign minimum

suspiciousness to the statements that do not have a mutant).
To adjust the average of both terms, the value of α should

be calculated as f2p
|mut(P )|·|fP | ·

|mut(P )|·|pP |
p2f . Variable f2p and

p2f denote the number of test result changes from failure to

pass and vice versa between before and after all mutants of

P , the set of which is mut(P ). Note that α can be calculated

without a priori knowledge of the faulty statement and we

can use other fault localization techniques if α=0.

C. A Working Example
Figure 1 presents an example of how MUSE localizes

a fault. The PUT is a function called setmax(), which

sets a global variable max (initialized to 0) with y if x <
y, or with x otherwise. Statement s1 contains a fault, as

it should be max=x. Let us assume that we have five test

cases (tc1 to tc5): the coverage of individual test cases are

marked with black bullets (•). TC1 and TC2 fail because

setmax() updates max with the smaller number, y. The

remaining test cases pass. Thus, |fP | = 2 and |pP | = 3.

First, MUSE generates mutants by mutating only one

statement at a time. For the sake of simplicity, here we

assume that MUSE generates only two mutants per state-

ment, resulting in a total of 12 mutants, {m1, . . . ,m12}
(listed under the “Mutants” column of Figure 1). Test cases

change their results after the mutation as noted in the middle

column. For example, TC1, which used to fail, now passes

on the two mutants, m2 and m4.

Based on the changed results of the test cases, MUSE

calculates α as f2p
|mut(P )|·|fP | ·

|mut(P )|·|pP |
p2f = 3

12·2 · 12·3
19 =

0.24 over 12 mutants (|mut(P )| = 12). Since there are three

changes from failure to pass, f2p = 3 (TC1 and TC2 on m2

and TC1 on m4) while |fP | = 2. Similarly, p2f = 19 (see

the changed results of TC3, TC4, and TC5), while |pP | = 3.

Using α = 0.24, MUSE calculates the suspiciousness of

s1 as 1
2 · {(0/2− 0.24 · 1/3) + (2/2− 0.24 · 0/3)} = 0.46,

where |fP (s1) ∩ pm1 | = 0 and |pP (s1) ∩ fm1 | = 1 for

m1 and |fP (s1) ∩ pm2 | = 2 and |pP (s1) ∩ fm2 | = 0 for

m2. MUSE calculates the suspiciousness scores of the other

five statements as 0.09, -0.16, -0.12, -0.08, and -0.20. The

suspiciousness of the s1 is the highest (i.e., at the top of the

ranking). In contrast, Jaccard [10], Ochiai [20], and Op2 [19]

choose s3 and s4 as the most suspicious statements, while

assigning the fifth rank to the actual faulty statement s1.

The example shows that MUSE can precisely locate certain

faults that the state-of-the-art SBFL techniques cannot.
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Figure 2: Framework of MUtation-baSEd fault localization technique (MUSE)

D. MUSE Framework

Figure 2 shows the framework of MUtation-baSEd fault

localization technique (MUSE). There are three major

stages: selection of statements to mutate, testing of the

mutants, and calculation of the suspiciousness scores.

Step 1: MUSE receives a target program P and a test

suite T . After executing T on P , MUSE selects the target

statements, i.e. the statements of P that are executed by at

least one failing test case in T . We focus on only these

statements as those not covered by any failing tests, can be

considered not faulty with respect to T .

Step 2: MUSE generates mutant versions of P by mutating

each of the statements selected at Step 1. MUSE may

generate multiple mutants from a single statement since one

statement may contain multiple mutation points [8]. MUSE

tests all generated mutants with T and records the results.

Step 3: MUSE compares the test results of T on P with the

test results of T on all mutants. This produces the weight

α, based on which MUSE calculates the suspiciousness of

the target statements of P .

III. LIL: LOCALITY INFORMATION LOSS

The output of fault localization techniques can be con-

sumed by either human developers or automated program re-

pair techniques. Expense [18] metric measures the portion of

program statements that need to be inspected by developers

until the localization of the fault. It has been widely adopted

as an evaluation metric for FL techniques [13, 19, 31] as well

as a theoretical framework that showed hierarchies between

SBFL techniques [28, 29]. However, the Expense metric has

been criticised for being unrealistic to be used by a human

developer directly [22].

