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Abstract—We can never be certain that a software system is
correct simply by testing it, but with every additional successful
test we become less uncertain about its correctness. In absence
of source code or elaborate specifications and models, tests are
usually generated or chosen randomly. However, rather than
randomly choosing tests, it would be preferable to choose those
tests that decrease our uncertainty about correctness the most.
In order to guide test generation, we apply what is referred
to in Machine Learning as “Query Strategy Framework”: We
infer a behavioural model of the system under test and select
those tests which the inferred model is “least certain” about.
Running these tests on the system under test thus directly
targets those parts about which tests so far have failed to
inform the model. We provide an implementation that uses a
genetic programming engine for model inference in order to
enable an uncertainty sampling technique known as “query
by committee”, and evaluate it on eight subject systems from
the Apache Commons Math framework and JodaTime. The
results indicate that test generation using uncertainty sampling
outperforms conventional and Adaptive Random Testing.

I. INTRODUCTION

Testing software components without access to source code

or hand-crafted models is challenging because there is no

guidance for the selection of test inputs. Selection is invariably

guided by intuition or, if automated, by random or quasi-

random input generation algorithms [8], [11], [16]. Left to

chance alone, random test sets can easily fail to expose

facets of software behaviour that depend upon specific input

characteristics. Furthermore it can become exceedingly difficult

to reason about the adequacy of a randomly-generated test set,

especially for non-numerical programs without an operational

profile [16].

Recently, several “Learning-Based Testing” (LBT) tech-

niques have emerged [13], [14], [27], [33] that aim to address

these limitations. LBT techniques are based on the idea, first

espoused by Weyuker [34] and Budd and Angluin [7], that

there is a natural duality between inductive model inference

and software testing. The former seeks to infer a general

model of behaviour for a system from an incomplete sample of

observations of its behaviour. The latter seeks to identify the

smallest possible set of observations that are required to expose

the full range of behaviour. Although the ultimate purposes are

different, both are bound by an intrinsic challenge: establishing

the link between the often infinite range of observable behaviour

of a system and a finite sample of observations (or vice versa).

LBT techniques seek to exploit this duality by using Machine

Learning algorithms to infer input/output models from test

executions. These models can then be used to derive new test

cases. The rationale is that this ought to form a virtuous loop

(or, to adopt Popper’s terminology, a cycle of “conjecture and

refutation” [26]) where the inferred models become increasingly

detailed and accurate, and thereby drive the test generation to

produce increasingly rigorous test sets.

The step of generating new test inputs from an inferred model

is especially important. New test inputs ought ideally to expose

‘new’ aspects of software behaviour that have not featured

in previous test executions. Intuitively, the test generation

approach tends to be closely tied to the type of inferred model

(e.g., if state machines are inferred, then likely state machine

testing algorithms are used to derive new tests [22], [33]).

Unfortunately, there are two barriers that currently restrict

LBT approaches to relatively specific classes of relatively small-

scale software systems:

1) The dependence between the type of inferred model

and the test generation approach can be highly limiting.

Whole families of Machine Learning algorithms have to

be excluded as they do not produce ‘testable’ models.

2) The application of model-based test generation approaches

to inferred models can yield large numbers of test cases,

which hampers scalability. Many of the generated tests are

of little utility to the learner. Whereas the goal is to find

‘counter-examples’ to the inferred models, the majority of

tests merely ends up corroborating what is already known.

In this paper we investigate the possibility of using an Active

Learning query strategy framework [29], [30] to circumvent

these limitations. In Machine Learning, query strategy frame-

works provide a means by which to use an existing inferred

model (or set of models) to select further samples that are

most likely to be of “high utility” to the learner – i.e. provide

information that is not already contained within the training set.

These tend to be based on the principle that the best samples are

those whose prediction elicits the highest degree of uncertainty

with respect to the current model. In the context of LBT, if one

accepts the existence of a relationship between the adequacy

of a test set and the accuracy of a model inferred from it,

then it should follow that test cases selected by an effective

uncertainty sampling technique should form an effective basis

for test case selection.

In detail, the contributions of this paper are as follows:

• We introduce the first application of query strategy

frameworks to test generation (Section IV).

• We present an implementation of a query strategy frame-

work for test generation using Query By Committee [30]

on inferred models (Section IV).



• We propose the use of Genetic Programming [21] as a

basis for model inference, as it directly enables Query By

Committee (Section IV).

• We present an implementation of an LBT-based testing

using query strategy frameworks, based on Genetic

Programming and Query By Committee (Section IV).

• We present an empirical evaluation on eight functions

provided within the Apache Commons Math and Joda-

Time frameworks, using mutation testing to assess the

effectiveness of the generated test cases (Section VI).

Our experiments demonstrate that uncertainty sampling leads

to a higher mean number of mutants detected than random

or adaptive random testing (the baseline techniques we use in

this paper). It also tends to require fewer test executions to

detect higher numbers of mutants. This is especially valuable

for test-scenarios where there is a non-trivial cost associated

with test execution (e.g. tests take a prohibitive amount of time,

or their outputs need to be checked by a human test-oracle).

II. AUTOMATED BLACK-BOX TESTING

Black-box testing in general refers to the concept of testing

a software system without access to its source code. Ideally,

black-box testing is driven by detailed formal specifications or

test models, which enable techniques to automatically generate

tests, and act as a test oracle that decides whether a given test

execution revealed a fault or not. In practice, such specifications

are not always available, in which case automated generation

of tests is limited to few options.

