
Using Multi-Locators to Increase the Robustness of
Web Test Cases

Maurizio Leotta1, Andrea Stocco1, Filippo Ricca1, Paolo Tonella2

1 Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS), Università di Genova, Italy
2 Fondazione Bruno Kessler, Trento, Italy

maurizio.leotta@unige.it, andrea.stocco@dibris.unige.it, filippo.ricca@unige.it, tonella@fbk.eu

Abstract—The main reason for the fragility of web test cases
is the inability of web element locators to work correctly when
the web page DOM evolves. Web elements locators are used in
web test cases to identify all the GUI objects to operate upon and
eventually to retrieve web page content that is compared against
some oracle in order to decide whether the test case has passed
or not. Hence, web element locators play an extremely important
role in web testing and when a web element locator gets broken
developers have to spend substantial time and effort to repair it.

While algorithms exist to produce robust web element locators
to be used in web test scripts, no algorithm is perfect and
different algorithms are exposed to different fragilities when
the software evolves. Based on such observation, we propose a
new type of locator, named multi-locator, which selects the best
locator among a candidate set of locators produced by different
algorithms. Such selection is based on a voting procedure that
assigns different voting weights to different locator generation
algorithms. Experimental results obtained on six web applications,
for which a subsequent release was available, show that the multi-
locator is more robust than the single locators (about –30% of
broken locators w.r.t. the most robust kind of single locator) and
that the execution overhead required by the multiple queries done
with different locators is negligible (2-3% at most).

Keywords—Web Testing, Testware Evolution, Test Case Robust-
ness, Web Element Locators, XPath Locators.

I. INTRODUCTION

The cost of software testing is impressively high and
estimated between 40% and 80% of the total development
cost [1]. Test automation plays a key role in reducing such
cost [5]. Software testers implement the testing logics by
writing scripts that provide input data, set the values of GUI
components, operate on such components by changing their
state and retrieve information to be compared with oracles, to
determine if the program behaves correctly. Automated testing
tools, that run such scripts, interact with the application in
a similar way as the real user does. Reuse of testing logics
for the same functionalities across successive releases (i.e.,
for regression purposes) is the main benefit of adopting a
test automation technique. Unfortunately, new releases of the
application with modified GUIs can easily break the correspond-
ing test scripts, hindering the benefits of test automation [2].
This problem is particularly dramatic in the context of the web
applications, because these are subject to a tremendous pressure
for change [20]. New releases are continuously produced,
often accommodating just style improvements or presentation
changes.

Typically, DOM-based web test automation tools (e.g.,
Selenium toolkit) are used to test a web application. Thanks

to their rich APIs, testers can easily implement the test cases
by invoking commands that operate on web elements localised
by means of DOM properties (attributes, textual information,
XPaths, etc). The choice of appropriate web element locators
is fundamental, because it impacts enormously the test script
resilience to change (i.e., their robustness) when the application
evolves. Previous works [8], [9] show that often minor changes
between releases, resulting in changes in the DOM structure,
are responsible for most of the cases when test cases are broken
and cannot be executed any more. The manual effort to repair
such test scripts is tedious, time-consuming and intellectually
frustrating, so that often existing test suites are abandoned,
despite their potential value for catching regressions.

For this reason, in the literature several researchers [11],
[16] have attacked the test script fragility problem by proposing
algorithms able to compute locators that are resilient to the
evolution of the software. These robust locators, based on
the XPath language, have been shown to be more resilient to
changes than those available from state of the practice tools,
such as for example FirePath [11]. When web pages change
because of a new release of the web application, they continue
to select the target web element correctly.

While experimenting with different locator generation algo-
rithms, we have noticed that locators are resilient to different
types of changes and that they tend to be fragile individually,
not collectively. Even locators produced by algorithms with
the highest robustness performance can occasionally be broken
(i.e., they do not locate the target web element correctly in
the new DOM) by specific code changes, while other locators,
based on different web page properties, may remain valid. In
other words, different locators, built by different algorithms,
tend to be complementary with each other. The idea of this
work is to compensate for one locator’s fragility by resorting
to the capabilities of another locator.

In this paper, we overcome the potential weaknesses of a
single locator by means of a novel locator type, which we call
multi-locator and which is capable of aggregating the results
produced by a set of different locators (generated by different
algorithms) into a single web element localisation, the most
voted one. In the test cases, we replace each single locator with
a multi-locator, i.e., a set of locators all selecting the same web
element and all automatically generated by different algorithms.
When the web application evolves, some locators in this set
become broken while others may work correctly and return the
right element. By applying a voting decision procedure, the
multi-locator will select the web element receiving the highest
number of weighted votes from all locators. We expect that the
multi-locator will be more robust than each individual locator

taken in isolation. On the other hand, the advantage of adopting
the multi-locator is also in its automatic repair capability: when
the multi-locator is able to locate the desired web element, the
broken locators belonging to the set and generated by the
various algorithms can be automatically repaired. This accounts
just for re-running the locator creation algorithms with the web
element returned by the multi-locator as target. In this way, the
test scripts are continuously evolved by the automated repair
procedure, hence better accommodating the future changes
occurring in the next software releases.

The paper is organised as follows: Section II introduces the
problems associated with web testware evolution and shows how
locators are generated by state of the art algorithms. Section III
describes the multi-locator, our novel contribution. Empirical
results about the robustness and execution time overhead of
the multi-locator as compared to single locators are reported
in Section IV, followed by related works (Section V) and
conclusions (Section VI).

II. BACKGROUND

Software testers are required to execute manual repair
actions on the test cases, whenever these are affected by the
changes that have been performed on the web application
under test (WAUT). For the sake of simplicity, the changes to
the WAUT can be categorised into two families: logical and
structural [9], [10]. A logical change involves the modification
of the web application logics for the introduction of new features
or the modification of existing features. On the tester side, this
means for example creating new test cases, or modifying the
existing ones. A structural change, instead, impacts the web
page structure, modified to beautify the web page appearance or
to reorganise its content (e.g., switching from a table-based to a
table-less layout). In the test suite, the tester has to modify one
or more test script lines containing locators that are affected
by the structural changes.

In this paper, we focus on reducing the web test suite
maintenance effort due to structural changes, since such effort
is heavily affected by the fragility of the locators. On the other
hand, logical changes require manual interventions on the test
suite that go beyond the creation of robust locators. Structural
changes are indeed quite important, since web site re-styling, a
frequently occurring activity, tends to affect the DOM structure,
leaving the application logics unaffected. In the following, we
assume that XPath locators are used to retrieve the web elements
required by the test cases (form fields, buttons, check boxes,
textual output, etc.) and that the tester’s effort can be reduced
when structural changes occur, by making such locators robust.

A. XPath Locators

Considering only XPath locators is by no means restrictive, for
the following reasons:
– XPath is a powerful and expressive language. If properly
generated, XPath locators can be highly expressive and compact.
To the best of our knowledge, most of the localisation methods
provided by DOM-based tools can be easily rewritten as an
XPath locator with no substantial impact on its understandability.
For example, the Selenium WebDriver locator: By.name(“xy”)
is equivalent to By.xpath(“//*[@name=‘xy’]”).
– XPath locators are sometimes the only option. Selenium
WebDriver offers different localisation methods1 beyond XPath,

1http://docs.seleniumhq.org/docs/02_selenium_ide.jsp#locating-elements

mostly tailored on specific DOM attributes and properties (e.g.,
id or text). A tester may prefer the use of these methods, instead
of generating/writing XPath expressions that may be perceived
as more complex. However, sometimes these methods cannot be
employed, since no unique attribute value or textual information
are available to uniquely identify the web element of interest.
In such cases, the only way to get a locator is by specifying
a navigational path on the DOM tree. As an example, in our
previous work [9], we considered six Selenium WebDriver
test suites and we were forced to use XPath locators (i.e., no
specific localisation methods can be used) for about one-third
of the considered web elements.

