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Abstract—We address the question: to what extent does cover-
ing requirements ensure that a test suite is effective at revealing
faults? To answer it, we generate minimal test suites that cover
all requirements, and assess the tests they contain. They turn
out to be very poor—ultimately because the notion of covering
a requirement is more subtle than it appears to be at first. We
propose several improvements to requirements tracking during
testing, which enable us to generate minimal test suites close to
what a human developer would write. However, there remains a
class of plausible bugs which such suites are very poor at finding,
but which random testing finds rather easily.

I. INTRODUCTION

It is common practice to base test cases on requirements.
For example, DO-178C [1] (the primary document on which
certification of commercial avionics software is based) insists
that all test cases be traceable to requirements, and that test
cases exist for each requirement. Now, DO-178C does insist
on other forms of coverage also—structural code coverage and
coverage of control and data coupling. Yet the emphasis on
requirements coverage raises the question: to what extent does
covering requirements ensure that test suites will reveal faults?

In this paper, we study this question, first in the context of
a small but illustrative example, and then in the (much larger)
context of an AUTOSAR Basic Software component (part
of the standardised software that runs in cars). To eliminate
human bias, we generate requirements-based test suites, from
models annotated to track the requirements that each test case
covers. Our test suites are minimal—they do no more than
necessary to cover each requirement. We assess the generated
test suites by inspection, comparing each test to a test case
that a human developer might write, and also by comparison
with random testing.

The results turn out to depend crucially on what it means
to cover a requirement. We start from informal require-
ments in natural language, formalize them in our model,
and then formalize the notion of covering a requirement in
our requirements-tracking code. We will see that this latter
notion is much subtler than it first appears to be, especially
in the context of black-box testing where the internal state
of the SUT is not observable. This leads us to refine our
requirements tracking, resulting in much better generated
minimal test suites. Even so, we identify a class of plausible
bugs, appearing both in the illustrative example and in the
AUTOSAR component, which our generated minimal test
suites cannot find. We argue that our final generated suites
are close to what a diligent developer would write—and thus
our conclusions may apply not only to generated test suites,

but also to those written by hand with requirements coverage
as the primary goal.

In section II we introduce our motivating example, and
explain how we model it and how we track its requirements.
We generate a minimal test suite that covers all the require-
ments, which is surprisingly poor, and go on to introduce a
number of refinements to requirements tracking that improve
the generated minimal suite greatly. The final result—we
claim—is a generated test suite that closely resembles what
a diligent human developer would write. Nevertheless, we
suggest a class of plausible bugs which this kind of test suite
cannot find, but random testing finds easily. In section III we
discuss a much larger example, the AUTOSAR COM stack,
for which we had a model available, already annotated to
track requirements covered in each test. We generated minimal
test suites with full requirements coverage, and found that the
lessons from the smaller example apply here too. However,
we also identified several other improvements to requirements
tracking, which are necessary to generate a good test suite
for this more complex example. We also found that the same
category of plausible bug is not found by a requirements-based
test suite in this setting either—but is easily found by random
testing.

II. A SIMPLE EXAMPLE: THE PROCESS REGISTRY

The process registry is a heavily used part of the Erlang
virtual machine, which maintains a mapping between names
and Erlang process identifiers (“pids”) so that Erlang programs
can find named services on their local node. The API is simple,
and we consider just the three most important functions:
• register(Name,Pid), which adds the given process

identifier (“pid”) to the registry with the given name,
• unregister(Name), which removes the given name

and its associated registered process from the registry,
• whereis(Name), which returns the pid currently asso-

ciated with the given name in the registry.
The registry maintains the following invariants:
• Each name may appear at most once in the registry
• Each pid may appear at most once in the registry
• Every process in the registry is alive

To preserve the invariants, calls of register that would lead
to an invalid state raise an exception and do nothing instead,
and processes that die while in the registry are removed from
it automatically. More precisely, the API should fulfill the
requirements in Figure 1. Each of these requirements specifies



REG001 When register is called with a name and pid,
neither already in the registry, then it should
add the pair to the registry and return true.

REG002 When register is called with a name that is
already in the registry, then it should raise an
exception and leave the registry unchanged.

REG003 When register is called with a pid that is
already in the registry, then it should raise an
exception and leave the registry unchanged.

REG004 When register is called with a pid that is dead,
then it should raise an exception and leave the
registry unchanged.

UNR001 When unregister is called with a name that
is in the registry, then it should remove the
name and its associated pid from the registry,
and return true.

UNR002 When unregister is called with a name that
is not in the registry, then it should raise an
exception and leave the registry unchanged.

WHE001 When whereis is called with a name that is
in the registry, then it should return the asso-
ciated pid, and leave the registry unchanged.

WHE002 When whereis is called with a name that is not
in the registry, then it should return the atom
‘undefined’, and leave the registry unchanged.

DIE001 When a process dies while its pid is in the
registry, then the pid should be removed from
the registry.

Fig. 1. Requirements on the process registry.

the behaviour of an API call in one case; since there are nine
requirements, we might expect to cover them with nine test
cases.

A. Testing the registry with QuickCheck

The testing tool we use in this paper is Quviq QuickCheck
[2], a commercial tool based on Haskell QuickCheck [3] which
uses a specification to generate, execute, and adjudge random
tests. Quviq QuickCheck supports state machine models, used
to generate test cases consisting of sequences of calls to the
SUT [4], [5]. These models define a state transition function
for each call, used to track the model state as a test is run, and
pre- and postconditions used to determine whether or not a test
has failed. Failing tests are shrunk to minimal counterexamples
and reported to the user1.