A. Random Testing

The most common approach to test automation in the absence

of formal specifications and source code is to randomly select

tests, for example using a uniform distribution on the input

space or an operational profile [16]. The effectiveness of

random testing highly depends on the specifics of the system

under test: Random testing is generally unlikely to find specific

input values [3], and may perform poorly at covering the

underlying behaviour of the program.

Adaptive Random Testing (ART) [8] aims to alleviate these

problems by ensuring that tests are spread across the input

space as much as possible. In general, ART works iteratively

by repeatedly sampling a set of random inputs, and out of

this set selecting the input that is most different to previously

executed tests as the next test to run on the system under test.

While there is evidence that this approach makes the selected

tests more effective than a completely random selection, every

test input adds to the complexity of generating the next test

input, because there is an additional point in euclidean space

against which to measure the next group of random inputs.

If running a test on a system under test is cheap, then pure

random testing may be more effective than ART [2] as it can

simply execute significantly more tests in the same time as

ART. However, in practice test execution can often take a long

time, and the absence of an automated oracle (e.g., a formal

specification) may make it necessary to manually investigate

every single test outcome. Thus, we assume that it is desirable

Algorithm 1: Generic LBT procedure

Input: SUT ,TestInputs

Uses: terminate, execute, selectInputs, inferModel

Result: TestInputs

hyp ← ∅ ;

Executions ← ∅ ;

for (input← TestInputs) do

Executions← Executions ∪ execute(input);

while (¬ terminate(Executions,hyp,SUT)) do

hyp ← inferModel(Executions);

NewInputs ← selectInputs(hyp,SUT);

Executions← Executions ∪ execute(SUT,NewInputs);
TestInputs← TestInputs ∪ NewInputs;

return TestInputs;

to generate the most effective set of tests, rather than relying

on the ability to run large sets of potentially redundant tests.

B. Learning-Based Testing

We use the term ‘Learning-Based Testing’ (LBT) to refer to

the (now relatively broad) family of techniques that seek to use

Machine Learning to support the generation of test cases. The

idea was first explored by Weyuker [34] and Budd and Angluin

[7] in the early eighties. For the subsequent 15 years it was the

subject of some predominantly theoretical research [9], [28],

[35]. However, over the subsequent 15 years it adopted a more

practical bent, with several authors developing accompanying

proof-of-concept tools [4], [13], [14], [22], [24], [27], [33].

Algorithm 1 shows the main generic LBT steps:

• The algorithm starts with an initial set TestInputs of inputs

to the program. This may be empty, but it may also be

an established test set that we wish to improve.

• The loop of model inference and test generation is exe-

cuted until a stopping criterion terminate(Executions,hyp)

evaluates to true. For example, it might attempt to

establish the equivalence between the inferred model hyp

and the system under test SUT , and return true if the

model is sufficiently similar in some sense [27]. It might

alternatively simply terminate after a fixed number of

iterations, if Tests reaches a particular size, or there has

been no change to hyp after a certain number of iterations.

• In this loop, the first step is to infer a predictive in-

put/output model hyp of the program using the function

inferModel(Executions). The type of the model can vary,

and depends on the nature of the system under test.

Proposed techniques have adopted state machines [27],

[33], decision trees [6], [14] and Daikon invariants [15].

• The input to the inferModel function are the executions,

i.e., the input/output pairs resulting from executing the

test inputs TestInputs on the system under test SUT using

function execute(SUT,Inputs).

• Finally, selectInputs(hyp,SUT) selects new inputs. The

test generation strategy might be random [24], driven by

source code coverage [14], or using a model-based test

algorithm with respect to Mod [27].

Much of the research on combining inference and testing
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Fig. 1. The relationship between ‘learnability’ and ‘testability’ in LBT.

has focussed on the interplay between the terminate and

inferModel functions — on the ability to leverage inference

mechanisms to provide more meaningful adequacy criteria.

This is what motivated most of the early research into the area

as well [9], [34], [35]. Recent inference and test generation

techniques have been combined to guarantee that the behaviour

of the system has been exercised to a certain extent. For

example, several researchers have combined Angluin’s L∗
inference technique [1] with established state machine testing

techniques [13], [27] and showed that these lead to strong

guarantees that the inferred model accurately represents what

has been explored.

C. Limitations of Learning-Based Testing

LBT techniques tend to be limited in their practical ap-

plicability because they rely on the inference of models that

not only approximate the behaviour of the SUT, but are also

usable as a basis for automated test generation. As illustrated

in Figure 1, the processes of inference and testing are highly

interdependent; the model has to be learnable from the SUT

[31], but also has to be testable, in the sense that it can

provide a suitable basis for the generation of new test cases.

This explains why LBT techniques so far have been largely

restricted to state machines [13], [27], [33], decision trees [6],

[24], and invariants [15]. As a consequence, entire families

of Machine Learning algorithms that infer models that are

harder to subject to symbolic reasoning are excluded, even

if they could potentially infer more accurate models from a

broader class of SUTs. These include kernel-method techniques

such as SVM [32], Neural Net learners [5], and Genetic

Programming [21].

Aside from the constraints mentioned above, the use of ‘off-

the-shelf’ test generation techniques, coupled with the iterative

nature of the approach, can lead to scalability problems. Test

generation algorithms generate test cases without considering

the test cases that have been generated in previous iterations.

This can produce very large test sets, especially if the testing

algorithm in question produces large numbers of test cases

anyway (e.g., the popular W-Method [10] for state machines

is a good example of an algorithm that does not scale well,

and has often been used for test-driven model inference [27]).