B. Algorithms/Tools for Generating XPath Locators

We populate our multi-locator with the most used and
most promising XPath locators (to the best of our knowledge),
generated by state of the practice tools and by state of the art
research algorithms. In particular we considered:
FirePath Absolute: FirePath2 is a browser-integrated plugin
for XPath expressions generation. For each web element, it is
able to generate a corresponding absolute XPath locator. An
absolute XPath consists of the full navigational path from the
root of the DOM (i.e., the html tag) to the target web element.
Only when strictly necessary, element position values are used
to select the correct node among a set of siblings.
FirePath Relative ID-based: When a unique value for the id
attribute exists for the target element or one of its ancestors,
FirePath can also generate a relative ID-based XPath locator.
Otherwise an absolute XPath is returned. In case a unique
value for the id attribute exists, the XPath locator starts by
selecting the node (closest to the target) that contains id and
then navigates the remaining portion of the DOM to the target
element.
Selenium IDE3 is a capture/replay tool for quick development
of web test cases. During the test case recording phase, it is
able to generate locators for the web page elements on which
the tester is performing actions. Selenium IDE contains an
advanced XPath locators generator algorithm4 that generates
locators using different strategies and that ranks them depending
on an internal robustness heuristic estimate.
Montoto et al. [16] proposed an algorithm for identifying the
target elements during the navigation of AJAX websites. The
algorithm starts from a simple XPath expression, progressively
augmented with textual and attribute information. The algorithm
first tries to identify the element according to its associated text
(if the element is a leaf node) and the value of its attributes.
If the XPath produced does not uniquely identify the element,
every ancestor (and the value of their attributes) is considered
until the root of the DOM is reached.
ROBULA+ is an extension of our previous algorithm ROBULA
(ROBUst Locator Algorithm) [11]. Basically, ROBULA starts
with a generic XPath expression that returns all nodes (“//*”). It
then iteratively refines the expression until only the element of
interest is selected. In such iterative refinement, the algorithm
applies four refinement transformations, according to a set of
heuristic XPath specialisation steps [11]. ROBULA has been
developed in order to create very short and simple XPath

2https://addons.mozilla.org/firefox/addon/firepath/
3http://seleniumhq.org/projects/ide/
4https://code.google.com/p/selenium/source/browse/ide/main/src/content/locatorBuilders.js

<html>

 <body>

 <table id="userInfo">

 <tr><td>Name: </td><td title ="name"> John</td></tr>

 <tr><td>Surname:</td><td title ="surname"> Doe</td></tr>

 <tr><td>Mobile: </td><td title ="mobile"> 123456789</td></tr>

 </table>

 </body>

</html>

 Tool Kind Generated XPath Locators for the Target Element

FirePath Abs abs /html/body/table/tr[3]/td[2]
FirePath Rel rel //*[@id="userInfo"]/tr[3]/td[2]
Selenium IDE rel //table[@id="userInfo"]/tr[3]/td[2]
Montoto rel //td[text()="123456789"]
ROBULA+ rel //*[contains(text(),'123456789')]

Name: John
Surname: Doe
Mobile: 123456789

Target Element

Fig. 1. showInfo.php – Ver. 1 – Page, Source, Locators

expressions, with the goal to increase their resilience to changes.
ROBULA+ enhances ROBULA with: (i) a prioritisation strategy,
to rank candidate XPath expressions by heuristically estimated
attribute robustness, when multiple attributes are available;
(ii) a blacklisting technique, to exclude attributes that are
intrinsically fragile; and (iii) textual information, potentially
a reliable anchor when the web application evolves [19]. A
technical report describing ROBULA+ is available on our web
site: http://sepl.dibris.unige.it/TR/ROBULA+.pdf.

The outputs of the five algorithms considered in our work
are usually different, as depicted in the example in Fig. 1.
Focusing only on the two algorithms proposed by the research
community, Montoto and ROBULA+, they both adopt a top-
down approach in the construction of the XPaths. However, re-
markable differences exist thus, the XPath expressions generated
by ROBULA+ are usually very different from the ones generated
by Montoto. For instance, to localise the target div element in
the web page used as example in the Montoto et al. paper [16],
their algorithm generates //td/a[@href=“#”]/div[@class=“c1” and
text()=“More Info”] while ROBULA+ generates the following
simpler XPath expression //td/*/div.

C. XPath Locators and Software Evolution: an Example

Let us consider Ver. 1 of a simplified web application
composed of two web pages — insertInfo.php and showInfo.php
— that allow users to insert and visualise some personal
information previously stored in a database. A test case for
this functionality may open the insertInfo.php page, fill a form,
submit the information and verify that the inserted data are
correctly displayed in the resulting showInfo.php page, shown
in Fig. 1 (top).

For the test case implementation, it is necessary to locate
some web page elements as, for instance, the field of the table
showing the mobile phone number (see the underlined td in
Fig. 1 (center)). Fig. 1 (bottom) lists the XPath locators provided
by the algorithms considered in this work. With the exception
of the absolute (abs) XPath locator generated by FirePath, the
others are relative XPaths. Different XPath generation strategies
are adopted resulting in different expressions.

We now consider a new version of the web application
(Ver. 2), in which a new text box is present, allowing the user
to insert gender information (see Fig. 2 (top)). Depending on
the robustness of the XPath locator used to select the target

<html>

 <body>

 <table id="userInfo">

 <tr><td>Name: </td><td title ="name"> John</td></tr>

 <tr><td>Surname:</td><td title ="surname"> Doe</td></tr>

 <tr><td>Gender: </td><td title ="gender"> Male</td></tr>

 <tr><td>Phone: </td><td title ="mobile"> 123456789</td></tr>

 </table>

 </body>

</html>

Tool XPath Locators Robustness  robust  broken

FirePath Abs  /html/body/table/tr[3]/td[2]
FirePath Rel  //*[@id="userInfo"]/tr[3]/td[2]
Selenium IDE  //table[@id="userInfo"]/tr[3]/td[2]
Montoto  //td[text()="123456789"]
ROBULA+  //*[contains(text(),'123456789')]

Name: John
Surname: Doe
Gender: Male
Phone: 123456789

Target Element

Fig. 2. showInfo.php – Ver. 2 – Page, Source, Locators

element, the test case described above will be broken (and will
have to be repaired) or will work without problems. Looking at
Fig. 2 (bottom), we can see that only the locators generated by
ROBULA+ and Montoto work, while all the other locators are
broken. Indeed, all of them include node tr[3] that in the new
version becomes tr[4]. Hence, they locate the wrong element
(i.e., the “gender” field).

III. THE MULTI-LOCATOR APPROACH

In this section we describe the multi-locator approach,
which selects a web element using a candidate set of locators
performing a vote decision procedure (weighted or unweighted).
We also show that the multi-locator can be employed to
automatically repair the broken locators in the candidate set,
so as produce a better candidate set of locators, to be used by
the multi-locator on the successive versions of the application.