In an attempt to evaluate the precision of SBFL tech-

niques, Qi et al. [23] compared SBFL techniques by mea-

suring the Number of Candidate Patches (NCP) generated

by GenProg [25] automated program repair tool, with the

given localization information.1 Automated program repair

techniques tend to bypass the ranking and directly use the

1Essentially this measures the number of fitness evaluation for the
Genetic Programming part of GenProg; hence the lower the NCP score
is, the more efficient GenProg becomes, and in turn the more effective the
given localization technique is.

suspiciousness scores of each statement as the probability

of mutating the statement (expecting that mutating a highly

suspicious statement is more likely to result in a potential

fix) [6, 25]. An interesting empirical observation by Qi

et al. [23] is that Jaccard [10] produced lower NCP than

Op2 [19], despite having been proven to always produce

a lower ranking for the faulty statement than Op2 [28].

This is due to the actual distribution of the suspiciousness

score: while Op2 produced higher ranking for the faulty

statement than Jaccard, it assigned almost equally high sus-

piciousness scores to some correct statements. On the other

hand, Jaccard assigned much lower suspiciousness scores

to correct statements, despite ranking the faulty statement

slightly lower than Op2.

This illustrates that evaluation and theoretical analysis

based on the linear ranking model is not applicable to

automated program repair techniques. LIL metric can mea-

sure the aptitude of FL techniques for automated repair

techniques as it measures the effectiveness of localization

in terms of information loss rather than the behavioural cost

of inspecting a ranking of statements. LIL metric essentially

captures the essence of the entropy-based formulation of

fault localization [32] in the form of an evaluation metric.

We propose a new evaluation metric that does not suffer

from this discrepancy between two consumption models.

Let S be the set of n statements of the Program Under

Test, {s1, . . . , sn}, sf , (1 ≤ f ≤ n) being the single faulty

statement. Without losing generality, we assume that output

of any fault localization technique τ can be normalized to [0,

1]. Now suppose that there exists an ideal fault localization

technique, L, that can always pinpoint sf as follows:

L(si) =
{

1 (si = sf )
ε (0 < ε� 1, si ∈ S, si �= sf )

(2)

Note that we can convert outputs of FL techniques that do

not use suspiciousness scores in a similar way: if a technique

τ simply reports a set C of m statements as candidate faulty

statements, we can set τ(si) =
1
m when si ∈ C and τ(si) =

ε when si ∈ S \ C.

We now cast the fault localization problem in a proba-

bilistic framework as in the previous work [32]. Since the

suspiciousness score of a statement is supposed to correlate
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to the likelihood of the statement containing the fault, we

convert the suspiciousness score given by an FL technique,

τ : S → [0, 1], into the probability of any member of S
containing the fault, Pτ (s), as follows:

Pτ (si) =
τ(si)∑n
i=1 τ(si)

, (1 ≤ i ≤ n) (3)

This converts suspiciousness scores given by any τ (includ-

ing L) into a probability distribution, Pτ . The metric we

propose is the Kullback-Leibler divergence [16] of Pτ from

PL, denoted as DKL(PL||Pτ ): it measures the information

loss that happens when using Pτ instead of PL and is

calculated as follows:

DKL(PL||Pτ ) =
∑
i

ln
PL(si)
Pτ (si)

PL(si) (4)

We call this as Locality Information Loss (LIL). Kullback-

Leibler divergence between two given probability distribu-

tion P and Q requires the following: both P and Q should

sum to 1, and Q(si) = 0 implies P (si) = 0. We satisfy the

former by the normalization in Equation 3 and the latter by

always substituting 0 with ε after normalizing τ 2 (because

we cannot guarantee the implication in our application).

When these properties are satisfied, DKL(PL||Pτ ) becomes

0 when PL and Pτ are identical. As with the Expense

metric, the lower the LIL value is the more accurate the

FL technique is. Based on Information Theory, LIL has the

following strengths compared to the Expense metric:

• Expressiveness: unlike the Expense metric that only

concerns the actual faulty statement, LIL also reflects

how well the suspiciousness of non-faulty statements

have been supressed by an FL technique. That is, LIL

can be used to explain the results of Qi et al. [23]

quantitatively.