The primary challenge addressed in this paper is to find a

means by which to remove the constraints on the classes of

Machine Learners that can be applied to LBT. Although we

want to remove the constraints on the types of models that are

inferred, it is crucial that they can still guide test generation,

and do so in a scalable way that does not needlessly re-test

behaviour that has already been tested.

III. QUERY STRATEGY FRAMEWORKS

In this paper we will show how the above problem can be

solved by the use of query strategy frameworks, a core facet of

active learning techniques [29] in Machine Learning. Precisely

how this is achieved will be described in the next section. Here

we provide a generic introduction to query strategy frameworks

and Query by Committee.

A. Query Strategy Frameworks

Machine Learning algorithms can be broadly categorised into

conventional (passive) Machine Learners and active Machine

Learners. Passive learners infer models from data that is given

to them before learning commences. Active learners might start

from some given data, but crucially are also imbued with the

ability to obtain further data. The learner might surmise that

the inferred model is incomplete because the initial sample

lacked data of a certain characteristic, so the learner can obtain

more relevant data, which it can use to refine its model.

The active learning setting gives rise to the query strategy

problem [29]. The process of obtaining a sample might be

expensive, so it is consequently important to keep the number

of queries (additional samples) down to a minimum. However,

any additional data that is sampled must be of a high utility —

i.e., it must lead to improvements in the model inferred by the

learner. This problem has been the subject of a large amount of

research over the past two decades (a good overview is provided

by Settles [29]). The essential goal is to avoid selecting a query

that fails to add new information that is of value to the learner.

Any new data should ideally confound the predictions of the

current model.

One factor that plays a key role in selecting queries is the

notion of uncertainty. Given a data-point that was not part of

the original training set (referred to as a ‘query’), the degree

of uncertainty exhibited by the current hypothesis model as to

how it should be classified can provide an indication of how

useful it would be to obtain a real sample. The goal is thus

to identify queries for which the level of confidence in the

corresponding output is at its lowest, with the aim of eliciting

aspects of behaviour that were perhaps under-represented in

the training sample.

One key challenge is to find a suitable metric that can be

used to assess this “uncertainty” for a given model prediction.

For statistical Machine Learners, where the output is often in

the form of a probability distribution, numerous uncertainty

sampling techniques have been developed [29]. However, in

the context of LBT, models such as inferred state machines

tend not to be probabilistic.



Algorithm 2: Query By Committee

Input: Train, i, s,comitteeSize,randomPoolSize

Uses: learnMultiple,best, computeUtility, randomPoints

Result: Hyp

Hyp ← ∅ ;

for i iterations do

Hyp← learnMultiple(Train, comitteeSize);
U ← randomPoints(randomPoolSize);
for s iterations do

// Pick a point u ∈ U with max utility

u = argmaxx∈U || computeUtility(Hyp, x) ||;
l = label(u);
Train← Train ∪ {l};
U ← U \ {u};

Hyp← learnMultiple(Train);
return best(Hyp);

B. Query By Committee

There is a ‘trick’ that enables the application of uncertainty

sampling even when the inferred models are themselves not

probabilistic. If one can, from a given sample, infer multiple

different models, then it becomes possible to use their mutual

agreement / disagreement to estimate a level of uncertainty and

use this as a basis for uncertainty sampling [30]. Algorithm 2

shows the Query By Committee (QBC) approach [30].

• The entire process iterates a fixed number of times (i).

• At each iteration, the learnMultiple function produces a

“committee” of hypothesis models. This is conventionally

achieved by Ensemble Methods [23], which produce

different hypotheses by inferring models from different

samples of the training set (in this paper we will illustrate

an alternative approach of using the population generated

by a Genetic Programming algorithm).

• Once the models have been inferred, the randomPoints

function generates a set of random ‘inputs’ U – in Machine

Learning terms this is a set of unlabelled data points. The

size of U is determined by the randomPoolSize parameter.

• The nested for-loop then essentially picks a subset of s

points in U. These are selected by evaluating each point

in U to determine those points about which the inferred

models Hyp are least in agreement (as computed by the

computeUtility function). In other words, these points

would be of most utility to the learner.

• The selected points are labelled with the label function,

added to the training set, and the process iterates.

• After the final iteration, a set of models is inferred from

the aggregate training set, and a model is selected to

be returned by the best function. The selection criteria

can vary depending on the inference approach – one

straightforward option (adopted in this paper) is to return

the model that best predicts the outputs (or ‘labels’)

produced by Train.

There is a clear similarity between the QBC algorithm and

the LBT algorithm in Algorithm 1. Both involve loops, where

models are inferred at each iteration. In both cases, the models

Algorithm 3: Testing By Committee

Input: SUT ,Tests,s,i,comitteeSize,randomPoolSize

Uses: execute,learnMultiple, randomInputs,computeUtility

Result: Tests

Hyp ← ∅ ;

for i iterations do

Hyp← learnMultiple(Tests, comitteeSize);
U ← randomInputs(SUT, randomPoolSize);
for s iterations do

u = argmaxx∈U || computeUtility(Hyp, x) ||;
l = execute(u);
Tests← Tests ∪ {l};
U ← U \ {u};

return Tests;

are used as a basis for selecting more data (test inputs in the

testing context, unlabelled data points in the Machine Learning

case). There are also two significant differences. In the case of

QBC, the output is the final inferred model, whereas in LBT

the output is the data that was used to infer the model (the

test set with its outputs). In LBT, there is no fixed approach

to generate test data – it could be random, or adopt a model-

based testing algorithm. In QBC, there is only one approach;

regardless of the type of model or system, a random pool of

unlabelled data points are generated, and the best s points are

chosen based on the ‘uncertainty’ that they elicit from the

inferred committee of models.