We generate tests for the registry consisting of calls to the
three functions under test, together with spawn (which creates
a new pid, for use as test data), and kill (which kills a pid).
The model maintains a state containing
• the pids which have been spawned in the current test (and

so are available for registering or killing),
• the name–pid pairs which should currently be in the

registry, and

1QuickCheck never considers a test to be ‘inconclusive’. Tests which might
be considered inconclusive by other approaches are considered instead to
pass—i.e. the test case should not be reported to the user.

• the pids which have been killed.
Tests are generated by repeatedly choosing an operation at
random, choosing names from a small predefined set, and
choosing pids from the set in the model state. The model
defines preconditions to ensure that, for example, we do not try
to call register if no pids have been spawned (since there
is no parameter we could pass as the pid), and postconditions
to check that the return value of each operation is correct
according to the applicable requirements (or, if a call is
expected to fail, that an exception was indeed raised).

From this model we can generate and run random tests such
as the following:

spawn() -> <0.917.0>
unregister(a) -> {’EXIT’,...}
kill(<0.917.0>) -> ok
spawn() -> <0.918.0>

This is the form in which QuickCheck reports failing tests,
showing calls made and their results (where <0.917.0> is a
pid, and {’EXIT’,...} denotes an exception). This is also
the form in which we will present test cases in this paper—as
a sample run, with the actual values returned. Note that these
are not expected values—each time we run this test we expect
different pids to be spawned. The return values are checked
by the postconditions in the model, but these are not shown
when we present the test cases.

QuickCheck state machine models support the annotation of
each call in a test with a set of “features”, which can be any
Erlang values—for example, atoms representing the names of
the requirements tested by that call. We annotated our model
to collect each of the requirements in Figure 1 when a call
fulfilling the conditions stated in the requirement is made.

B. Generating a minimal test suite

Given a model annotated with requirements, QuickCheck
can generate a minimal test suite that covers every reachable
requirement as follows. We start with an empty test suite S,
and an empty set of covered requirements R. Then we use
QuickCheck to test the property that no requirements other
than those in R are reachable. This property is false, and
QuickCheck reports a minimal counterexample—a minimal
test that covers at least one requirement not in R. We add the
test case to S, and the newly covered requirements to R, and
repeat. Eventually QuickCheck will not be able to cover any
new requirements in the time we allow for testing—usually
a few minutes—and the process terminates. At this point we
have a test suite which covers the same requirements as a very
large number of random tests; moreover, we know why each
test case was included—we know which requirements it tests
that were not tested by any previous test.

Applying this method to the registry model we have de-
scribed results in the test suite in Figure 2. (Note that require-
ments tested by earlier tests in the table are not mentioned
again if they are also covered by a later test). Indeed, this
test suite contains nice simple tests for each requirement—for
example, test #1 tests that whereis returns undefined for
a name which has not been registered, while test #8 tests that it



Reqs Test case
tested

1 WHE002 whereis(a) -> undefined

2 REG001 spawn() -> <0.20612.0>
register(a, <0.20612.0>) -> true

3 UNR002 unregister(a) -> {’EXIT’,...}
4 REG004 spawn() -> <0.20635.0>

kill(<0.20635.0>) -> ok
register(a, <0.20635.0>) ->
{’EXIT’,...}

5 UNR001 spawn() -> <0.20650.0>
register(a, <0.20650.0>) -> true
unregister(a) -> true

6 DIE001 spawn() -> <0.20665.0>
register(a, <0.20665.0>) -> true
kill(<0.20665.0>) -> ok

7 REG002,
REG003

spawn() -> <0.20680.0>
register(a, <0.20680.0>) -> true
register(a, <0.20680.0>) ->
{’EXIT’,...}

8 WHE001 spawn() -> <0.20695.0>
register(a, <0.20695.0>) -> true
whereis(a) -> <0.20695.0>

Fig. 2. Requirements-based test suite for the registry.

returns the correct pid for a name which has been registered.
(Recall that the correctness of the result is checked by the
postcondition in the model, not shown here).

C. Requirements in combination

Most test cases in the table test one requirement, and simply
set up the scenario that the requirement describes. However,
one test case stands out—test #7 tests two requirements in
one test! reg002 specifies that register should raise an
exception if its name parameter is already registered, while
REG003 specifies that register should raise an exception
if its pid parameter is already registered. Test case #7 cleverly
tests both requirements at the same time, by passing both
a name that is already registered, and a pid that is already
registered!

But is this really a good test of either requirement? Both
requirements demand the same behaviour—that register
raise an exception—so, in fact, if the implementation of the
registry fulfills either of these requirements, then the test case
will exhibit this behavior. It follows that the other requirement
might not be satisfied in general. Since we can’t know, in this
case, which of the two requirements is actually satisfied, then
this test case actually tests neither requirement properly.

We can see from this example that, when requirements over-
lap, then it is not necessarily enough to test each requirement
at least once. We might wish to test each requirement in
isolation—or in different combinations. Test #7 is, after all,
an interesting test case, because its behavior is constrained
by two independent requirements, and the test does at least
demonstrate that both can be fulfilled simultaneously.

Luckily, we can easily adapt our model to distinguish be-
tween different combinations of requirements. The adaptation
consists of collecting lists of requirements as features of calls

Reqs Test case
tested

9 REG003 spawn() -> <0.23653.0>
register(a, <0.23653.0>) -> true
register(b, <0.23653.0>) ->

{’EXIT’,...}
10 REG002 spawn() -> <0.23668.0>

spawn() -> <0.23669.0>
register(c, <0.23669.0>) -> true
register(c, <0.23668.0>) ->

{’EXIT’,...}
11 REG002,

REG004
spawn() -> <0.23686.0>
spawn() -> <0.23687.0>
kill(<0.23686.0>) -> ok
register(a, <0.23687.0>) -> true
register(a, <0.23686.0>) ->

{’EXIT’,...}

Fig. 3. Tests for combinations of requirements.

of register, rather than individual requirements. Instead
of associating both features REG002 and REG003 with the
second call of register in test case #7, we associate the
single feature [\req{REG002},\req{REG003}]. When
we do so, and regenerate our minimal test suite, we obtain
the same eight tests appearing in Figure 2, along with three
new tests, shown in Figure 3. As well as the expected tests
for REG002 and REG003 separately, this new test suite also
includes a test of REG002 and REG004 in combination
(#11)—here the last call of register fails both because the
name is already registered, and because the pid to be registered
is dead. This test demonstrates the consistency of REG002 and
REG004, so it is interesting, but we suspect most developers
would overlook this possibility!