• Flexibility: unlike the Expense metric that only con-

cerns a single faulty statement, LIL can handle multiple

locations of faults. For m faults (or for a fault that

consists of m different locations), the distribution PL
will simply show not one but m spikes, each with 1

m
as height.

• Applicability: Expense metric is tied to FL techniques

that produce rankings, whereas LIL can be applied to

any FL technique. If a technique assigns suspiciousness

scores to statements, it can be converted into Pτ ; if a

technique simply presents one or more statements as

candidate fault location, Pτ can be formulated to have

corresponding peaks.

IV. EXPERIMENTAL SETUP

We have designed the following three research questions

to evaluate the effectiveness of MUSE in terms of the

2ε should be smaller than the smallest normalized non-zero suspicious-
ness score by τ .

Expense metric [18] and the LIL metric (Section III):

RQ1. Foundation: How many test results change from
failure to pass and vice versa between before and after on a
mutant generated by mutating a faulty statement, compared
with a mutant generated by mutating a correct one?

RQ1 is to validate the conjectures in Section II-A, on

which MUSE depends. If these conjectures are valid (i.e.,

more failing test cases become passing after mutating the

faulty statement than a correct one, and more passing test

cases become failing after mutating a correct statement than

the faulty one), we can expect that MUSE will localize a

fault precisely.

RQ2. Precision: How precise is MUSE, compared with
Jaccard, Ochiai, and Op2 in terms of the % of executed
statements examined to localize a first fault?

Precision in terms of the % of program statements to be

examined is the traditional evaluation criteria for fault local-

ization techniques. RQ2 evaluates MUSE with the Expense

metric against the three widely studied SBFL techniques –

Jaccard, Ochiai, and Op2. Op2 [19] is proven to perform

well in Expense metric; Ochiai [20] performs closely to Op2,

while Jaccard [10] shows good performance when used with

automated program repair [23].

RQ3. Information Loss: How precise is MUSE, compared
with Jaccard, Ochiai, and Op2 in terms of the Locality
Information Loss (LIL) metric?

RQ3 evaluates the precision of MUSE with the LIL metric

introduced in Section III against the three SBFL techniques

(Jaccard, Ochiai, and Op2). The smaller the LIL value is,

the more precise the FL technique is.

To answer the research questions, we performed a se-

ries of experiments by applying Jaccard, Ochiai, Op2, and

MUSE to the 14 faulty versions in five real world C

programs. The following subsections describe the details of

the experiments.

A. Subject Programs

For the experiments, we used five non-trivial real-world

programs including flex version 2.4.7, grep version 2.2,

gzip version 1.1.2, sed version 1.18, and space, all of

which are from the SIR benchmark suite [4].

Table I describes the target programs including their

sizes in Lines of Code, the faulty versions used, and the

numbers of failing and passing test cases for each program

version/fault pair. From the base versions listed above, we

randomly selected three faulty versions from each program

except grep where a failure is detected only in two faulty

versions by the used test suite. grep v3 and space
v19 have multiple faults and the other versions have one

fault per each version. The fault ID of each version is

presented in Table I (For the rest of the paper, we refer to
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Table I: Subject programs, their sizes in lines of code (LOC), and
the number of failing and passing test cases

Subjects Ver. Fault Size |fP | |pP | Description

flex
v1 F_HD_1 12,423 2 40 Lexical Analyzer

v7 F_HD_7 12,423 1 41 Generator

v11 F_AA_3 12,423 20 22

grep
v3 F_DG_4 12,653 5 175 Pattern

v11 F_KP_2 12,653 177 22 Matcher

gzip
v2 F_KL_2 6,576 1 211 Compression

v5 F_KP_1 6,576 17 196 Utility

v13 F_KP_9 6,576 3 210

sed
v1 F_AG_2 11,990 42 316 Stream

v3 F_AG_17 11,990 1 357 Editor

v5 F_AG_20 11,990 64 81

space
v19 N/A 9,129 8 145 ADL

v21 N/A 9,126 1 152 Interpreter

v28 N/A 9,126 46 107

these faulty versions with the term version). 3 For flex,

grep, and space, we used the coverage-adequate test

suite provided by the SIR benchmark (flex and grep
has only one coverage adequate test suite. For space, we

randomly chose one coverage adequate test suite out of 1000

coverage-adequate test suites). For gzip and sed, we use

the universe test suite, because the SIR benchmark does not

provide a coverage-adequate test suite for the two programs.