IV. APPLYING QBC TO TEST GENERATION

In the context of Machine Learning, QBC enables

uncertainty-based sampling to occur, regardless of the type of

model that is inferred. In this paper we produce the Testing By

Committee approach, which applies QBC to LBT to circumvent

the dependence between the model inference algorithm and

the test-generation algorithm. In principle this enables LBT

to use any model inference algorithm, and to select test cases

based on the combined uncertainty of the inferred models.

In this section we first set out our Test By Committee

algorithm, which combines LBT with QBC. We then provide

a technique that implements this approach using Genetic

Programming as a basis for the model inference.

A. Test By Committee

Our proposed ‘Test By Committee’ (TBC) algorithm is

shown in Algorithm 3. It clearly combines Algorithms 1 and 2.

The key similarities and dissimilarities are as follows:

• As with QBC, we limit the number of iterations to a

fixed number i (though it would certainly be possible to

integrate something more elaborate, along the lines of the

terminate function in Algorithm 1).

• The step of learnMultiple is the same as in Algorithm 2;

a population of models are inferred using either ensemble

methods or, as we will demonstrate, population-based

learners such as Genetic Programming.

• To generate the candidate test inputs, we introduce a



new function randomInputs. The SUT is only used to

gain information about its interface. Once the types of the

interface are known, inputs are formulated as combinations

of random values of the appropriate types.

• The process of adding new tests to the test set is the same

as in Algorithm 2. For s iterations, the best candidate

is selected from U by seeing which candidate test case

causes the most disagreement amongst models in Hyp.

The chosen test is then executed to identify its actual

output, and this is then added to Tests (it is also removed

from U to avoid re-selection).

Many of the steps are in effect the same as they are in

conventional LBT. However, two steps are very different,

and therefore require a more in-depth discussion. The model

inference step (learnMultiple) requires multiple models. The

process of selecting the best candidate test case (computeUtility)

is also new in the context of testing. In both cases, there are

many possible ways in which they could be implemented. In the

following two subsections, we describe how we have chosen

to implement them for our proof of concept.

B. Learning Multiple Models by Genetic Programming

To produce the models required for Query-by-Committee

it is possible to use a Genetic Programming (GP) inference

engine [25]. A GP evolves programs of a given target language

towards an optimisation goal, specified by a fitness function.

As mentioned previously, in principle any inference technique

could be applied (underpinned by Ensemble Methods [12]).

However, (a) the intrinsic population-based nature of GPs

renders them suitable for QBC, and (b) GPs can easily be

adapted to different types of languages, making them well

suited for modelling programs in different domains.

For space reasons, we only provide the essential details

of GPs here, and refer the reader to Poli et al.’s GP field

guide [25], along with our source code1 for further details. In

(tree-based) GPs, candidate programs are ‘evolved’ as abstract

syntax trees, where branch nodes correspond to ‘non-terminals’

representing functions, and leaf-nodes represent atomic values

or variables (terminals). The basic loop is as follows (details

on the terms in italics will be elaborated in the next section):

1) Generate an initial population of programs as random

compositions of non-terminals and terminals.

2) Execute each evolved program and evaluate it according

to some fitness function.

3) Select the best programs from the population.

4) Create a new population using crossover and mutation.

5) Repeat from step 2 until some stopping criterion is met.

In its traditional application, the result of the GP is the

program with the best fitness value, which represents the best

solution. In our case, we can exploit the population-based nature

of the GP: At the end of the search, the population consists

of a range of slightly varied candidate solutions optimised for

the problem at hand.

1https://bitbucket.org/nwalkinshaw/efsminferencetool

C. Generating Test Cases by QBC

The first step to applying QBC is to select the committee.

For this we select the fittest set of chromosomes Hyp. The size

of this set is determined by the parameter committeeSize. The

query generation step involves generating a pool of random

inputs U, and then assessing every u ∈ U to find the one

that creates most ‘uncertainty’ according to the set of inferred

models in Hyp (in our case the set of chromosomes inferred

by the GP). Every potential test input u is executed on every

model h ∈ Hyp, and the outputs are recorded. The input that

produces the greatest spread of predictions is then chosen to

be executed on the real SUT.

V. IMPLEMENTATION

As a proof-of-concept, we have implemented the approach

described in the previous section for side-effect free numeric

programs returning single outputs. This section provides details

of this implementation.

A. A GP for Programs with Primitive Types

In this section we elaborate the detailed aspects of the generic

GP algorithm shown in Section IV-B.

Fitness function: The fitness function provides a metric

for the accuracy of the inferred program to predict the SUT.

Fitness is evaluated by executing a candidate program on all

existing test inputs, and comparing the outputs to those that

were actually observed in the trace data.

Selection: Step 3 selects good candidates from the popula-

tion to be fed into the next generation. A popular approach,

which we adopt here, is Tournament Selection [25]. In our case

the selection process is elitist; i.e., the best individual from

one generation is always preserved for the next one.

Crossover and Mutation: The candidates that were selected

in step 3 are subjected to a mixture of crossover and mutation

(the frequency at which they occur is given in probabilistic

terms). We choose to use the most common form crossover

called subtree-crossover [25]: A pair of candidates is chosen, in

each candidate tree a random node is selected, then the sub-tree

rooted at the node selected in the first parent is substituted by

the subtree rooted at the node selected in the second parent.