D. Observing Requirements on the State
In fact, we still have reason to be dissatisfied with the

generated test suite. Consider test case #6,

spawn() -> <0.20665.0>
register(a, <0.20665.0>) -> true
kill(<0.20665.0>) -> ok

which is supposed to test DIE001: “When a process
dies while its pid is in the registry, then the pid should be
removed from the registry”. The generated test case is clearly
unsatisfactory: while it does, indeed, invoke kill on a pid that
is in the registry, it does not check that the pid was removed
as a result (because this is not—and cannot be—part of the
postcondition of the call)! Thus we cannot really claim that
the requirement has been properly tested.

In fact, the same problem appears in many of our generated
tests. Consider test #5,

spawn() -> <0.20650.0>
register(a, <0.20650.0>) -> true
unregister(a) -> true

which is supposed to test UNR001: “When unregister
is called with a name that is in the registry, then it should
remove the name and its associated pid from the registry, and
return true”. When this test is run, then the postcondition for



unregister does check that the final call returns true, but
it does not check that the name has been removed from the
registry. In general, the simple test cases we have generated
above only check the return-value part of the requirements,
not that the state changes specified have occurred.

A human developer would probably address this by extend-
ing test case #6 to check that the name and pid were indeed
removed, as in

spawn() -> <0.20665.0>
register(a, <0.20665.0>) -> true
kill(<0.20665.0>) -> ok
whereis(a) -> undefined

Now the postcondition for whereis holds only if the name
a was removed from the registry by the call to kill. The call
to whereis observes the required effect of the kill, and
the requirement has not really been properly tested until this
observation is made. Thus our original approach—to consider
a requirement “tested” once a call matching its conditions
has been made—was inadequate, and needs to be refined to
take observations into account. This is strongly reminiscent of
Whalen et als. extension of MCDC to take observation into
account [6].

E. Deferred requirements

We extend our model by adding “deferred requirements”
to the model state. A deferred requirement is a requirement
which will have been tested, once a given observation is made.
In our model, we simply keep a set of requirement/observation
pairs. We defer requirements by adding them to this set, along
with a name whose state in the registry needs to be observed
to complete the test of the requirement. Note that the decision
to defer a requirement is made by the human developer, not
a tool, often in response to dissatisfaction with the generated
minimal tests.

Specifically, we adapt the model so that

• REG001 is deferred until the registered name is observed,
• UNR001 is deferred until the unregistered name is ob-

served,
• DIE001 is deferred, if the process being killed is in the

registry, until the corresponding name is observed.

The other requirements (corresponding to failing calls) have
no effect, and so we do not defer them. Names are observed
by calling whereis—so we define the “features” of a call
of whereis to include all the requirements deferred until an
observation of that name.

Regenerating a minimal test suite results in a suite of only
10 tests, made up of tests presented earlier and three new ones
in Figure 4. The second and third tests are just tests #6 and
#5 presented above, extended with a final call of whereis
to verify that the registry was correctly updated. The first test
was actually already present in our previous suite (#8), where
its purpose was to test a successful call of whereis. But
of course, it also tests a successful call of register, and
observes its effect on the registry, so it is now labelled with
requirement REG001 as well.

Reqs Test case
tested
WHE001,
REG001

spawn() -> <0.29956.1>
register(a, <0.29956.1>) -> true
whereis(a) -> <0.29956.1>

DIE001 spawn() -> <0.29971.1>
register(a, <0.29971.1>) -> true
kill(<0.29971.1>) -> ok
whereis(a) -> undefined

UNR001 spawn() -> <0.9814.2>
register(a, <0.9814.2>) -> true
unregister(a) -> true
whereis(a) -> undefined

Fig. 4. New tests to cover deferred requirements.

F. Generalizing observations

In the previous section we defined deferred requirements,
which we considered tested when the change was observed
using whereis—but there is more than one way to observe
the registration state of a name. In fact, not only whereis,
but also register and unregister behave differently
depending on whether or not the name they are passed is
already registered. So we can actually observe the state of
a name with a call to one of these functions instead. We
extended our model to make the ‘observations’ made by each
call explicit; specifically
• register(Name,Pid) observes Name,
• unregister(Name,Pid) observes Name,
• whereis(Name) observes Name, and
• kill and spawn observe nothing.

Recall that each deferred requirement is paired in the model
state with the name that should be observed to trigger the
requirement; to generalise the notion of observation, we just
added features to our model so that any call to a function
F, which observes Name, also has the feature R/F for each
deferred requirement R that is paired with the same Name.
Since we tag each deferred requirement with the name of the
function which observes it, then our generated test suites will
contain tests for each way that a deferred requirement can be
observed.

With this more refined notion of deferred features, we obtain
a suite of 15 tests. The additional tests (in Figure 5) do serve
a real purpose: imagine, for example, an implementation of
the registry which did not remove dead pids as soon as the
corresponding process dies, but only when a call of whereis
would return a dead pid. This wrong implementation would
pass all the tests in the minimal suites generated before this
section, but would be caught by two of the 4 new tests added
at this stage.