In addition, we excluded the test cases which caused a target

program version to crash (e.g., segmentation fault), since

gcov that we used to measure coverage information cannot

record coverage information for such test cases.

B. Mutation and Fault Localization Setup

We use gcov to measure the statement coverage achieved

by a given test case. Based on the coverage information,

MUSE generates mutants of the PUT, each of which is

obtained by mutating one statement that is covered by at

least one failing test case. We use the Proteum mutation

tool for the C language [17], which implements the mutation

operators defined by Agrawal el al. [8]. To reduce the cost of

the experiments, MUSE generates only one mutant for each

mutation point of a target statement per mutation operator

using the options provided by Proteum. 4

We implemented MUSE, as well as Jaccard, Ochiai, and

Op2, in 6,400 lines of C++ code. All experiments were

3 MUSE does not assume that a fault lie in one statement because a partial
fix of a multi-line spanning fault obtained by mutating one statement can
still correct (or partially correct (i.e., make the target program pass with
a subset of failing test cases)) the target program and provide important
information to localize a fault.

4 For example, if(x+2>y+1) has one mutation point (>) for ORRN
(mutation operator on relational operator) and two points (2 and 1) for
CCCR (mutation operator for constant to constant replacement) [8]. MUSE
generates only one mutant like if(x+2<y+1) using ORRN and only
if(x+0>y+1) and if(x+2>y+0) using CCCR. The selection of a
mutant to generate using a mutation operator depends on the Proteum
implementation.

Table II: The number of target statements, used mutants, and
dormant mutants (those that do not change any test results) per
subject

Subjects Target Stmt. Used Mutants Dormant Mutants

flex v1 2,243 29,030 7,375

flex v7 2,209 28,575 7,411

flex v11 2,473 30,366 8,532

grep v3 1,364 18,127 10,201

grep v11 1,652 12,029 26,425

gzip v2 129 1,172 835

gzip v5 263 2,054 1,896

gzip v13 143 1,238 887

sed v1 1,694 13,215 4,813

sed v3 887 6,307 2,367

sed v5 1958 23,552 0

space v19 2,124 14,489 4,919

space v21 1,509 9,708 2,790

space v28 2,405 13,946 7,443

Average 1503.8 14557.7 6135.3

performed on 10 machines equipped with Intel i5 3.6Ghz

CPUs and 8GB RAM running 64 bit Debian Linux 6.05.

V. RESULT OF THE EXPERIMENTS

A. Result of the Mutation

Table II shows the number of mutants generated per sub-

ject program version. On average, MUSE generates 20693.0

(=14557.7+6135.3) mutants per version and uses 14557.7

mutants, while discarding 6135.3 dormant mutants, i.e. those

for which none of the test cases change their results, on

average. 5 This translates into an average of 9.7 mutants

per considered target statement. The mutation and the sub-

sequent testing of all mutant versions took 5 hours using

the 10 machines while each of Jaccard, Ochiai, and Op2

took several minutes on one machine. Note that the mutation

task of MUSE can be highly parallelized/distributed on

thousands of machines (for example, utilizing Amazon EC2

cloud computing platform) and MUSE can localize a fault in

several minutes since mutating a statement si is independent

of mutating another statement sj(i �= j) and testing each

mutant is also independent to each other.

B. Regarding RQ1: Validity of the Conjectures

Table III shows the numbers of the test cases whose

results change on each mutant of the target programs. The

second and the third columns show the average numbers

of failing test cases on P which subsequently pass after

mutating a correct statement (i.e. mc), or a faulty statement

(i.e. mf ), respectively. The fifth and the sixth columns show

the average numbers of the passing test cases on P which

subsequently fail on mc and mf respectively. For example,

on average, out of the 17 failing test case of gzip v5,

5 sed v5 has no dormant mutant because the fault of sed v5 is
non-deterministic one (i.e., it dynamically allocates an smaller amount of
memory than necessary through malloc()).
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Table IV: Precision of Jaccard, Ochiai, Op2, and MUtation-baSEd fault localization technique (MUSE)

Subject % of executed stmts examined Rank of a faulty stmt Locality Information Loss