A. Multi-locator Definition

Let us assume that a candidate set L (with |L| > 1) of
alternative locators can be obtained to extract the web element e
from the DOM D. Such alternative locators can be generated in
different ways: by alternative algorithms or tools that help web
testers to produce robust locators for their test cases, manually,
or they can be defined according to simple rules (e.g., use the
absolute XPath or the web element identifier/name). When they
are initially defined, all such locators select element e uniquely:

∀l ∈ L : query(l,D) = {e} (1)

i.e., all XPath queries using such locators return a result set
containing exactly one entity, element e.

When the web application evolves, some locators in L may
become unusable because they return more than one element
or no element in the new DOM D′. Among those that return
a single web element (i.e., |query(l,D′)| = 1), there might be
disagreement. The idea of the multi-locator is to establish a
voting procedure that involves all locators still returning exactly
one element from the new DOM D′. The multi-locator will
select the web element receiving the highest weighted vote from
all locators that uniquely select a single element in the DOM
D′. Since different locators may have different “reputations”

(e.g., the absolute XPath locator is known to be quite fragile [8],
[11]), it makes sense to assign different weights to the voters.
The web element returned by the multi-locator will be the
one with the highest weighted vote. We decided to compute
the aggregate vote v for the element e′ using the following
formula:

v[e′] = 1−Πl∈Le′ (1− nw[l]) (2)

where Le′ is the set of locators returning uniquely the element
e′ in the new DOM D′, while nw[l] is the normalised weight
assigned to locator l. Weights are normalized between 0 and 1,
and each of them is interpreted as the locator reliability, i.e.,
probability of correct localisation. A reliable locator, generated
by an algorithm with high robustness performance, will have
a high weight (i.e., close to 1). Such interpretation justifies
formula (2): the result of the formula gives the probability that
the aggregate vote localises correctly element e′.

Algorithm 1: Multi-locator DOM Selection
Input:
D′: DOM of the evolved web application.
L: set of locators selecting uniquely web element e in the initial

DOM D. The information about the algorithms that generated each
locator l ∈ L is stored in an auxiliary datastructure

Result:
e′: a web element from DOM D′ or null if no web element can be

located

1 begin
2 L′

c := {l ∈ L : |query(l, D′)| = 1}
3 // candidate locators
4 E′ := {e′ ∈ D′ : e′ ∈ query(l′, D′), l′ ∈ L′

c}
5 // candidate target web elements
6 if |E′| = 0 then return null
7
8 foreach e′ ∈ E′ do v[e′] := 1
9

10 foreach l′ ∈ L′
c do

11 e′ := elementOf(query(l′, D′))
12 // elementOf returns the unique element of the set
13 v[e′] := v[e′] · (1− nw(l′))
14 // nw returns the weight, normalised between 0 and 1,

relative to the algorithm used to generate l′

15 foreach e′ ∈ E′ do v[e′] := 1− v[e′]
16
17 return e′ ∈ E′ : v[e′] = maxk∈E′v[k]

The pseudocode for the multi-locator procedure is shown
in Algorithm 1. At lines 2-4, candidate web elements are
determined as the results of all XPath queries that return
one element. Formula (2) is implemented from line 8 to line
15. In particular, the loop at line 10 attributes the weight of
each locator l′ to the selected web element e′ according to
formula (2). At line 17, the multi-locator returns the web
element that was attributed the highest vote. In case of parity,
a randomly selected element among those with highest weight
is chosen.

An important component of Algorithm 1 is the voting
weight assigned to each locator (loop at line 10). We suggest
three strategies to determine such weights: (1) uniform weights;
(2) learned weights; (3) heuristic weights. Uniform weights
are obtained by trivially assigning the same weight (e.g., 0.5)
to each method used to generate the locators in L, hence, to
each locator. Learned weights are obtained by training them
on a corpus of web applications for which successive versions
are available. Weights can be optimised so as to minimise the

number of broken locators that is measured when the multi-
locator algorithm is applied to the next versions of the web
applications in the corpus. Otherwise, a simpler method consists
of measuring the robustness of the locators (number of non-
broken locators) on the corpus and using such measurement
as the weight for the algorithm that generated such locators.
We implemented the latter method. As usual with training, the
training corpus must be different from the web applications on
which the multi-locator performance is assessed. This can be
achieved, for instance, through the cross-validation (aka, leave-
one-out) procedure. Heuristic weights are produced manually,
based on a-priori knowledge about the expected fragility of the
locators created by the various locator generation methods [11].

In Fig. 1 (bottom), there are five different XPath locators
generated using different algorithms. When evaluated on the
new version of the web page (see Fig. 2 (bottom)) three of
them are broken, while two select the correct target element
(i.e., the phone number field). It should be noticed that in
the new version of the web page all three broken locators
select the same web element, i.e., the gender field. Thus, in
this case, if the unweighted (i.e., uniformly weighted, with
weight=0.5 for all the considered algorithms) version of the
multi-locator is adopted, the result will select the wrong element.
In fact, the gender field obtains three votes (corresponding to
v[gender]=0.875, see equation (2)) while the phone number
field only two (corresponding to v[phone]=0.75). On the other
hand, using a weighted version of the multi-locator, depending
on the weights assigned, it is possible to select the correct target
element. For instance, we can assign the following weights
based on a-priori knowledge about the expected robustness of
the locators created by the various locator generation methods:
(1) for absolute XPaths, weight is 0.25, since they are known
to be quite fragile; (2) for locators obtained by tools for
ID-based DOM navigation, weight is 0.50, since they are
probably more robust than absolute XPaths, but they are not
designed specifically to make test cases resilient to the evolution
of the web application (e.g., FirePath Relative ID-based);
(3) for locators obtained by algorithms specifically designed
for producing robust locators for web testing, weight is 0.90
(e.g., Selenium IDE, Montoto and ROBULA+). Using these
weights the result is different. Indeed, the gender field obtains
the lowest weighted vote (corresponding to v[gender]=0.9625)
while the phone number field the highest (corresponding to
v[phone]=0.99). Thus, this version of the weighted multi-locator
adopting “knowledge based” weights is able to select the correct
element.

When the web application evolves, there is a theoretical
limit to the capabilities of any multi-locator, defined as an
arbitrary procedure to select among the XPaths of the set L of
locators. In fact, if all locators in L are broken when used to
query the evolved DOM D′, the multi-locator has no chance
of being able to select the right element, since any selection
of a locator l ∈ L will result in a broken locator. This sets an
upper bound to the robustness achievable by any multi-locator.

B. Automated Multi-locator Repair

When the multi-locator procedure succeeds, by selecting
the most voted locator and returning the web element identified
by such locator, it is possible to automatically repair all other
broken locators. In fact, the algorithms that have been used
to produce the locator set L for the initial DOM D can be

re-executed on the new DOM D′ to locate the web element e′
returned by the multi-locator. Each algorithm whose locator is
considered broken on D′ by the multi-locator is re-executed
with e′ (e.g., the element selected by the multi-locator) as target.
The new locators that these algorithms produce replace the
locators considered broken. When the web application evolves
to a new version, the multi-locator will be able to use the
automatically repaired locators instead of the original ones,
hence further increasing its chances of robustly identifying the
web element used by the test cases.