G. The Problem of Opaque State
We believe the suite of 15 test cases we have now generated

to be very close to what a (rather diligent!) human programmer
might write, if asked to test the nine requirements we stated—
in fact, we doubt that most human programmers would go
to the trouble to observe each state change using each of
whereis, register, and unregister. But we are not
yet satisfied! Compare the generated test for WHE001:



Reqs Test case
tested
DIE001/
register

spawn() -> <0.18281.2>
register(b, <0.18281.2>) -> true
kill(<0.18281.2>) -> ok
register(b, <0.18281.2>) ->

{’EXIT’,...}
UNR001/
unregister

spawn() -> <0.18337.2>
register(b, <0.18337.2>) -> true
unregister(b) -> true
unregister(b) -> {’EXIT’,...}

UNR001/
register

spawn() -> <0.18365.2>
register(c, <0.18365.2>) -> true
unregister(c) -> true
register(c, <0.18365.2>) -> true

DIE001/
unregister

spawn() -> <0.18380.2>
register(d, <0.18380.2>) -> true
kill(<0.18380.2>) -> ok
unregister(d) -> {’EXIT’,...}

Fig. 5. New tests with generalized observations.

spawn() -> <0.29956.1>
register(a, <0.29956.1>) -> true
whereis(a) -> <0.29956.1>

with the requirement it is intended to test: “When whereis
is called with a name that is in the registry, then it should return
the associated pid, and leave the registry unchanged”.

It is clear that nothing in the generated test case checks
the italicized part of the requirement! In fact, the same
objection can be raised to all of the generated test cases: many
requirements specify that the registry should be unchanged,
but even when a change of state is required, there is an
implicit requirement that the rest of the registry state remains
unchanged. None of the generated test cases check this.

Unfortunately, it is far from clear how test cases could check
this part of each requirement. The problem is that the state of
the registry is opaque, and the API we have available does not
allow us to observe it completely. There are infinitely many
possible registered names, which implies that no finite test case
can observe the entire registry state. Thus the requirements we
started with are fundamentally untestable.

Thus we are forced to satisfy ourselves with testing these
requirements partially. So far, we counted a deferred require-
ment as tested if the name whose state it changed was observed
by a later operation in the test case. We could also insist that,
say, at least one other name has its state observed. Or we could
insert operations that call whereis on all the five names used
in our tests, and check those results, thus observing the part of
the registry state that we suspect to be relevant. Or we could
require that calls to register that fail to modify a name
nevertheless are followed by an observation of that name (to
verify that no registration occurred), before we consider the
associated deferred requirement to be tested. If we generate
a test suite using this last idea, we obtain a suite of 26 tests,
including for example the following:

spawn() -> <0.22.4>
spawn() -> <0.23.4>
register(a, <0.22.4>) -> true
register(a, <0.23.4>) -> {’EXIT’,...}
whereis(a) -> <0.22.4>

This tests that registering the same name twice fails—but,
compared to our previously generated test case (#10), performs
a final call of whereis to check that the correct pid remains
in the registry.

We could continue to enrich our model to capture more of
these possible criteria, leading to larger and larger generated
test suites to cover the requirements—but to do so begins to
feel more and more ad hoc. It is far from clear that there is
any very canonical way to test for absence of state changes.
Let us instead consider a plausible bug, and see what it takes
to find it.

H. A Plausible State Corruption Bug
The bug we consider is that register, in the successful

case when it performs a registration, overwrites the contents
of the registry, rather than adds to it. It is easy to imagine
that an error in manipulating the registry data-structures could
result in this behaviour. It is also easy to simulate this bug in
our tests: in the case when register returns true, we just
unregister all the other names in the registry, before continuing
the test.

Simulating the bug in this way, we reran our generated test
suites to see which test cases catch it. Shockingly, all the test
cases we generated to test requirements pass! Not only do the
15 tests we think a human programmer might write pass, but
so do all 26 tests in the most extensive test suite we generated
above. It appears that the test cases we have generated to
cover the requirements are not effective at detecting corruption
of the state. Yet random testing with QuickCheck finds a
counterexample within a fraction of a second:

spawn() -> <0.6743.4>
spawn() -> <0.6744.4>
register(b, <0.6744.4>) -> true
register(a, <0.6743.4>) -> true
whereis(b) -> undefined

The counterexamples can appear in several forms, but this
one is typical. In this example, the fourth step (the second call
of register) fails to fulfill requirement REG001—it not only
adds a to the registry, but also removes b. This is observed
by the whereis in step 5. Interestingly, notice that, without
step 3, we would not be able to detect the bug even if we
could observe the state of the registry perfectly—because the
bug only appears when we set up the registry state so that the
corruption is detectable, by registering b before registering a,
so that there is data in the registry to be lost.

If we are to test robustly against state corruption, then we
need test cases which set up the state in many different ways,
perform the operation under test, and then observe the state in
many different ways—and it is very unclear what definition
of coverage might force us to generate this kind of test. Even
given such a definition, it would require a very large number
of test cases to achieve perfect coverage. For example, adding
the counterexample above to the test suite would not help, if
the bug were instead that names lexically earlier than the one
being registered were lost. . . a very plausible bug if an ordered
binary tree were used to represent the registry.

Random testing, on the other hand, does precisely what
is needed to detect this kind of bug: it tests each operation



in many different random states, and makes many different
random observations afterwards. This implies that if there is
a state-corruption bug, then it will eventually be discovered.

We may think of this as taking a test case that should
pass, and interspersing it with many other operations which—
according to the model—should not interfere with the passing
test. If the test fails, then one of those interspersed operations
must have corrupted the state.