Program Jaccard Ochiai Op2 MUSE Jaccard Ochiai Op2 MUSE Jaccard Ochiai Op2 MUSE

flex v1 49.48 45.04 32.01 0.04 1,371 1,248 887 1 8.33 7.89 7.68 1.28
flex v7 3.60 3.60 3.60 0.07 100 100 100 2 5.72 6.52 7.45 1.22
flex v11 19.76 19.54 13.51 0.04 547 541 374 1 7.39 7.49 7.40 1.59
grep v3 1.06 1.01 0.71 1.87 21 20 14 37 5.25 5.68 6.21 5.92

grep v11 3.44 3.44 3.44 1.60 58 58 58 27 5.43 6.20 5.46 7.19

gzip v2 2.14 2.14 2.14 0.07 31 31 31 1 5.18 4.62 6.24 1.66
gzip v5 1.83 1.83 1.83 0.07 26 26 26 1 4.45 4.73 5.27 1.88
gzip v13 1.03 1.03 1.03 0.07 15 15 15 1 3.12 3.65 5.71 0.70
sed v1 0.54 0.54 0.54 0.90 12 12 12 20 4.24 5.02 5.80 6.72

sed v3 2.56 2.56 2.56 0.13 57 57 57 3 6.14 5.92 6.40 2.66
sed v5 37.84 37.84 37.15 0.28 814 814 799 6 7.34 7.42 7.34 4.80
space v19 0.03 0.03 0.03 0.06 1 1 1 2 5.27 5.93 6.64 2.15
space v21 0.45 0.45 0.45 0.03 15 15 15 1 4.92 5.96 7.34 0.40
space v28 11.57 10.66 6.89 0.04 329 303 196 1 7.33 7.40 7.24 1.96

Average 9.67 9.27 7.56 0.38 242.64 231.50 184.64 7.43 5.72 6.03 6.58 2.87

Table III: The average numbers of the test cases whose results
change on the mutants

# of Failing Tests that # of passing tests that

Subject Pass after Mutating: fail after mutating:

programs Correct Faulty (B)/(A) Correct Faulty (C)/(D) α
Stmts. Stmts. Stmts. Stmts.

(A) (B) (C) (D)

flex v1 0.0002 1.2727 6155.6 15.7270 8.8182 1.8 0.0009

flex v7 0.0002 0.6667 2721.1 16.3644 0.0000 N/A 0.0007

flex v11 0.0026 14.2857 5421.3 5.1064 3.5714 1.4 0.0013

grep v3 0.1299 0.4792 3.7 30.7825 8.0625 3.8 0.1490

grep v11 8.9740 85.8181 9.6 0.1942 0.0000 N/A 5.7939

gzip v2 0.0095 0.5625 59.1 113.3410 1.0000 113.3 0.0322

gzip v5 0.0611 15.1111 247.2 64.7306 0.1111 582.6 0.0227

gzip v13 0.0000 2.7000 N/A 109.2140 0.0000 N/A 0.0141

sed v1 0.0095 0.0000 0.0 189.3610 6.1111 31.0 0.0004

sed v3 0.0040 0.2500 63.0 238.7950 91.5000 2.6 0.0062

sed v5 0.3556 31.8333 89.5 12.6217 12.0690 1.0 0.0365

space v19 0.0105 4.6667 444.5 45.7808 13.1667 3.5 0.0057

space v21 0.0000 0.3333 N/A 65.6796 1.0000 65.7 0.0002

space v28 0.0114 23.0000 2016.5 31.2257 26.5000 1.2 0.0016

Average 0.6835 12.9271 1435.9 67.0660 12.2793 73.4 0.4332

0.0611 and 15.1111 failing test cases on gzip v5 pass on

mc and mf respectively.

Table III provides supporting evidence for the conjectures

of MUSE. The number of the failing test cases on P that

pass on mf is 1435.9 times greater than the number on mc

on average, which supports the first conjecture. Similarly,

the number of the passing test cases on P that fail on mc

is 73.4 times greater than the number on mf on average,

which supports the second conjecture. Based on the results,

we claim that both conjectures are true.