Mutation is carried out by selecting a random node in a

tree and changing it. If the selected node happens to be a

terminal, its value is simply changed. If it is a non-terminal,

we replace its subtree with a randomly generated one. Arbitrary

crossover or mutation can easily lead to nonsensical programs,

e.g., by using String terminals with a function that expects

integer parameters. Strongly-typed GP [25] prevents this from

happening by ensuring that every terminal and non-terminal

has a declared type.

Termination and result: The loop terminates once a

candidate has been identified that cannot improve in terms

of fitness, or once the number of iterations hits a given limit.

Terminals and Non-Terminals: The choices of terminals

and non-terminals are shown in Table I. In general, of course,

the choice of GP operators is flexible, and is ideally informed

by knowledge about the system being inferred. In our case, we



TABLE I
NON-TERMINALS AND TERMINALS CHOSEN FOR OUR EXPERIMENTS

Non-Terminals

Double (D) add(x:D,y:D), subtract(x:D,y:D), multiply(x:D,y:D), di-
vide(x:D,y:D), power(x:D,y:D), root(x:D, y:D), cast(x:I),
if(x:B,y:D,z:D), cos(x:D), exp(x:D),log(x:D)

Integer (I) cast(x:D)

Boolean (B) and(x:B,y:B), or(x:B, y:B), LT(x:D,y:D), GT(x:D,y:D),
EQ(x:B,y:B), EQArith(x:D,y:D),EQString(x:S,y:S)

Logic (all) if-then-else(a:B,b:D,c:D),if-then-else(a:B,b:I,c:I),if-then-
else(a:B,b:S,c:S),if-then-else(a:B,b:B,c:B)

Terminals

Double (D) all variable names in Vars of type double, one free variable
limited to the interval [−2, 2], -1.0

Integer (I) all variable names in Vars of type integer, one free variable
limited to the interval [−2, 2], 0

Boolean (B) All variable names in Vars of type Boolean, true,
false.

String (S) All variable names in Vars of type String, any customised
pre-defined String values.

sought a reasonably general set that can be applied across a

range of programs. The question of how to refine the selection

of terminals and non-terminals to best suit an SUT is part of

our ongoing work.

B. Generating Test Cases by QBC

For our proof of concept, we are restricting ourselves to

a particular class of system that produces single numerical

outputs (either integers or numbers with decimal places). Our

initial use of standard deviation to quantify uncertainty proved

to be problematic, as it could often produce a misleadingly

high value for the situation where most of the models were

in fact in agreement, but one “rogue” model had produced an

extreme value. To address this problem, we instead opted for

the Mean Absolute Deviation (MAD) value [20], which is less

vulnerable to data-spikes. For a set of values X = {x1, . . . , xn},
MAD(X) = 1

n

∑n

i=1
| xi − m(X) |, where m(X) calculates the

mean of X.

It is necessary to select a value to accommodate the situation

where an inferred model returns either infinity or Not a Number

(e.g., because an inferred model divides by zero), but the SUT

returns a valid value. The value should be high, to indicate

that the model is incorrect, but cannot be too high (e.g.,

Double.MAX VALUE), because this prevents the calculation

of an accurate mean over multiple outputs. In this case, we

substitute the result with a value of 10,000,000 (this was a

somewhat ad-hoc choice, and establishing a more justified

value is part of our future work).

C. Example – The BMI Calculator

This section contains a brief walk-through of TBC. As an

SUT we choose a simple BMI calculator. This takes as input

two numbers (height in meters and weight in kilograms), and

returns a “Body Mass Index” value, calculated as
weight

height2
. For

our technique to operate, we do not need to be able to look

at the internal implementation, but only need to know the

interface. However, to provide a complete overview, let us

assume that the calculator is implemented as a bash script,

with the following source code:

#!/bin/bash

awk "BEGIN {print $2 / ($1 * $1)}"

Our implementation accepts a specification of the interface

in the following self-explanatory JSON format.

{ "command": "bmi.sh",

"parameters":[

{ "name": "height",

"type": "double",

"max": "100",

"min": "-100" },

{ "name": "weight",

"type": "double",

"max": "100",

"min": "-100"}

],

"output":[

{ "name": "output",

"type": "double" }

] }

Finally, we provide an existing basic test set that we wish to

improve upon. Our implementation accepts a space-separated

text file, where the order of values is taken to be the order of

parameters in the specification file (height followed by weight):

1.7 50

1.8 70

1.9 100

1.7 110

0.0 5

5.0 0

With reference to the TBC process in Algorithm 3, the BMI

represents the SUT , and the above list of test sets represents

TestInputs. For the sake of illustration, we will only show one

iteration (i = 1), and we will only add a single test set in this

iteration s = 1. To illustrate how new test cases are selected,

we set randomPoolSize to 3, although this would usually be

much higher (in the evaluation we will set it to 1,000).

The TBC algorithm begins by inferring the “committee”

Hyp via learnMultiple. In our case, this produces the top 10

chromosomes. To give an idea of what is inferred, two of the

fittest GP programs after the first iteration is as follows:

gp1: Mult(weight,Exp(-1.1518922634307343)))

gp2: Div(height,Exp(height-Log(weight))

Although they are clearly inaccurate, we can assume that (as

the fittest members of their pool of solutions), they at least

approximate the output. This is illustrated in Figure 2, which

plots outputs (the dashed and dotted lines) against the expected

output (the plain line), for all test inputs.