I. The Distribution of Tested Requirements

In practice, we find that to get good results from random
testing, it is essential to collect statistics on our generated tests,
and tune generation to obtain a satisfactory distribution. For
example, it is invaluable to know how often each requirement
is tested, not just whether or not it is covered. If the statistics
we collect are misleading, then our tuning will be ineffective.
Deferring requirements leads to more accurate statistics. To
evaluate this effect, for each requirement in the set REG001–
REG004, UNR001, and DIE001, we measured the effect of
deferring it in 20 seconds of random tests. We found each one
to be covered 1.5–2× less often when deferred. In other words,
not deferring requirements leads us to overestimate how often
they are tested by up to a factor of 2.

III. A LARGER EXAMPLE: AUTOSAR COM

The registry example suggests that, for models instrumented
to track requirements tested:
• Minimal test suites generated to achieve requirements

coverage may test those requirements poorly.
• Inspecting the generated minimal tests can suggest sig-

nificant improvements to requirements tracking.
• Deferring counting a requirement as ‘tested’, until the

required side-effects are observed, results in generated
minimal test suites resembling those a human developer
would write.

• Even so, these test suites are poor at detecting state
corruption bugs.

To see whether these conclusions hold more generally, we took
as a second example a QuickCheck model of an AUTOSAR
component, already annotated to track the requirements cov-
ered in random tests. This model was developed for Volvo
Cars as part of a larger project to test implementations of
the AUTOSAR Basic Software for conformance with the
standard—during which more than 200 independent defects
were discovered, in six implementations from different ven-
dors, and in the AUTOSAR standard itself [7].

We chose the COM component for this study, which handles
communication of signals and packets over different com-
munication busses. The text based specification (AUTOSAR
version 4.0 rev 3) consists of 179 pages and contains 56
requirements; the QuickCheck model consists of 1445 lines of
Erlang code. The model and implementation are proprietary,
but the requirements are standardized [8].

AUTOSAR software is highly configurable. A configuration
file containing thousands of parameters is used to generate

parts of the software; the configuration determines the soft-
ware’s behaviour. We test a software version generated from a
configuration carefully constructed so that most requirements
are testable—but some are out of scope because they do not
apply to the configuration we use. Other requirements concern
software code structure and configuration, rather than dynamic
behaviour, and cannot be tested either. When untestable re-
quirements, and those that do not apply to our configuration
are discounted, 35 requirements remain, and these are the ones
we discuss in the rest of this paper.

Our model is instrumented to record the requirements
covered by each test. Whenever a random test is generated, the
requirements considered to be covered by that test are saved,
and at the end of testing then all the requirements covered
are reported. In practice, test runs consist of several thousand
generated random test cases, and the requirements coverage
information is used in much the same way as line coverage,
to determine whether any requirement is tested poorly or not
at all (in which case the model, or the test case distribution,
should be improved).

When testing the registry, we assumed that the actual names
used to register processes were unimportant—we could just
use names like a or b, and the actual choice of name did
not affect requirements coverage. But in the case of the COM
component, in which almost all functions take signals or pdus
(packets of signals) as parameters, then it really matters which
signal or PDU is used. The reason is that different signals
and different PDUs are configured differently, and so different
requirements may apply to them.

A. Improving poor test cases

Consider requirement COM330—a typical requirement from
the standard—in which ComTransferProperty and ComTx-
ModeMode are configurable values.

[COM330] At any send request of a signal with
ComTransferProperty TRIGGERED assigned to
an I-PDU with ComTxModeMode DIRECT or
MIXED, the AUTOSAR COM module shall imme-
diately initiate ComTxModeNumberOfRepetitions
transmissions of the assigned I-PDU.

For TRIGGERED signals in DIRECT or MIXED I-PDUs, a
send request must initiate transmission. Our test configuration
contains no MIXED I-PDUs, so we need consider only the
DIRECT case; to test this requirement we need a test case in
which a signal is configured TRIGGERED and its assigned
I-PDU has mode DIRECT.

This requirement does not state that transmission is not
initiated in other cases—although this is often implicitly
assumed. This kind of ambiguity is problematic to model.
We chose not to model initiating transmission in other cases,
so QuickCheck reports a discrepancy if the software under
test does so—although we have no really strong argument for
rejecting such an implementation, since the requirements say
nothing explicit about these cases.

Our COM model was annotated with requirements as
described in section II-A, so we could use the test suite



generation of Sect. II-B to generate a minimal test suite. The
test case covering COM330 was this one:

com_spec:init() -> ok.
com_spec:send(’ComConf_ComSignal_S11’,

<<0, 0, 0, 0, 0, 0>>) ->
com_service_not_available.

This test case initialises the COM component and then sends
a binary array of six zeros to signal S11. This signal has Com-
TransferProperty configured TRIGGERED and is assigned
to I-PDU P20, which has ComTxModeMode configured DI-
RECT, so COM330 applies. But, this is a very poor test case
of the requirement! As we can see from the return value, the
COM service is not available at all! This is quite correct—and
the test passes—because of additional requirements: COM444
states that all I-PDUs are initially stopped, and requirement
COM197 says that, for stopped I-PDUs, sending a signal shall
indeed return com_service_not_available. COM330
ought really to have an additional precondition—that the I-
PDU concerned is active—but we quoted the requirement in
full above, and as the reader can easily verify, this precondition
does not appear.

Nevertheless, we updated our requirement annotation with
this extra precondition; we counted COM330 as covered only
for an active I-PDU. When we regenerated a minimal test
suite, COM330 was tested by this test case instead:

pdur_spec:init() -> ok.
com_spec:init() -> ok.
com_spec:ipdu_group_control(

[{’MainTxPduGroup1’, true},
{’TxPduGroup1’, true},
{’TxPduGroup2’, true},
{’MainRxPduGroup1’, false},
{’RxPduGroup1’, false},
{’RxPduGroup2’, false}],

true) ->
ok.

com_spec:send(’ComConf_ComSignal_S11’,
<<1, 2, 3, 4, 5, 6>>) ->

com_ok.