Algorithm 2: Multi-locator Repair
Input:
D′: DOM of the evolved web application.
e′: the web element in the evolved DOM D′ selected by multi-locator.
L: set of locators selecting uniquely web element e in the initial

DOM D. The information about the algorithm that generated each
locator l ∈ L is stored in an auxiliary datastructure.

Result:
L′: the repaired set of locators selecting web element e′ from D′

1 begin
2 L′ := ∅
3 foreach l ∈ L do
4 if query(l, D′) = {e′} then
5 L′ := L′ ∪ {l}
6 else
7 nl := createNewLocator(algoForLocator(l), D′, e′)
8 // algoForLocator uses information from the

auxiliary datastructure associated with L
9 L′ := L′ ∪ {nl}

10 return L′

Algorithm 2 shows the pseudo-code of the automated repair
method. The input web element e′ is uniquely identified by
the Algorithm 1. The repaired set of locators L′ is constructed
iteratively at lines 3-9, by just keeping unmodified the locators
that uniquely identify e′ in the new DOM D′ (line 5), and by
creating a new locator nl (lines 7-9) in the other cases. To
generate such new locators, the same algorithm originally used
to produce the locator l is run (such algorithm is returned by
function algoForLocator(l) on the new DOM D′, with web
element e′ as target).

For example, in the case of the XPath locators shown in
Fig. 2 (bottom), using the weighted version of the multi-locator
described above (i.e., using weights 0.25, 0.50 and 0.90), we
obtain that the phone number field has the highest vote. Thus,
the three locators considered (in this case correctly) broken (i.e.,
FirePath Absolute, FirePath Relative ID-based and Selenium
IDE) are re-generated in order to select the phone number field.
The related repair operation affects only the locator fragment
tr[3], which in the new release becomes tr[4].

Of course, in case the web element e′ returned by the
multi-locator is wrong, the automated repair operation will
also produce a set of incorrectly repaired locators. Hence,
the possibility to perform correct repair operations is strictly
related to the correctness of the multi-locator, when it returns
a non-null element. One of the research questions investigated
in our empirical evaluation deals with the correctness of the
automated repair actions.

C. Setting up the Multi-locator

For setting-up the multi-locator it is necessary to execute
two steps: (1) generating the set L (i.e., a list of XPath locators)

for each target element employed in the original test suite (i.e.,
located by a single locator) and (2) defining the set of weights
in case the weighted multi-locator is applied. Step (1) can be
completed by resorting to aspect oriented programming: during
the execution of the test suite an aspect will intercept each
locator invocation on the current page DOM D, that selects
the target element e, and will generate the corresponding set
L by using the XPath generation algorithms implementations
(i.e., L={FirePathAbs(D, e), FirePathID(D, e), Montoto(D, e),
SeleniumIDE(D, e), RobulaPlus(D, e)}). Step (2) can be com-
pleted by estimating the robustness of the various kinds of
XPath locators on the considered web application. Alternatively,
heuristic weights can be used. Indeed, in Section IV-E, we show
that for a practical adoption of the multi-locator it is not even
necessary to execute the cross-validation procedure to obtain
the weights.

D. Deploying the Multi-locator

For deploying the multi-locator the test code has to be
changed so as to replace single locator invocations on the
DOM D (e.g., By.xpath(xp,D)), with invocations to the multi-
locator, which requires a set of XPaths L={xp1,...,xp5} instead
of a single XPath (e.g., By.multiLocator({xp1,...,xp5}, D)) and a
list of weights in case non-uniform weights are to be applied
(e.g., By.multiLocator({xp1,...,xp5}, {w1,...,w5}, D)). This can be
done automatically by means of code transformations. In this
way, the multi-locator can be used to locate the target element
in the evolved DOM D′ using the previously computed set
L. We are currently developing a tool able to automatically
migrate existing test cases to the multi-locator approach.

E. Evolving Multi-locator based Test Cases

When a new version of the web application is available, in
case the multi-locator (Algorithm 1) is able to correctly select
the target web element e′, the set of alternative locators L is
automatically repaired (Algorithm 2) by invoking the XPath
generation algorithms with the web element selected by the
multi-locator and the evolved DOM D′ as input (e.g., if the
multi-locator selects e′ on D′, the other locators that are not
able to select e′ are updated as follows: xp3 = Montoto(D′,
e′), xp5 = RobulaPlus(D′, e′)). Otherwise, the multi-locator is
unable to select the target element, thus the test case is broken,
and the web tester has to manually repair only one of the
locators; the other locators can be automatically re-generated
using the implementations of the various XPath generation
algorithms. Finally, the test suite can be automatically updated
with the new generated locators set L′ similarly as described
in Section III-D.

IV. EXPERIMENTAL RESULTS

This section presents the design, objects, research questions,
metrics, procedure, quantitative and qualitative analysis, and
threats to validity of the empirical study conducted to evaluate
the effectiveness and execution time overhead of the multi-
locator. We follow the guidelines by Wohlin et al. [22]
on designing and reporting empirical studies in software
engineering.

The goal of this study is to analyse the effectiveness and
performance of the multi-locator in selecting the correct target
element, with the purpose of understanding the strengths and the

TABLE I. Objects: Web Applications from SourceForge.net

Release Date File
a

kLOC
b Release Date File

a
kLOC

b

MantisBT bug tracking system http://sourceforge.net/projects/mantisbt/ 1.1.8 Jun-09 492 90 1.2.0 Feb-10 733 115

PPMA
c password manager http://sourceforge.net/projects/ppma/ 0.2 Mar-11 93 4 0.3.5.1 Jan-13 108 5

Claroline collaborative learning environment http://sourceforge.net/projects/claroline/ 1.10.7 Dec-11 840 277 1.11.5 Feb-13 835 285

Address Book address/phone book, contact manager, organizer http://sourceforge.net/projects/php-addressbook/ 4.0 Jun-09 46 4 8.2.5 Nov-12 239 30

MRBS system for multi-site booking of meeting rooms http://sourceforge.net/projects/mrbs/ 1.2.6.1 Jan-08 63 9 1.4.9 Oct-12 128 27

Collabtive collaboration software http://sourceforge.net/projects/collabtive/ 0.65 Aug-10 148 68 1.0 Mar-13 151 73

1st Release 2nd Release

a
 Only PHP source files were considered -

b
 PHP LOC - Comment and Blank lines are not considered -

c
 Without considering the source code of the framework used by this application (Yii framework)

Description Web Site

weaknesses of the proposed approach. The results of this study
are interpreted according to the perspective of: (1) developers
and project managers, interested in data about the benefits of
adopting the multi-locator in an industrial context, in order to
increase the test suite robustness; (2) researchers, interested in
empirical data about the impact of the multi-locator on web
testing. The software objects used in the experiment are six
web applications already used in a different work [10].

A. Web Applications

We conducted our experiments over a sample of six open-
source web applications from SourceForge.net. We considered
only applications that: (1) are quite recent, so that they can
work without problems on the latest versions of Apache, PHP
and MySQL, technologies we are familiar with (since the XPath
locators localise web elements in the HTML code processed
by the client browser, the server side technologies do not affect
the results of the study); (2) are well-known and used (some of
them have been downloaded more than one hundred thousand
times last year); (3) have at least two major releases (we
have excluded minor releases because with small differences
between versions the majority of the locators — and, thus, of
the corresponding test cases — are expected to work without
problems); (4) belong to different application domains.