As the next step, randomInputs produces a set of

randomPoolSize inputs (in this case three, see left-hand side of

Table II). For each input, the disagreement between the models

is calculated as the MAD, shown in the right-hand column.

From this, it is clear that the second input produced a huge

divergence between the two inferred models.
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TABLE II
PROPOSED INPUTS AND MAD CALCULATION

height weight MAD

87.95 50.49 3.99
-62.41 91.14 1.80E+30

26.44 56.65 4.48

The input with the highest MAD value is thus added to the

test set, and the TBC process moves to the next iteration. This

time, thanks to the new test execution, the inferred models

ought to be more precise, and lead to test cases that explore

new aspects of the input domain.

VI. EVALUATION

In this section we seek to assess the effectiveness of TBC

at generating rigorous test sets. Of primary concern is the

question of whether TBC can detect more faults than baseline

testing techniques. In this evaluation we use random testing

and Adaptive Random Testing [8] as the baseline. Accordingly,

the first research question is as follows:

RQ1: Do TBC-generated test sets expose more faults than

random and ART-generated test sets?

One further question is concerned with the efficiency. In the

event that TBC does not ultimately expose a larger number

of errors than other techniques, it might still expose the same

number of faults, but after executing fewer tests, which would

render it more efficient:

RQ2: Are TBC-generated test sets more efficient at expos-

ing faults than random and ART-generated test sets?

A. Subjects

We chose six units within the Apache Commons Math

framework (version 3.6)2 and two units within JodaTime

(version 2.9.3)3 using the following criteria:

• It must accept a single (set of) input parameters – i.e., it

must not require sequences of method calls (apart from

2https://commons.apache.org/proper/commons-math/
3http://www.joda.org/joda-time/

TABLE III
SUBJECT SYSTEMS.

Component Functionality Exec. LOC Tests

BesselJ value 1,211 699
Binomial binomialCoefficientDouble 501 3,000*
DerivativeStructure asinh 360 3,000*
Gamma regularizedGammaQ 783 4
Erf erf 763 116
RombergIntegrator RombergIntegrator 735 4
Period toStandardWeeks 1,128 5
Days daysBetween 1,251 8

TABLE IV
MEAN NUMBER OF MUTANTS KILLED AFTER 60 ITERATIONS. HIGHEST

VALUES ARE IN BOLD. THE SIGNIFICANCE OF THE MANN-WHITNEY TEST

IS INDICATED IN PARENTHESES. NO SIGNIFICANCE - p > 0.05 IS (-) ,
p < 0.05 IS (*), AND p < 0.001 IS (***).

SUT TBC Random ART

BesselJ 447.50 442.83 (***) 442.93 (*)
Binomial 30.53 29.03 (***) 29.20 (***)
DerivativeSin 55.93 51.20 (***) 50.07 (***)
Erf 190.52 188.62 (***) 189.33 (***)
Gamma 208.23 206.90 (-) 205.60 (-)
Romberg Integrator 87.77 87.63 (-) 87.46 (-)
periodToWeeks 304.95 249.52 (*) 271.58 (-)
daysBetween 72.13 50 (-) 49.53 (*)

the call to the constructor).

• It must produce a single output value.

• The parameters accepted by the unit under test (and its

output value) must either be primitive data types that

are supported by our GP implementation, or be complex

objects where the constructor accepts primitive data types.

• The unit in question must be invoked by one of the Apache

Commons Math or JodaTime test sets (so that we can use

these tests to infer the first model).

The eight units in Table III represent the first units that were

encountered in each system. Where a package contained a large

number of possible varieties (e.g., calculations of derivatives),

we chose one at random, and avoided choosing multiple units

in the same collection. Where an initial test set was particularly

large (some contained > 20,000 executions of the SUT), we

sampled 3,000 executions at random to ensure that the fitness

functions in the GP could be evaluated in a reasonable amount

of time. These are marked with a ‘*’ in Table III.

Apache Commons Math and JodaTime were chosen because

they are written in Java, which enables us to use the Major

mutation framework [19], and because they have a reasonably

extensive set of unit tests (enabling us to use these as a starting

point for the learning-based testing). Their details are shown

in Table III. The sizes of the various functionalities have to be

treated as approximate. As the LOC of the entire libraries would

be an overestimation and the LOC for a single class would

be a gross underestimation (especially in the case of Apache

Commons Math, where a large portion of the functionality is

contained within the very large FastMath class), we provide

the total LOC within the library tracked (using IntelliJ) when

executing all generated test sets for a given SUT.

It is important to note that these selection criteria are in



part so restrictive for the sake of control in our experiment. In

practice, if we wanted to test a system for which our current

GP was not sufficient, we would resort to a different Machine

Learner, or add the requisite terminals and non-terminals to

the GP. However, in our case, this special treatment would

obviously bias the results. To avoid bias, we thus restrict

ourselves to a subset of systems that are at least compatible

with our choice of GP.

B. Methodology

To gauge the performance of TBC in comparison with the

‘state of the art’, we compared the mutation scores for its

test sets against randomly generated test inputs, and test sets

generated by Adaptive Random Testing (ART) [8]. For ART, an

important factor is the choice of distance function to distinguish

test sets. In our case, since most of the inputs were numerical,

we chose the Euclidean distance function, which tends to be

the distance measure of choice.