This test initialises both COM and PDUR (which is needed
to actually transmit the I-PDU). Then the Tx (transmission)
groups are started, making the I-PDUs for sending active. Now
all the preconditions for covering the requirement hold. The
test sends the data sequence 1 to 6 to signal S11—and, for
the implementation we were testing, the test fails! QuickCheck
reports the following error:

Post-condition failed:
expected:
’CanIf_Transmit’(

’CanIfConf_CanIfTxPduCfg_P21’,
<<1, 2, 3, 4, 5, 6, 72, 0>>)

This is a message from our mocking framework, indicating
that a mocked call, expected by our model, was not actually
made. The missing call is to the CAN bus interface (a bus
commonly used in cars), and it would actually transmit the
signal sent by the test. But the COM software under test did
not actually transmit the signal—despite COM330—and so our
improved test can detect a previously undetected fault.

Actually, it is debatable whether the test should fail.
COM330 only says that the COM module ‘initiates transmis-
sion’. What does this mean? Some argue that it is sufficient to
send the signal the next time COM’s MainFunction is called
(this is a function which is invoked regularly by the real-time
scheduler). With this interpretation, this behaviour is not a bug.
To accept it, we had to develop a variant of the model in which
transmissions are delayed until the next call of MainFunction.
If we regenerate a minimal test for COM330 from the variant
model, we get the same test case. The test now passes, since
the variant model no longer expects an immediate transmission
when send is called—but it is now a very poor test case for
COM330, since it does not include a call to MainFunction, and
so cannot check that the signal is actually sent at all.

B. Deferring requirements

Evidently, we should not consider COM330 to be tested
until we have observed the transmission of the corresponding
I-PDU. Therefore, we defer the requirement, as in Sect. II-E,
until the I-PDU is transmitted. We consider transmitting an
I-PDU to observe both the I-PDU itself, and all of its signals,
so that we can defer requirements until either an I-PDU or
an individual signal is observed (cf. Sect. II-D). With this
modification, the generated minimal test case for COM330 is
as we would expect; it calls MainFunction after sending to
observe the transmission:

...

com_spec:send(’ComConf_ComSignal_S11’,
<<1, 2, 3, 4, 5, 6>>) -> com_ok.

com_spec:tx_main() ->
ok = ’CanIf_Transmit’(

’CanIfConf_CanIfTxPduCfg_P01’,
<<72, ..., 170>>),

ok = ’CanIf_Transmit’(
’CanIfConf_CanIfTxPduCfg_P21’,
<<1, 2, 3, 4, 5, 6, 72, 0>>),

ok = ’CanIf_Transmit’(
’CanIfConf_CanIfTxPduCfg_P24’,
<<170, ..., 170>>),

ok = ’LinIf_Transmit’(
’LinIfConf_LinIfTxPdu_P67’,
<<0, ..., 170>>),

ok = ’LinIf_Transmit’(
’LinIfConf_LinIfTxPdu_P71’,
<<0, ..., 170>>),

ok.

In this output the nested calls (ok = ...) denote mocked
calls made by the SUT to transmit over CAN or LIN (another
protocol used in cars). Our configuration contains ‘periodic’
I-PDUs, which are always transmitted when MainFunction is
called, whether there is new data or not—this is why we see
five calls rather than one. Signal S11 (which appears in the
send) is a part of I-PDU P20, which is routed by the PDUR
component to the CAN interface CanIf and mapped onto the
PDU CanIfConf_CanIfTxPduCfg_P21—so the second
mocked call above enables us to observe that signal S11 was,
in fact, transmitted. Were we to write this test case by hand,
then we would have to be aware of this mapping, but our model



of the COM internals derives this information automatically.
So, not only is this test the kind of test developers would write,
but it is also tricky to get right—and the benefits of automatic
generation are clear.

In our requirements tracking, we associate COM330 with
the signal appearing in the test—so, for the example above,
we record that COM330 was tested for signal S11. As a
result, the minimal test suite we generate contains one test
case for each signal that has TRIGGERED configured, and
is assigned to an I-PDU with mode DIRECT. For our test
configuration, this results in 10 tests, each sending a different
signal, but in some cases observing the same I-PDU. These
tests are not redundant, because the signals may differ in
other configuration parameters. This is not only a much better
test suite than the single bad test we initially generated for
COM330—we suspect it is also likely more complete than
many human developers would write.

C. Observing omission of activity

In the registry example, we never needed to observe that
something cannot happen in a certain state. But in the AU-
TOSAR case we find the following requirement:

[COM444] By default, all I-PDU groups shall be
in the state stopped and they shall not be started
automatically by a call to Com Init.

How can we test this requirement? We have to observe
that all I-PDU groups are stopped—without inspecting the
internal state of the SUT, to which we have no access. We
initially marked this requirement as “covered” by a call to
Com Init, but a good test should really also send a message
and observe that the actual transmission does not take place.
We therefore added a deferred COM444 requirement, tagged
with each I-PDU initialised in Com Init, to be triggered by
an observation that the I-PDU is, indeed, inactive. We make
such an observation when we send a signal and receive a
com_service_not_available result (or a correspond-
ing case for receiving a signal). This results in 18 new test
cases in our minimal suite, of the form:

com_spec:init() -> ok.
com_spec:send(’ComConf_ComSignal_S4’,

72) ->
com_service_not_available.

Indeed, these are reasonable tests to observe that the groups
are not active.