C. Regarding RQ2: Precision of MUSE in terms of the %
of executed statements examined to localize a fault

Table IV presents the precision evaluation of Jaccard,

Ochiai, Op2, and MUSE with the proportion of executed

statements required to be examined before localizing the

fault (i.e. the Expense metric). The most precise results

are marked in bold. Following the ranking produced by

MUSE, one can localize a fault after examining 0.38% of

the executed statements on average. The average precision

of MUSE is 25.68 (=9.67/0.38), 24.61 (=9.27/0.38), and

20.09 (=7.56/0.38) times higher than that of Jaccard, Ochiai,

and Op2, respectively. In addition, MUSE produces the

most precise results for 11 out of the 14 studied faulty

versions. This provides quantitative answer to RQ2: MUSE

can outperform the state-of-the-art SBFL techniques over the

Expense metric.

In response to Parnin and Orso [22], we also report

the absolute rankings produced by MUSE, i.e. the actual

number of statements that need to be inspected before

encountering the faulty statement. MUSE ranks the faulty

statements of the seven faulty versions (flex v1,v11,

gzip v2,v5,v13, and space v21,v28) at the top

and ranks the faulty statement of another three versions

(flex v7, sed v3, and space v19) among the top

three. On average, MUSE ranks the faulty statement among

the top 7.43 places, which is 24.86 (=184.64/7.43) times

more precise than the best performing SBFL technique, Op2.

We believe MUSE is precise enough that its results can be

used by a human developer in practice.

D. Regarding RQ3: Precision of MUSE in terms of the
Locality Information Loss

The Locality Information Loss column of Table IV shows

the precision of Jaccard, Ochiai, Op2, and MUSE in terms

of the LIL metric, calculated with ε = 10−17. The best

results (i.e. the lowest values) are marked in bold. The LIL

metric value of MUSE is 2.87 on average, which is 1.99

(=5.72/2.87), 2.10 (=6.03/2.87), and 2.29 (=6.58/2.87) times

more precise than those of Jaccard, Ochiai, and Op2. In

addition, the LIL metric values of MUSE are the smallest

ones on the eleven out of the 14 subject program versions.
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Figure 3: Normalized suspiciousness scores from space v21 in
descending order

This answers RQ3: MUSE can outperform the state-of-the-

art SBFL techniques over the LIL metric.

One interesting observation is that MUSE produces Ex-

pense and LIL values that correlate relatively well. The

versions whose absolute ranking of faulty statement is

equal to or less than 3, and whose LIL metric is less

than or equal to 2.66, are the following 10 versions:

flex v1,v7,v11, gzip v2,v5,v13, sed v3, and

space v19,v21,v28. For another three versions (grep
v3,v11 and sed v1), both the Expense and LIL metric

values perform worse than the other techniques, although

not significantly.

In contrast, Expense and LIL metric often do not agree

with each other for the SBFL techniques. Consider space
v21: Jaccard, Ochiai, and Op2 produces the same Expense

value of 0.45%. However, their LIL values are all different

(Jaccard: 4.92 < Ochiai: 5.96 < Op2: 7.34). A similar

pattern is observed in other subject versions (flex v7,

grep v11, gzip v2,v5,v13, sed v1,v3, space
v19,v21).

Figure 3 illustrates this phenomenon in more detail. It

plots the normalized suspiciousness scores for each executed

statement of space v21 in a descending order 6. The

circles indicate the location of the faulty statement. While

all techniques assign, to the faulty statement, suspiciousness

values that rank near the top, it is the suspiciousness of

correct statements that differentiates the techniques. When

normalized into [0, 1], MUSE assigns values less than

0.00024 to all correct statements while the SBFL techniques

assign values much higher than 0 (e.g., 4.8% of the ex-

ecuted statements are assigned suspiciousness higher than

0.9 by Op2, while 37.2% are assigned values higher than

0.5). Figure 4 presents the distribution of suspiciousness in

space v21 for individual techniques to make it easier to

observe the differences. This provides supporting evidence

to answer RQ3: MUSE does perform better than the state-

6The normalized suspiciousness of a statement s in an FL technique
τ , norm suspτ (s) is computed as (suspτ (s) −min(τ))/(max(τ) −
min(τ)) where min(τ) and max(τ) is the minimum and maximum
observed suspiciousness for all statements [23].

of-the-art SBFL techniques when evaluated using the LIL

metric. Figure 4 also intuitively illustrates the strength of

the LIL metric over the Expense metric.