Table I reports some information about the selected applica-
tions. We can notice how all of them are quite recent (ranging
from 2009 to 2013) and different in terms of number of source
files (ranging from 46 to 840) and number of lines of code
(ranging from 4 kLOC to 285 kLOC, considering only the
lines of code contained in the PHP source files, comments and
blank lines excluded).

B. Research Question and Metrics

Our study aims at answering the following research ques-
tions:
RQ1: What is the robustness of the unweighted multi-locator
as compared to that of single locators? What is the effect of
the random selection occurring when different elements obtain
the same number of votes?

The goal of the first research question is to compare the
robustness of the unweighted multi-locator with the robustness
of five single locators, generated by state of the practice tools
(FirePath, release 0.9.7; Selenium IDE, release 2.8.0) and by
research algorithms (Montoto, ROBULA+). The aim is to give
developers and project managers a precise idea of the benefits
coming from the adoption of the multi-locator. The metrics
used to answer RQ1 is the number of broken XPath locators
in the next software release.
RQ2: What is the robustness of the weighed multi-locator as
compared with the unweighted multi-locator?

The second research question is about the influence of
the weights used in the multi-locator. In particular, with this
research question we want to compare unweighted and weighted
multi-locators. The aim is to give developers, project managers
and researchers an idea of the importance of a good calibration
of the used weights. The metrics used to answer RQ2 is the
same used for RQ1.
RQ3: How far is the robustness of the multi-locator from the
theoretical limit?

The third research question aims at understanding whether
the multi-locator strategy has any margin of further improve-
ment. This aims at giving researchers an idea about the
contributions possibly coming from more complex multi-locator
strategies. The metrics used to answer RQ3 is the distance
between our algorithm and the theoretical limit explained in
the previous section.
RQ4: What is the amount of correct repair actions triggered
by the multi-locator?

The fourth research question deals with the correctness of
the automated repair actions operated on the broken locators.
In particular, we are interested in the total number of correctly
repaired broken locators w.r.t. the incorrectly repaired ones.
The metrics used to answer RQ4 is the number of correctly
repaired locators over the total number of repair actions.
RQ5: What is the performance overhead of the multi-locator
on test case execution?

The last research question is about the additional time
required for executing a test suite when the multi-locator
selection (i.e., Algorithm 1) is adopted, as experienced in
practical cases. This gives developers and project managers an
idea of the penalty in terms of execution time coming from
the adoption of the multi-locator. The metrics used to answer
RQ5 is the execution time expressed in seconds.

C. Procedure

To answer our RQs we proceeded as follows:
(I) We selected six open-source web applications from Source-
Forge.net as explained in Section IV-A.
(II) For each application and for each web page we manually
selected all the web elements: (1) on which it is possible to per-
form actions (e.g., links, input fields, submit buttons); (2) which
report information that can be used to evaluate assertions (e.g.,
the number of rows in a table or a confirmation message);
(3) which belong to pages related to core functionalities of the
application (e.g., we did not consider the configuration and
installation pages); and, (4) which are present in both releases of
the applications. This last requirement is particularly important
for computing the number of broken locators.

In order to avoid biased results, we excluded multiple
instances of the same web element present in different pages,
or different web elements that can be considered the same. In

TABLE II. Robustness of the various XPath Locators and of different kinds of Multi-Locator Algorithms

Total Number of Target Web Elements

Locators Broken % Weight Broken % Weight Broken % Weight Broken % Weight Broken % Weight Broken % Weight Broken %

FirePath Absolute 45 56 0,32 125 100 0,41 102 100 0,39 69 29 0,14 30 100 0,35 78 76 0,35 449 67

FirePath Relative ID-based 43 54 0,52 34 27 0,46 102 100 0,60 55 23 0,37 19 63 0,52 78 76 0,56 331 49

Selenium IDE 12 15 0,84 22 18 0,85 35 34 0,87 23 10 0,81 11 37 0,85 4 4 0,82 107 16

Montoto 10 13 0,76 7 6 0,74 39 38 0,80 68 29 0,81 16 53 0,79 11 11 0,76 151 22

ROBULA+ 10 13 0,89 3 2 0,86 30 29 0,92 22 9 0,87 10 33 0,89 3 3 0,87 78 12

Unweighted Multi-Locator (Worst Order) 9 11 3 2 18 18 24 10 9 30 5 5 68 10

Unweighted Multi-Locator (Best Order) 7 9 3 2 20 20 18 8 9 30 2 2 59 9

Weighted Multi-Locator (CrossValidation) 3 4 3 2 20 20 18 8 9 30 2 2 55 8

Theoretical Limit 1 1 3 2 16 16 15 6 9 30 2 2 46 7

%: percentage of broken locators over the total number of locators of this kind - Weight: represents the average robustness of this kind of locator computed on the other five applications

103 675

Mantis

80 125 102 235 30

All AppsAddress Book Collabtive MRBS Claroline PPMA

detail, we excluded multiple instances of: (1) the same web
element repeated in different web pages as part, for instance,
of the header or the footer (e.g., the link to the home page of
the web application can be found in every page and has exactly
the same locator), and (2) similar web elements from common
groups (e.g., for a calendar with a check box for each day we
selected only one of the check boxes).
(III) For each selected web element in the first release (located
by the absolute XPath abs, obtained from FirePath) we manually
defined a mapping (abs→abs’) that associates it with its
counterpart in the second release (located by the absolute XPath
abs’, also obtained from FirePath). The absolute XPath locators
defined on the second release of the applications are used as
oracle to verify the robustness of the generated XPath locators
for the elements of the first release of the applications.
(IV) For the first release of each web application and for each
web element (located by the absolute XPath defined above),
four additional XPath locators have been created by using
respectively: (1) FirePath Relative ID-based, (2) Selenium IDE,
(3) Montoto, and (4) ROBULA+.
(V) For each web element, we applied the unweighted and
weighted variants of the multi-locator. We have defined the
weights for the weighted variant of multi-locator using k-fold
cross validation [6]. In particular, we used a leave-one out
cross validation with k = 6, where 6 is the size of the original
data set (i.e., the number of web applications selected for
this experiment). Thus, we split the original data set into five
applications used for training and one application used for
testing, with the testing application rotated so as to test the
multi-locator on each of the six available applications. Finally,
for each test application, we evaluate the robustness of the multi-
locator using weights proportional to the average robustness of
the single-locators algorithms, measured when these are applied
to the other five training applications (see columns “Weight”
in Table II).
To answer RQ1, for each web element, the robustness of the
multi-locator is automatically evaluated against the oracle on
the next release of the web application by verifying whether it
is still able to locate the web element of interest. To this end,
we verify if the web element selected by the multi-locator and
by the absolute locator abs’ is the same. The voting procedure
of the unweighted multi-locator could generate ties and in these
cases we decided to randomly select one element. Thus, to
measure the performance boundaries associated with such non-
deterministic choice, we considered the two extreme cases that
may happen when the random selection is done: the best case
and the worst case. In particular, based on the results collected
in our experiments, we defined the best order as: ROBULA+,
Selenium IDE, Montoto, Relative ID-based, Absolute. The
worst order is the reverse one. Instead of considering a random

element, in case of parity, we report the results obtained in two
cases: best order and worst order.
To answer RQ2, we evaluated the robustness of the multi-
locator produced by the weighted multi-locator as done in the
previous step.
To answer RQ3, for each application, we compared the theo-
retical limit — computed as described in Section III-A — with
the results of the multi-locator.
To answer RQ4, for each application, we counted the number
of correctly repaired broken locators in the multi-locators and
analysed all the actions performed by the repair algorithm
described in Section III-B.
To answer RQ5, only for three different applications (Claroline,
AddressBook, PPMA) we have built two Selenium WebDriver
test suites: one that localizes the web elements using the
absolute XPath and the other that uses the multi-locator
selection algorithm. We have re-executed three times these
test suites comparing the mean times of the single locator
versions with the ones of the multi-locator, so as to measure
the average overhead of the multi-locator for each application.