However, these reasonable-looking tests conceal a prob-
lem. When we track requirements covered during random
testing, we will consider COM444 to be tested whenever a
call to init is followed by a call to send that returns
com_service_not_available, regardless of other calls
appearing in between. In particular, a test might initialise
COM, then activate an I-PDU, inactivate it again, and then
send a signal for which com_service_not_available
is returned. This would be counted as a test case that tests
requirement COM444, but it does not! It only tests that the
last inactivation of the I-PDU worked. We do not see this
kind of bad test among the 18 generated tests because of
QuickCheck’s shrinking—the test can always be simplified by

removing the activation and inactivation, and so QuickCheck
does so when generating the minimal test suite. But the
problem will cause inaccurate measurement of requirements
coverage during random testing.

To solve this problem, we need to discard deferred require-
ments which are waiting for observations which can no longer
be made. In particular, when an I-PDU is activated, then the
observation that it is inactive can no longer be made, and any
deferred requirements which are waiting for that observation
should be discarded. We therefore introduce another primitive
operation on requirements, cancelling deferred requirements.
Whenever we start an I-PDU group, we cancel any deferred
requirements waiting to observe that it is inactive. This does
not change the minimal test suite that we generate, but results
in a more faithful reporting of which requirements have been
tested by randomly generated test cases.

D. Preconditioned deferred requirements

Even with these changes, we still found apparently deficient
tests in our minimal generated suite. For example, consider
COM050:

If Com SendSignalGroup is called for the signal
group, the AUTOSAR COM module shall copy the
shadow buffer atomically to the I-PDU buffer.

To observe the copying, we deferred this requirement until
the target I-PDU is observed. The resulting minimal test
suite contained one test of this requirement for each I-
PDU, calling ’Com SendSignalGroup’, activating the I-PDU,
and then calling MainFunction to observe the transmission.
However, we noticed that these tests appeared in two different
variations: one in which the I-PDU is activated before calling
’Com SendSignalGroup’, and one in which it is called after.
Both tests are valid, because COM050 does not require the I-
PDU to be active at the time Com SendSignalGroup is called,
but arguably both tests are useful, and both should be included
in a test suite—but our generated suites contained only one of
these tests for each I-PDU. This suggests that we ought to split
COM050 into two requirements, one for active I-PDUs, and
the other for inactive ones, so that each generated test suite
contains a test for both cases—but the text of the requirement
above gives no clue that we need to do this.

However, both variations are very poor tests for observing
the actual copying—because there is nothing interesting to
copy in the initial state! When we initialise COM, standard
initial values are already copied to the I-PDU, so calling
’Com SendSignalGroup’ immediately afterwards just copies
the same values again! This is not observable. To test COM050
properly, we need to call ’Com UpdateShadowSignal’ with
a value different from the initial value, before we call
’Com SendSignalGroup’. This is an additional precondition
that must be met, before we can say that COM050 has
been tested. We modified our requirements tracking to record
COM050 only when this precondition is met—but note that
this is not a precondition for the requirement itself, and once
again, there is no indication in the text of the requirement that
we need to do this.



E. Quality of the test suite

Before we began to defer requirements, we generated a
minimal test suite of 17 tests that purported to cover all 35
requirements—but the tests were very poor. We inspected the
tests manually, and improved our requirements tracking as
explained above. This involved modifying 67 out of 1445
lines in the model, or 4.6% of the code. As a result, the
minimal suite generated to test the 35 requirements now
consists of 74 tests—often with several tests per requirement,
but also almost always with several requirements per test.
Requirements coverage was of course 100%, both before and
after this process—all requirements are exercised in each case,
but the question is how well?

We inspected the resulting test cases manually, to assess
how closely they resemble tests that a human developer would
write for the given requirements. This is rather subjective—for
example, the standard defines requirement COM619:

[COM619] Configuration of Com GetConfiguration-
Id: The provided Identification shall be set during
configuration process and cannot be changed by the
AUTOSAR COM module.

But this requirement is really untestable. We generated the test
case:

com_spec:init() -> ok.
com_spec:get_config_id() -> 0.

where 0 is the configured value. This seems reasonable, and
it is hard to see that a human could do better.

The test case presented in Sect. III-C to verify requirement
COM444 is repeated once for each signal. A human tester
might write only a few of these, or—better—write one test
that initializes COM and then tests all signals.

We concluded that 28 requirements are well tested by our
test suite, with similar tests to those a human would write,
while 6 requirements were tested by test cases that a human
would have written differently, perhaps better. We consider that
7 requirements were inadequately tested by the generated test
suite. In some cases, adding more preconditioned requirements
or preconditions on specific events could have improved this.

F. State corruption errors

We now have a suite of 74 tests, constructed to cover all
35 requirements. How good is it at detecting realistic state
corruption errors? To find out, we modified the send command
to write the signal into the assigned I-PDU, and at the same
time overwrite the first byte of the next I-PDU. These I-PDUs
are logically unrelated, but happen to be next to each other
in memory. This is a realistic software defect, and can cause
major damage if the signal in the overwritten I-PDU is safety
critical.

When testing this modification with randomly generated test
cases, we detected the failure after generating and executing
56 random test cases (and within a minute, including shrinking
to a minimal failing test).

com_spec:init() -> ok.
pdur_spec:init() -> ok.
com_spec:send(’ComConf_ComSignal_S1’, 14) ->

com_service_not_available.
com_spec:ipdu_group_control([

{’MainTxPduGroup1’, true},
{’TxPduGroup1’, true},
{’TxPduGroup2’, true},
{’MainRxPduGroup1’, false},
{’RxPduGroup1’, false},
{’RxPduGroup2’, false}],
false) ->

ok.
pdur_spec:frif_trigger_transmit(

’PduRConf_PduRDestPdu_P06’) ->
{<<11, 0, ..., 8, 0>>, ok}.