This independently confirms the results obtained by Qi et

al. [23]. Our new evaluation metric, LIL, confirms the same

observation as Qi et al. by assigning Jaccard a lower LIL

value of 5.72 than that of Op2, 6.58 (see Section III for

more details).

VI. DISCUSSIONS

A. Why does it work well?

As shown in Section V-C and Section V-D, MUSE demon-

strates superior precision when compared to the state-of-

the-art SBFL techniques. In addition to the finer granularity

of statement level, the improvement is also partly because

MUSE directly evaluates where (partial) fix can (and cannot)

potentially exist instead of predicting the suspiciousness

through program spectrum. In a few cases, MUSE actually

finds a fix, in a sense that it performs a program mutation

that will make all test cases pass (this, in turn, increases the

first term in the metric, raising the rank of the location of the

mutation). However, in other cases, MUSE finds a partial
fix, i.e. a mutation that will make only some of previously

failing test cases pass. While not as strong as the former

case, a partial fix nonetheless captures the chain of control

and data dependencies that are relevant to the failure and

provides a guidance towards the location of the fault.

B. MUSE and Test Suite Balance

One advantage MUSE has over SBFL is that MUSE is

relatively freer from the proportion of passing and failing

test cases in a test suite. In contrast, SBFL techniques benefit

from having a balanced test suite, and have been augmented

by automated test data generation work [5, 12, 15].

MUSE does not require the test suite to have many

passing test cases. To illustrate the point, we purposefully

calculated MUSE metric without any test cases that passed

before mutation (this effectively means that we only use

the first term of the metric). On average, MUSE ranked the

faulty statement within the top 5.09%, which outperforms

SBFL techniques that considered all passing and failing test

cases: MUSE is still 1.90 (=9.67/5.09), 1.82 (=9.27/5.09) and

1.49(=7.56/5.09) times more precise than Jaccard, Ochiai,

and Op2 respectively.

Interestingly, MUSE does not require the test suite to

have many failing test cases. Considering that previous

work [12, 15] focused on producing more failing test cases

to improve the precision, this is an important observation.

We purposefully calculated MUSE metric without any test

cases that failed before mutation: although this translates into

an unlikely use case scenario, it allows us to measure the

differentiating power of the second conjecture in isolation.

When only the second term of the MUSE metric is calcu-

lated (with α=1), MUSE could still rank the faulty statement
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Figure 4: Comparison of distributions of normalized suspiciousness score across executed statements of space v21

Table V: Expense, LIL, and NCP scores on look utx 4.3

FL % of executed Locality Average NCP

Technique stmts examined Information Loss over 100 runs

MUSE 11.25 3.52 25.3

Op2 42.50 3.77 31.0

Ochiai 42.50 3.83 32.2

Jaccard 42.50 3.89 35.5

among the top 14.62% on average, and among the top 2%

for seven out of 14 faulty versions we studied. Intuitively,

SBFL techniques require many failing executions to identify

where a fault is, whereas MUSE is relatively free from this

constraint because it also identifies where a fault is not.
This advantage is due to the fact that MUSE utilizes two

separate conjectures, each of which is based on the number

of failing and passing test cases respectively. Thus, even if a

test suite has almost no failing or passing test cases, MUSE

can localize a fault precisely.

C. LIL Metric and Automated Bug Repair

LIL metric is better at predicting the performance of an

FL technique for automated program repair tools than the

traditional ranking model. The fact that the ranking model

is not suitable has been demonstrated by Qi et al. [23].

We performed a small case study with the GenProg-FL

tool by Qi et al., which is a modification of the original

GenProg tool. We applied Jaccard, Ochiai, Op2, and MUSE,

to GenProg-FL in order to fix look utx 4.3, which is

one of the subject programs recently used by Le Goues

et al. [7]. GenProg-FL [23] measures the NCP (Number

of Candidate Patches generated before a valid patch is

found in the repair process) of each FL technique where

the suspiciousness score of a statement s is used as the

probability to mutate s.