D. Results

Table II reports the data used to answer RQ1, RQ2, and RQ3.
For each application and for each target web element, it reports
the number of broken locators and the corresponding breakage
percentage over the total number of locators. In the last two
columns, aggregate results over all the six web applications
are also reported.

Based on these results we can notice that absolute XPath
locators are the most fragile in the considered set of locators.
In three cases (i.e., Collabtive, MRBS, PPMA) out of six, all
absolute locators are broken. Considering all six applications,
449 over 675 absolute locators (i.e., 67%) are broken.

The results of FirePath relative XPath locators are better
than those of absolute XPath locators. Still, in MRBS all relative
locators are broken and over the six applications, 331 out of
675 absolute locators (i.e., 49%) are broken.

The locators generated by state of the art XPath generator
algorithms targeting web testware evolution are more robust
than the previous ones. In particular, the most robust is
ROBULA+, whose XPath locators are broken only in 12% of the
cases (78 out of 675). The locators produced by Selenium IDE
achieve also a very high level of robustness (16% of broken
locators). The algorithm proposed by Montoto et al. is also
quite good, with 151 broken locators out of 675 (i.e., 22%).

In order to answer our research questions, we analyse the
experimental results quantitatively. The reasons and implications
of the results are further analysed qualitatively in Section IV-E.

TABLE III. Actions performed by the repair algorithm (Correctly Repaired, Incorrectly Repaired, Unmodified and Unrepairable)
Address Book Collabtive MRBS Claroline PPMA Mantis All Apps

C1 Correct Locators - No Repair Triggered 279 434 198 936 64 341 2252

C2 Correct Locators - Incorrectly Repaired 1 0 4 2 0 0 7

CT Total Correct Locators (C1+C2) 280 434 202 938 64 341 2259

B1 Broken Locators - Correctly Repaired 106 176 212 149 41 164 848

B2 Broken Locators - No Repair Triggered 10 0 11 31 5 2 59

B3 Broken Locators - Incorrectly Repaired 4 0 20 22 10 3 59

B4 Broken Locators - Unrepairable 0 15 65 35 30 5 150

BT Total Broken Locators (B1+B2+B3+B4) 120 191 308 237 86 174 1116

T Total Locators (CT+BT) 400 625 510 1175 150 515 3375

B
ro

k
e
n

C
o

rr
e
c

t

RQ1: The unweighted multi-locator (worst order) is more or
equally robust as single locators in almost all the cases, with
the only exception of Selenium IDE and ROBULA+ in the
cases of Mantis and Claroline. Overall, multi-locator (worst
order) is able to outperform ROBULA+, the algorithm that
produces the most robust locators, globally reducing the number
of broken locator from 78 to 68 (12.8% reduction). Multi-
locator (best order) improves the results of multi-locator (worst
order) and further reduces the number of broken locators, to
59, corresponding to reduce by 24.4% the number of broken
locators w.r.t. ROBULA+. Only in the case of MRBS, multi-
locator (worst order) is able to perform slightly better (i.e., -2
broken) than multi-locator (best order).
RQ2: The adoption of the weights (see columns “Weight” in
Table II) allows multi-locator to further improve the results
provided by multi-locator (worst and best order). Indeed,
weighted multi-locator is able to reduce the number of broken
locators to 55, corresponding to reduce by 29.5% the number
of broken locators w.r.t. ROBULA+, and to achieve an overall
percentage of only 8% broken locators. It is interesting to
notice that in this case, there is no single locator algorithm,
among the ones we considered, which is able to outperform
weighted multi-locator in any case. Only in the case of MRBS,
multi-locator (worst order) is able to perform slightly better
(i.e., -2 broken) than weighted multi-locator.
RQ3: The results in Table II show that weighted multi-locator
is able to reach the theoretical limit in 3 cases out of 6, i.e.,
for web applications Collabtive, PPMA, and Mantis. In the
other cases, its results are quite close to the best achievable
ones (with the considered algorithms). Indeed, applying the
multi-locator using the outputs (i.e., the locators) of the five
selected algorithms, it is not possible to have less than 46
broken locators out 675 and weighted multi-locator has only
55 broken locators in total (i.e., it is only 1.3% from the best
possible results, corresponding to only 9 locators out of 675).
RQ4: Table III reports the data about the execution of the
Multi-locator Repair algorithm described in Section III-B. The
analysis is conducted considering each locator composing the
multi-locator, thus in our case five for each target web element
(e.g., AddressBook has 80 web elements thus there are 400
locators). The locators composing the multi-locator set L can be
correct or broken depending on whether they are able to locate
the correct element on D′ or not. The correct locators in L
can be: (C1) simply copied in L′ if the multi-locator is correct;
or (C2) incorrectly repaired, if the multi-locator selects the
wrong element. The broken locators in L can be: (B1) correctly
repaired if the multi-locator is correct; (B2) simply copied in
L′ if the multi-locator is broken and selects the same wrong
element; or (B3) incorrectly repaired, if the multi-locator selects
a different wrong element. When the multi-locator is not able

to select any element on D′, i.e., when all the locators in L are
not able to select any element, no repair action is possible (B4).
From the data, it is possible to notice that in the majority of the
cases (92%), our algorithm performs the correct action (see the
rows C1 and B1 in green), i.e., for 3100 locators out of 3375.
Overall, 848 locators are correctly repaired (C1) over a total
1116 broken locators (76%). The incorrect repairs of correct
locators (C2) are only 7 out of 2259 (0.31%). To answer RQ4,
we focus only on the repair actions, i.e., when the locators are
modified (914 cases, B1, C2, B3), and we can observe that 848
locators (i.e., 93%) are correctly repaired (B1), while only 66
locators are repaired incorrectly (C2, B3).
RQ5: The overhead of the multi-locator selection algorithm on
test case execution is very low in general. Indeed, in the worst
case, Claroline, the test suite is composed by 18 test cases and
a complete execution of the entire test suite requires on average
84.6 seconds when using one locator per web element, which
corresponds in total to 132 XPath locators being evaluated, and
87.8 seconds when using the multi-locator selection, which
corresponds in total to 660 XPath locators being evaluated. Thus,
the increment of the time required for a complete execution
of the test suite is only 3.8%. With AddressBook and PPMA,
composed respectively by 13 and 21 test cases, the overhead
due to the introduction of the multi-locator is even lower, being
respectively 2.9% (from 84 to 420 XPaths are evaluated) and
2.8% (from 143 to 715 XPaths are evaluated).