Reason:
Failed postcondition:

{<<11, 0, ..., 8, 0>>, ok} /=
{<<72, 0, ..., 8, 0>>, ok}

Here 14 is sent on signal S1 before any I-PDU is activated.
Then we activate all transmission (Tx) I-PDUs, and trigger
transmission of the I-PDU containing signal S4. But S4 has
value 11 instead of the expected 72 (the first byte in the binary
value in the postcondition). Sending a value on the unrelated
signal S1 has overwritten signal S4 in a different I-PDU!

None of the 74 tests in our suite is able to detect this fault,
indicating that state corruption errors in which two features
interact are hard to detect using test cases designed to validate
specific requirements.

G. A Further Improvement

Some requirements are very hard to cover with random tests,
a problem that is exacerbated when the requirement is deferred
and a specific observation is needed. For example, requirement
COM734 took about an hour to generate a test case for.

[COM734] At a send request of a signal with Com-
TransferProperty TRIGGERED ON CHANGE as-
signed to an I-PDU with ComTxModeMode DI-
RECT or MIXED, the AUTOSAR COM mod-
ule shall immediately initiate ComTxModeNum-
berOfRepetitions transmissions of the assigned I-
PDU, if the new value of the sent signal differs to
the locally stored (last sent or init) value.

It is quite hard even to satisfy the conditions under which we
can defer the requirement, let alone observe it.

We plan to extend our search strategy to remember se-
quences that defer requirements, but never observe them, and
then retry by continuing from that point to generate commands
that make the observation. This should increase the probability
of finding a test for the requirement.

IV. DISCUSSION AND RELATED WORK

In a recent taxonomy of model-based testing tools, Utting
et al identify six test selection criteria, of which requirements
coverage is one [9]. However, they do not discuss what it
means to cover a requirement, other than to suggest that
requirements may be attached to state transitions or formulæ
in a postcondition. Shafique and Labiche’s systematic review
of state based MBT tools mentions that requirements may also



be attached to paths in the state space, but gives no further
details [10].

Bouquet et al presents a method to trace requirements in
generated tests [11], based on structural coverage of model
fragments tagged with requirement names. Their test generator
can generate additional API calls to observe state changes,
which may be analogous to our deferred requirements. They
do not discuss testing for state corruption bugs.

Jensen et al consider test generation from business rules, by
using a constraint solver to find operations that establish the
precondition of the rule under test [12]. However, they assume
that a rule is covered as soon as the operation it applies to is
executed, so their generated tests do not contain operations to
observe the state changes that business rules specify. Perhaps
their approach could be extended to use the constraint solver
to generate a “postscript” following the rule under test, that
observes the effect of the postcondition—in a similar way to
our deferred requirements—thus improving the fault finding
effectiveness of the generated tests.

A popular approach to generate test suites fulfilling coverage
goals is to use a model checker—for a recent survey, see Fraser
et al. [13]. In this approach, coverage goals are expressed in
temporal logic, so if requirements are expressed in temporal
logic then we could generate minimal test suites for them
in this way. For example, if f(a1 . . . an) 7→ x is true when
f is called with arguments a1. . .an and returns x, then a
requirement on the registry might be

� ∀n, p. register(n, p) 7→ true =⇒
(∀p′. whereis(n) 7→ p′ =⇒ p = p′) U

(unregister(n) 7→ true ∨ kill(p) 7→ ok)

But this is not one of the informal requirements we stated—
those requirements were expressed in terms of state, not
temporal logic. Formulating them in terms of temporal logic
requires a non-trivial translation step, and it is not clear that
covering the reformulated requirements would be equivalent
to covering the original ones. While some of the AUTOSAR
requirements might naturally be formalised in temporal terms
(e.g. a message should be sent), many others refer to changes
in an opaque state. However, our deferment of requirements
that cannot be tested in one step (because of the need to
observe state changes later) might be naturally represented in
temporal logic.

We studied requirements coverage here: a related question is
to what extent complete code coverage ensures that test suites
will reveal faults? A recent study by Gay et al. [14] generated
minimal test suites to achieve maximal structural coverage
for a number of real applications, and measured their ability
to find faults. The results were quite alarming—for several
systems, randomly generated suites of the same size were
equally or more effective at revealing faults! They concluded
“We believe that structural coverage criteria are, for the
domain explored, potentially unreliable, and thus, unsuitable,
as a target for determining the adequacy of automated test
suite generation.” A part of the problem was that the real faults
studied were often faults of omission—the developers forgot to

implement a feature, for example—and code coverage cannot
be expected to account for code that does not exist. One
would expect test suites generated to achieve full requirements
coverage to do better, because missing features ought always
to be reflected by unsatisfied requirements, but as we have
seen, state corruption bugs still pose a problem.

DO-178C [1] does mandate coverage of data coupling
also, which may be intended to catch state corruption bugs.
However, it is not entirely clear how to interpret this mandate,
and is in any case inapplicable to black box testing. It is
interesting that random testing appears able to find these bugs
quite easily.

We have claimed several times that the minimal test cases
we generate resemble those a human developer would write
for the same requirements, based on our observations of real
test suites including AUTOSAR test cases [15]. It would be
interesting to study actual hand-written test cases in more
detail, to evaluate this subjective claim.

V. CONCLUSION

Through a small motivating example, and a much larger
example in the automotive domain, we have shown that the
notion of testing a requirement is more subtle than it might
seem. Minimal test suites generated to maximise require-
ments coverage can contain surprisingly poor tests. On the
other hand, inspecting such test suites can suggest major
improvements to requirements tracking, and we showed how
deferred requirements and preconditioned requirements can
help. Better requirements tracking not only leads to better
minimal generated test suites—close to those a human devel-
oper would write—but also provides invaluable information
for tuning the distribution of random tests, so as to cover
hard-to-reach requirements more often. There is a class of
plausible bugs—state corruption bugs—which are hard to find
using requirements-based tests, and this conclusion may well
apply to hand-written tests also. Fortunately, random tests find
these bugs quite easily.
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