All of the techniques were provided with an interface

specification file, which contained the various parameters,

and the ranges for any numerical parameters. If parameters

were strings, the potential value-selections were explicitly

enumerated. To avoid biasing results, we did not use any

domain to set numerical variable range boundaries, and adopted

a conservative approach; we looked at the ranges in the given

test sets, and expanded these ranges with a substantial buffer

in either direction (e.g., if the range of the test cases was from

0 to 10, we would set the range from -100 to 100). The full

configuration files, along with all other materials used for this

experiment are available online4.

To gauge how effective a test set is at exposing faults, we

employed mutation testing [17]. We used the Major Java

mutation testing framework (version 1.6, with all mutants) [19].

We seeded mutants conservatively, by selecting any classes

that were executed by the initial set of tests (we could not

seed mutants in every class in the system because of the

resource constraints of mutation testing). It does not make

sense to measure the mutation score as the proportion of

mutants killed, because the conservative seeding strategy

will invariably mean that this proportion is liable to be

very small (for example, all of the units use a fraction of

the org.apache.commons.math4.util.FastMath

class). Instead, we simply compare the absolute numbers of

mutants detected, which suffices to provide valid answers to

our two research questions.

To prevent any bias arising from configurations, we used the

same configuration for TBC across all experiments. For the GP

configuration we used the set of terminals and non-terminals

detailed in Table I. We used a population size of 800, with

a crossover-rate of 0.9, a mutation rate of 0.1, a maximum

term-depth of 10 and a tournament size of 6 [25]. We set the

number of tests generated per iteration to 1,000 (this same

number was used for the randomly generated tests and ART),

and the number selected for addition to the test set to 5.

To answer RQ1, we analysed the mutation scores that

4http://staffwww.dcs.shef.ac.uk/people/G.Fraser/ICST2017/

were computed after 60 iterations, grouped according to the

technique (TBC, ART, and Random). We chose 60 iterations

as a cut-off with a view to gathering sufficient data to highlight

trends in performance, whilst also ensuring that the experiments

did not require too much time. To compare the results we

carried out two (non-parametric) Wilcoxon Rank Sum tests per

SUT (having confirmed that the distributions are not normally

distributed according to the Shapiro Wilks test). The first null-

hypothesis was that the mutation scores for TBC are smaller

than those for random tests. The second null-hypothesis was

that the mutation scores for TBC are smaller than those for

ART tests. The distributions were also visualised as box-plots.

To answer RQ2 (how much more effective is TBC?), we

recorded the last iteration at which TBC produced the highest

mutation score (versus ART and Random). We also plotted the

trajectories of the means to show how the trajectories differed

over the course of the 60 iterations.

C. Results for RQ1: Effectiveness

The mean numbers of mutants killed for each system are

shown in Table IV. The distributions are also visualised as

box-plots in Figure 3. The table shows that, after 60 iterations,

TBC has killed the highest mean number of mutants for every

program. The improvement over ART and random testing

varies substantially between the systems. For BesselJ, Bino-

mial, Derivative Sinh, and ERF, the difference is statistically

significant; this is corroborated in the box plots. In three of

these systems (Binomial, Derivative Sinh and ERF), difference

is so marked that the lower quartile for TBC is higher than

the upper quartile for ART and Random.

For Gamma, Romberg, PeriodToWeeks and DaysBetween

although the mean is higher for TBC, the differences are

not statistically significant (they are partially significant for

PeriodToWeeks and DaysBetween). Looking at the box plots,

in all cases apart from PeriodToWeeks the boxes for TBC

are noticeably elevated. In the case of PeriodToWeeks, the

median score for TBC is the same as ART (even thought the

mean score is substantially higher). This is largely due to one

particular execution that achieved a particularly large number

of mutations. In all cases, the difference in distributions is

particularly marked at the lower end; ART and Random have

lower minimum scores, and lower lower-quartiles than TBC,

which indicates that TBC is more consistent.

RQ1: In our experiments, TBC was more effective than

random testing and ART. In all cases there was a higher

mean number of mutants killed, and the difference in

distributions was significant in 4/8 SUTs.

D. Results for RQ2: Efficiency

We discuss the relative efficiency of TBC versus ART and

random testing by looking at how rapidly TBC out-performs

the other approaches (by achieving a higher mean number

of mutation faults without being overtaken in subsequent

iterations). Figure 4 shows the average mutation scores and

their standard deviations throughout the 60 iterations. It is

important to note the differences in scales; the different SUTs

give rise to markedly different numbers of mutants. This means
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Fig. 3. Mutation Scores after 60 iterations, starting from given test sets.

that similar differentials in the mean numbers of mutants on

different plots can appear markedly different. We discuss the

various trajectories by starting with the systems where the

performances are most similar.

In all of the studied systems, TBC eventually kills more

mutants on average than random and ART testing. In some

systems the numbers of faults detected remain similar through-

out, whereas in others TBC significantly outperforms ART and

Random from the start. These cases are discussed in more

detail below.

As one might expect from the results for RQ1, the trajectories

in the Romberg and Gammaq SUTs are visually similar; these

are the systems where the relative performance between the

techniques is at its closest. In the Romberg SUT, TBC is

consistently better than ART from iteration 20 onwards, but

only outperforms random testing after iteration 50. In Gammaq,

TBC consistently outperforms ART and random from iteration

23 onwards, though only marginally.

Perhaps more surprisingly for both JodaTime systems Period-

ToWeeks and DaysBetween the trajectory for TBC is noticeably

higher than for ART and Random. For PeriodToWeeks, the

number of mutants killed for TBC rapidly increases after 10

iterations to a level that ART and Random only start to approach

after 40-50 iterations.