E. Qualitative Analysis and Discussion

Weighted multi-locator has the best performance, but even
the locators selected by the unweighted multi-locator are
more robust that the ones generated by the best algorithm
considered in this work (i.e., ROBULA+). In case of a tie,
the unweighted multi-locator selects randomly the locator to
return. Hence, the robustness of the unweighted multi-locator
is intermediate between the worst order and the best order
of selection, considered in our experiment. Since unweighted
multi-locator (worst order) is already better than ROBULA+, we
conclude that the multi-locator is beneficial even when uniform
weights are used. Analysing the results, we discover that often
2 or 3 locators (generally the ones generated by ROBULA+,
Montoto and Selenium IDE) select the correct target element.
Using the unweighted multi-locator, the votes assigned to the
correct web elements range typically from 2 to 5, thus there
are no cases in which an element is chosen since voted only
by one algorithm and the unweighted variant is often enough
to improve the performance of single locators.

The difference between multi-locator (best order) and multi-
locator (worst order) is due to the cases in which there is parity
in the votes assigned to the candidate web elements (in the
other cases their behaviours are exactly the same). Looking

at Table II, we can see that the absolute locators generated
by FirePath are usually broken in the highest number of cases
(67%), while the ones generated by ROBULA+ are broken in the
lowest number of cases (12%). Thus, in case of parity, multi-
locator (worst order) selects the locator generated by FirePath,
which has a good chance of being broken, while multi-locator
(best order) selects the element voted by ROBULA+, having
many more chances of being correct. Since the unweighted
multi-locator makes a random choice in case of parity, its
actual performance will be intermediate between multi-locator
(best order) and multi-locator (worst order) which means that,
overall, it performs better that any single locator.

Weighted multi-locator has the best performance. Its im-
provement over the unweighted multi-locator is a reduction of
broken locators between 4 and 13 (best/worst order, respec-
tively). It is interesting to notice that making an optimally
ordered choice (best order) in case of parity leads to very
similar results as those obtained with carefully determined
weights. On the other hand, such optimal ordering is unknown
when the unweighted multi-locator is used, so it represents
just the upper bound for the performance expected when the
multi-locator has to make a random choice, in case of parity.

The locator repair algorithm is able to perform the correct
repairs in most of the cases. In Collabtive it repairs all the
broken locators without making any error. In fact, in this case
every time the multi-locator is broken (3 cases) it does not
select any element. Thus the repair algorithm is not triggered.
Overall, the multi-locator is broken in 55 cases of which in 30
cases (false negatives) it does not select any element – hence,
no incorrect repair is performed – in 25 cases (false positives)
it selects the wrong element – hence, the repair algorithm is
executed using the wrong element to repair the other locators.

If we consider the weights assigned to the five locators
creation algorithms by the cross-validation procedure (see
columns “Weight” in Table II), we can see that they agree
on the ranking of the algorithms, independently of the web
application left out by the cross-validation procedure. ROBULA+
is always assigned the highest weight, followed by Selenium
IDE and Montoto. FirePath Relative ID-based and FirePath
Absolute close the ranking. This means that for a practical
adoption of the multi-locator it is not even necessary to execute
the cross-validation procedure to obtain the weights, since
any reasonable weight assignment that respects the order
ROBULA+, Selenium IDE, Montoto, FirePath Relative ID-based
and FirePath Absolute is expected to work fine. For instance,
the following weights can be used in practice: ROBULA+ 0.90,
Selenium IDE 0.85, Montoto 0.80, FirePath Relative ID-based
0.50, and FirePath Absolute 0.33. On our subjects, these weights
provide exactly the same result of the weighted multi-locator
with cross validated weights.

The other issue potentially affecting the adoption of the
multi-locator is the test case execution overhead, but our
experimental data show that this is negligible, even in the worst
case. Hence, we conclude that: the proposed approach (1) is
very easy to adopt (e.g., weights can be assigned heuristically,
without using cross-validation), and (2) offers major benefits, in
terms of robustness of the locators during software evolution.

F. Threats to Validity

One threat to the internal validity of our study is associated
with the approach used to select the target web elements. To

remove this threat, we adopted the procedure described in
Section IV-C. While the choice of the releases considered
in this study may have affected the results of RQ1, RQ2,
RQ3, we have no reason to believe that the ranking of the
algorithms in terms of broken locators, as reported in Table II,
would vary significantly considering different releases, although
the magnitude of our findings might change. Concerning the
strategy used to assign weights to the weighted multi-locator,
it is clear that other choices (e.g., minimising the number
of broken locators selected by the multi-locator, instead of
just measuring the robustness of each algorithm) are possible.
However, from the obtained results it is clear that this choice
is not so critical, since a simple weight assignment based
on each algorithm’s robustness gives already results close to
the theoretical limit. Finally, concerning the generalization of
results, we selected real open source web applications belonging
to different domains, which makes the context realistic, even
though further studies with other applications are necessary to
corroborate the obtained results.

V. RELATED WORK

The problem of test script maintenance and repair has been
extensively studied by the research community. Related to our
work are a number of test case and test script repair techniques,
and some others using voting mechanisms in different testing
activities.

Test case/script repair. Grechanik et al. [7] describe
an approach for maintaining and evolving test scripts by
means of GUI-tree diffs, in order to find altered GUI objects.
Choudhary et al. [3] propose WATER, a tool that suggests
changes that can be applied to repair test scripts for web
applications. It compares the test executions of two successive
releases of a web application. By analysing the difference
between the two executions, it suggests repairs to the script
code. Thummalapenta et al. [19] present ATA, a tool to
automatically repair test scripts. For certain types of applications
or environment changes, they are able to repair the XPath
on-the-fly. Yandrapally et al. [23] show a novel solution to
the problem of test-script fragility based on what they define
as “contextual clues”. Their approach is promising because it
takes advantage of multiple aspects of the representation of
the application, including textual information used as anchor
point. Fard et al. [14] mine an existing test suite to gather
input and assertion information, and extend it to the uncovered
portions of the web application by means of automated crawling
and test generation techniques. Mirzaaghaei et al. [15] present
TestCareAssistant, a technique that automatically repairs test
cases broken due to changes in method declarations. Daniel et
al. [4] use GUI change refactoring information to repair the test
code accordingly. Memon et al. [13] describe a method to repair
GUI test scripts by means of user-specified transformations.
Zhang et al. [24] present FlowFixer, a technique able to
automatically migrate scripts towards a new and evolved GUI.

Differently from the works aforementioned, our work aims
at strengthening the test scripts by means of a multi-locator,
which is useful in two respects: (I) to make the test script
more robust, by taking advantage of redundant information;
(II) to repair the locators set itself, for the successive releases
of the software. To the best of our knowledge, no previous
work proposed and evaluated the effectiveness of a voting
procedure within such context, designed to make the script

more resilient to software changes. Our repair mechanism is
also different from the existing ones, because it resorts on
voting to select the repair action among those provided by the
alternative algorithms aggregated by the multi-locator.

Voting mechanisms. Tsai et al. [21] use a voting mecha-
nism to help with failure detection and oracle creation. The
voting mechanism aims at solving the test oracle problem
statistically, by analysing the outputs of the web services in
group testing. During execution of the voting mechanism, the
reliability of web services is calculated and test cases are ranked
according to their ability to reveal faults. Nguyen et al. [17]
use an IR-based ranking technique for test case prioritisation.

Differently from these works, we use a voting mechanism
to choose the best locator among those in the multi-locator set.