Table V shows the Expense, the LIL and the NCP

scores on look utx 4.3 by MUSE, Op2, Ochiai, and

Jaccard. For the case study, we generated 30 failing and 150

passing test cases randomly and used the same experiment

parameters as in GenProg-FL [23] (we obtained the average

NCP score from 100 runs). Table V demonstrates that the

LIL metric is useful to evaluate the effectiveness of an FL

technique for the automatic repair of look utx 4.3 by

GenProg-FL: the LIL scores (MUSE : 3.52 < Op2 : 3.77 <
Ochiai : 3.83 < Jaccard : 3.89) and the NCP scores

(MUSE : 25.3 < Op2 : 31.0 < Ochiai : 32.2 < Jaccard :
35.5) are in agreement.

A small LIL score of a localization technique indicates

that the technique can be used to perform more efficient

automated program repair. In contrast, the Expense metric

values did not provide any information for the three SBFL

techniques. We plan to perform a further empirical study to

support the claim.

VII. RELATED WORK

The idea of generating diverse program behaviours to

localize a fault more effectively has been utilized by sev-

eral studies. For example, Cleve and Zeller [9] search for

program states that cause the execution to fail by replacing

states of a neighbouring passing execution with those of a

failing one. If a passing execution with the replaced states no

longer passes, relevant statements of the states are suspected

to contain faults. Zhang et al. [34], on the other hand,

change branch predicate outcomes of a failing execution

at runtime to find suspicious branch predicates. A branch

predicate is considered suspicious if the changed branch

outcome makes a failing execution pass. Similarly, Jeffrey et

al. [11] change the value of a variable in a failing execution

with the values with other executions; Chandra et al. [2]

simulate possible value changes of a variable in a failing

execution through symbolic execution. Those techniques are

similar to MUSE in a sense that generating diverse program

behaviours to localize faults. However, they either partially
depend on the conjectures of MUSE (some [2, 11, 34]

in particular depend on the first conjecture of MUSE) or

rely on a different conjecture [9]. Moreover, MUSE does

not require any other infrastructure than a mutation tool,

because it directly changes program source code to utilize

the conjectures (Section IV-B).

Since mutation operators vary significantly in their nature,

mutation-based approaches such as MUSE may not yield

itself to theoretical analysis as naturally as the spectrum-

based ones, for which hierarchy and equivalence relations

have been shown with proofs [28]. In the empirical evalua-

tion, however, MUSE outperformed Op2 SBFL metric [19],

which is known to be the best SBFL technique.

Yoo showed that risk evaluation formulas for SBFL

can be automatically evolved using Genetic Programming

(GP) [31]. Some of the evolved formulas were proven to be

equivalent to the known best metric, Op2 [29]. While MUSE

has been manually designed following human intuition, they

can be evolved by GP in a similar fashion.
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Papadakis and Le-Traon have used mutation analysis for

fault localization [21]. However, instead of measuring the

impact of mutation on partial correctness as in MUSE (i.e.

the conjecture 1), Papadakis and Le-Traon depend on the

similarity between mutants in an attempt to detect unknown

faults: variations of existing risk evaluation formulas were

used to identify suspicious mutants. Zhang et al. [33], on

the other hand, use mutation analysis to identify a fault-

inducing commit from a series of developer commits to a

source code repository: their intuition is that a mutation at

the same location as the faulty commit is likely to result in

similar behaviours and results in test cases. Although MUSE

shares a similar intuition, we do not rely on tests to exhibit

similar behaviour: rather, both of MUSE metrics measure

what is the differences introduced by the mutation. Given

the disruptive nature of the program mutation, we believe

MUSE is more robust.

VIII. CONCLUSION AND FUTURE WORK

Based on the conjectures we introduced, MUSE increases

the suspiciousness of potentially faulty statements and de-

creases the suspiciousness of potentially correct statements.

The results of empirical evaluation show that MUSE can

not only significantly outperform the state-of-the-art SBFL

techniques, but also provide a practical fault localization

solution. The paper also presents Locality Information Loss,

a novel evaluation metric for FL techniques based on infor-

mation theory. A case study shows that it can be better at

predicting the performance of an FL technique for automated

program repair. Future work includes in-depth study of

different mutation operators. We also plan to apply MUSE

to larger subjects such as PHP with multiple test suites. In

addition, we will apply the mutation idea to conconlic unit

testing [30] and concurrent coverage-based testing [24].
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