In ERF, both ART and TBC outperform random testing from

the start. ART and TBC are similar up to iteration 40, where

ART continues to plateau at 189 whilst the mean number of

killed mutants for TBC rises to over 190.

In Binomial, BesselJ, and DerivativeSinh, the results for

TBC are markedly better from the start. In the case of BesselJ

the difference may look smaller, but this is because of the

scale of the graphs. In BesselJ the mean TBC score after 60

iterations is 447.5, whereas for scores for ART and Random

are approximately 443; this difference of 5 is in fact larger

than the differences in the other systems.

RQ2: In our experiments, TBC was significantly more

efficient at exposing faults than random testing and ART.

E. Threats to Validity

Threats to external validity: The answers to RQ1 and RQ2

can only validly be applied to systems of a similar character

to those tested here. We have only tested eight systems from

two frameworks. This means that they will often have shared

developers, and they all deal with similar domains. We have

additionally restricted ourselves to units that are functional,

which do not accept sequential inputs (as discussed in Section

VI-A). To attenuate this risk, we attempted to make the selection

of SUTs as indiscriminate as possible within our broader

selection constraints. The SUTs presented here are the first

ones we encountered that fitted our criteria. However, a larger

study on a more diverse range of SUTs is needed, which is

what we will be doing in our future work.

As mentioned previously, the choice of value ranges for the

parameters is important for all of the techniques. Our choice of

ranges may not be ideal, given that we avoided using domain

knowledge to avoid bias. It is possible that, for certain range

limitations, the differences between the various techniques are

reduced (i.e., if the value ranges are reduced). Investigating
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the relationship between the selection of value ranges and the

relative performance of these techniques is something that we

are exploring as part of our ongoing and future work.

The effectiveness of our generated test sets is currently

assessed by their capacity to detect seeded defects (mutants). It

is assumed that this translates to an ability to expose real faults.

This will need to be verified in future work, which will apply

our experiments to fault repositories, such as Defects4J [18].

Threats to internal validity: The mutation score depends

upon the seeding of mutants. It is possible that code was

executed that was not seeded with mutants, thus skewing the

results. We attempted to limit this possibility by tracking the

execution of code with profiling tools.

F. Discussion

The results indicate that TBC tends to detect more faults

per test than the baseline techniques. One factor, however,

that was not an explicit consideration in our experiments was

the question of time. For ART, Arcuri and Briand [2] have

pointed out that if time is taken into account instead of the

number of tests, then ART can be inferior to conventional

random testing because it is able to execute many more tests

in the same amount of time, which may compensate for any

advantage gained by ART. Of course, it should also be noted

that executing many more tests has its own cost, in the sense

that these additional tests have to be checked by an oracle,

which may not be automated.

This question of time is however a pertinent one for TBC

(indeed, it applies to every LBT technique). Aside from the

time taken to execute the tests, TBC also requires time to

infer models (and the time taken for this can also increase

with the number of tests). The time taken to execute a test is

heavily dependent on variables that were not controlled in this

experiment. The subject system is another influencing factor;

for the sake of mutation testing, we have focussed on Java

units that have a uniformly low execution time. It also crucially

depends on the choice of model inference framework. Our

choice of GP has offered a straightforward basis for computing

uncertainty, but can be time-consuming. There are potentially

speedier model inference alternatives (such as decision trees),

where the use of ensemble techniques can also be used to

derive uncertainty measures [29].

Finally, our empirical results have focussed entirely on the

high-level question of how good the resulting test sets are at

killing mutants. The relationship between this and the accuracy

of the inferred model is currently presumed. Establishing

whether this relationship indeed exists in reality would enable

a more informed choice of model-inference technique. These

questions are all the subject of a broader, more in-depth

experiment which is part of our ongoing work (see Section VII).



VII. CONCLUSIONS AND FUTURE WORK

In this paper we have made an explicit connection between

the problems of test data generation in Software Engineering

and sampling in active Machine Learning. Our solution pro-

poses the use of uncertainty sampling as a means by which to

generate suitable test data. We have provided a proof-of-concept

implementation, along with the results of an empirical explo-

ration using eight units within the Apache Commons Math and

JodaTime frameworks. The initial results are encouraging. Our

TBC approach outperforms regular and adaptive random testing.

Although promising, the approach has also given rise to

several important questions, which were touched upon in

the study. Our ongoing work is seeking to build upon our

experiments in such a way that time is taken into account. To

fully explore this question, we will seek to identify a broader

range of software systems, including network protocols, web

systems, and mobile apps for example, where the time taken to

execute individual test cases can potentially be very high. We

will also look at alternative model inference techniques (such as

some of the baseline approaches used in our previous work [14])

and the potential for using ensemble-based approaches to derive

uncertainty measures from them. A more extensive experiment

will also seek to explore the specific relationship between the

variable-range constraints, the initial amounts of test data, and

the effectiveness of the generated tests.

In our ongoing and future work we will seek to explore

these questions. We will carry out experiments to examine the

effect of variable range on the number of mutants killed. We

will look at the accuracy of the inferred model to see if, in this

context, it leads to better test sets (building upon our previous

work [14]), and we will explore the incorporation of multi-

objective optimisation algorithms to ensure that all inferred

models are good approximations of the whole set of observed

test sets. We will also investigate the adoption of alternative

Machine Learning algorithms that can model more sophisticated

types of functionalities, such as complex data structures and

sequential behaviour. This work on model-inference techniques

will include an investigation of the relationship between model

accuracy and the ability to kill mutants.
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