VI. CONCLUSIONS AND FUTURE WORK

The main sources of fragility for web test scripts are
web element locators that must be repaired manually when
the software evolves and locators get broken. Algorithms for
the creation of robust locators have different strengths and
weaknesses; they often exhibit complementary performance.
For this reason, we proposed the multi-locator, a novel approach
that uses a voting decision procedure to aggregate the results
of multiple, alternative locators for producing a consolidated
locator. Adoption of the multi-locator requires minimal effort
and has minimal impact: (1) its parameters (weights) can be
easily approximated heuristically; (2) the automated repair
actions it performs are correct most of the times; (3) the
execution overhead introduced by the multi-locator selection
algorithm is negligible, and (4) existing single locator test suites
can be migrated to the multi-locator approach automatically.
Experimental results show that the multi-locator is substantially
more robust than single locators, since it reduces by 29.5%
the number of broken locators w.r.t. the best single locator
algorithm (ROBULA+). This may represent a substantial saving
of test case repair effort in case, e.g., of large industrial test
suites.

In our future work, we plan to: (1) experiment with more
web applications, (2) analyse the effectiveness of the repair
algorithm across more than two releases of the applications,
(3) analyse the contribution of the various algorithms to the
creation of the multi-locators. Moreover, we plan to complete
the development of the tool for automating the migration of
existing DOM-based test suite to the multi-locator approach
using a technique similar to the one we adopted in a previous
work [12], [18]. Once the tools will be completed, we plan
to make it available for download together with a Java
implementation of each XPath generation algorithm used by the
multi-locator. We will also extend our work beyond the area of
structural locators, considering visual locators [10], which take
advantage of image recognition to identify the web elements.

REFERENCES

[1] B. Beizer. Software Testing Techniques (2nd Ed.). Van Nostrand Reinhold
Co., New York, NY, USA, 1990.

[2] S. Berner, R. Weber, and R. Keller. Observations and lessons learned
from automated testing. In Proceedings of 27th International Conference
on Software Engineering, ICSE 2005, pages 571–579. IEEE, 2005.

[3] S. R. Choudhary, D. Zhao, H. Versee, and A. Orso. WATER: Web
application test repair. In Proceedings of 1st International Workshop on
End-to-End Test Script Engineering, ETSE 2011, pages 24–29. ACM,
2011.

[4] B. Daniel, Q. Luo, M. Mirzaaghaei, D. Dig, D. Marinov, and M. Pezze.
Automated GUI refactoring and test script repair. In Proceedings of 1st
International Workshop on End-to-End Test Script Engineering, ETSE
2011, pages 38–41. ACM, 2011.

[5] M. Fewster and D. Graham. Software Test Automation: Effective Use of
Test Execution Tools. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1999.

[6] S. Geisser. Predictive Inference. Chapman & Hall/CRC Monographs
on Statistics & Applied Probability. Taylor & Francis, 1993.

[7] M. Grechanik, Q. Xie, and C. Fu. Maintaining and evolving GUI-
directed test scripts. In Proceedings of 31st International Conference
on Software Engineering, ICSE 2009, pages 408–418. IEEE, 2009.

[8] M. Leotta, D. Clerissi, F. Ricca, and C. Spadaro. Comparing the
maintainability of Selenium WebDriver test suites employing different
locators: A case study. In Proceedings of 1st International Workshop
on Joining AcadeMiA and Industry Contributions to testing Automation,
JAMAICA 2013, pages 53–58. ACM, 2013.

[9] M. Leotta, D. Clerissi, F. Ricca, and P. Tonella. Capture-replay vs.
programmable web testing: An empirical assessment during test case
evolution. In Proceedings of 20th Working Conference on Reverse
Engineering, WCRE 2013, pages 272–281. IEEE, 2013.

[10] M. Leotta, D. Clerissi, F. Ricca, and P. Tonella. Visual vs. DOM-based
web locators: An empirical study. In Proceedings of 14th International
Conference on Web Engineering (ICWE 2014), volume 8541 of LNCS,
pages 322–340. Springer, 2014.

[11] M. Leotta, A. Stocco, F. Ricca, and P. Tonella. Reducing web test
cases aging by means of robust XPath locators. In Proceedings of 25th
International Symposium on Software Reliability Engineering Workshops,
ISSREW 2014, pages 449–454. IEEE, 2014.

[12] M. Leotta, A. Stocco, F. Ricca, and P. Tonella. Automated generation
of visual web tests from DOM-based web tests. In Proceedings of 30th
Symposium on Applied Computing, SAC 2015. ACM, 2015.

[13] A. M. Memon. Automatically repairing event sequence-based GUI test
suites for regression testing. ACM Transactions on Software Engineering
and Methodology (TOSEM), 18(2):4:1–4:36, Nov. 2008.

[14] A. Milani Fard, M. Mirzaaghaei, and A. Mesbah. Leveraging existing
tests in automated test generation for web applications. In Proceedings
of 29th International Conference on Automated Software Engineering,
ASE 2014, pages 67–78. ACM, 2014.

[15] M. Mirzaaghaei, F. Pastore, and M. Pezze. Automatically repairing
test cases for evolving method declarations. In Proceedings of 26th
International Conference on Software Maintenance, ICSM 2010, pages
1–5. IEEE, 2010.

[16] P. Montoto, A. Pan, J. Raposo, F. Bellas, and J. Lopez. Automated
browsing in AJAX websites. Data & Knowl. Eng., 70(3):269–283, 2011.

[17] C. D. Nguyen, A. Marchetto, and P. Tonella. Test case prioritization
for audit testing of evolving web services using information retrieval
techniques. In Proceedings of 9th International Conference on Web
Services, ICWS 2011, pages 636–643. IEEE, 2011.

[18] A. Stocco, M. Leotta, F. Ricca, and P. Tonella. PESTO: A tool
for migrating DOM-based to visual web tests. In Proceedings of
14th International Working Conference on Source Code Analysis and
Manipulation, SCAM 2014, pages 65–70. IEEE, 2014.

[19] S. Thummalapenta, P. Devaki, S. Sinha, S. Chandra, S. Gnanasundaram,
D. D. Nagaraj, and S. Sathishkumar. Efficient and change-resilient
test automation: An industrial case study. In Proceedings of 35th
International Conference on Software Engineering, ICSE 2013, pages
1002–1011. IEEE, 2013.

[20] P. Tonella, F. Ricca, and A. Marchetto. Recent advances in web testing.
Advances in Computers, 93:1–51, 2014.

[21] W.-T. Tsai, Y. Chen, D. Zhang, and H. Huang. Voting multi-dimensional
data with deviations for web services under group testing. In Proceedings
of 25th International Conference on Distributed Computing Systems
Workshops, ICDCS Workshops 2005, pages 65–71. IEEE, 2005.

[22] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and A. Wesslén.
Experimentation in Software Engineering - An Introduction. Kluwer
Academic Publishers, 2000.

[23] R. Yandrapally, S. Thummalapenta, S. Sinha, and S. Chandra. Robust
test automation using contextual clues. In Proceedings of the 2014
International Symposium on Software Testing and Analysis, ISSTA 2014,
pages 304–314. ACM, 2014.

[24] S. Zhang, H. Ly, and M. D. Ernst. Automatically repairing broken
workflows for evolving GUI applications. In Proceedings of the 2013
International Symposium on Software Testing and Analysis, ISSTA 2013,
pages 45–55. ACM, 2013.

