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Abstract—While a wide range of different and sometimes
heterogeneous code-coverage criteria (a.k.a. testing criteria, or
adequacy criteria) have been proposed, there exists no generic
formalism to describe them all, and available test automation
tools usually support only a small subset of them. We introduce
a new specification language, called HTOL (Hyperlabel Test
Objectives Language), providing a powerful generic mechanism
to define a wide range of test objectives. HTOL comes with
a formal semantics, and can encode all standard criteria but
strong mutations. Besides specification, HTOL is appealing in
the context of test automation as it allows to handle criteria
in a unified way. As a first practical application, we present a
universal coverage measurement tool supporting a wide range of
standard criteria. Initial experiments demonstrate that the tool
is practical and scales on realistic programs.

I. INTRODUCTION

Context. In current software engineering practice, testing [1],
[2], [3], [4] remains the primary approach to find bugs in a
piece of code. We focus here on white-box software testing,
in which the tester has access to the source code – as it is the
case for example in unit testing. As testing all the possible
program inputs is intractable in practice, the software testing
community has notably defined code-coverage criteria (a.k.a.
adequacy criteria or testing criteria) [3], [4], to select test
inputs to be used. In regulated domains such as aeronautics,
these coverage criteria are strict normative requirements that
the tester must satisfy before delivering the software. In other
domains, coverage criteria are recognized as a good practice
for testing, and a key ingredient of test-driven development.

A coverage criterion fundamentally specifies a set of test
requirements or objectives, which should be fulfilled by the
selected test inputs. Typical requirements include for example
covering all statements (statement coverage criterion) or all
branches in the code (decision coverage criterion). These
requirements are essential to an automated white-box testing
process, as they are used to guide the selection of new test
cases, decide when testing should stop and assess the quality
of a test suite (i.e., a set of test cases including test inputs).
In automated white-box testing, a coverage measurement tool
is used to establish which proportion of the requirements are
actually covered by a given test suite, while a test generation
tool tries to generate automatically a test suite satisfying the
requirements of a given criterion.
Problem. Dozens of code-coverage criteria have been pro-
posed in the literature [3], [4], from basic control-flow or data-

flow [5] criteria to mutations [6] and MCDC [7], offering no-
tably different ratios between testing thoroughness and effort.
However, from a technical standpoint, these criteria are seen as
very dissimilar bases for automation, so that most testing tools
(coverage measurement or test generation) are restricted to a
very small subset of criteria (cf. Table I) and that supporting a
new criterion is time-consuming. Hence, the wide variety and
deep sophistication of coverage criteria in academic literature
is barely exploited in practice, and academic criteria have only
a weak penetration into industry.

Goal and challenges. We intend to bridge the gap between
the potentialities offered by the huge body of academic work
on (code-)coverage criteria on one side, and their limited use
in the industry on the other side. In particular, we aim at
proposing a well-defined and unifying specification mechanism
for these criteria, enabling a clear separation of concerns
between the precise declaration of test requirements on one
side, and the automation of white-box testing on the other side.
This is a fruitful approach that has been successfully applied
for example with SQL for databases and with temporal logics
for model checking. This is also a challenging task as such
a mechanism should be, at the same time: (1) well-defined,
(2) expressive enough to encode test requirements from most
existing criteria, and (3) amenable to automation – coverage
measurement and/or test generation.

Proposal. We introduce hyperlabels, a generic specification
language for white-box test requirements. Technically, hyper-
labels are a major extension of labels proposed by Bardin
et al. [8]. While labels can express a large range of criteria
[8] (including a large part WM’ of weak mutations [9], and
a weak variant of MCDC [10]), they are still too limited in
terms of expressiveness, not being able for example to express
strong variants of MCDC [7] or most dataflow criteria [5]. In
contrast, hyperlabels are able to encode all criteria from the
literature [4] but full mutations [6], [9].

Compared with similar previous attempts, hyperlabels try to
find a sweetspot between genericity, specialization to coverage
criteria and automation. Indeed, FQL [11] cannot encode
MCDC or WM’ but provides automatic test generation [12],
while temporal logics such as HyperLTL or HyperCTL* [13]
are so expressive that automation faces significant scalability
issues. Hyperlabels are both necessary and (almost) sufficient
for expressing all interesting coverage criteria, and they seem
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to be amenable to efficient automation.

Contribution. The four main contributions of this paper are:
1. We introduce a novel taxonomy of coverage criteria (Sec-
tion IV), orthogonal to both the standard classification [3]
and the one by Ammann and Offutt [4]. Our classification
is semantical, based on the nature of the reachability con-
straints underlying a given criterion. This view is sufficient for
classifying all existing criteria but mutations, and yields new
insights into coverage criteria, emphasizing the complexity
gap between a given criterion and basic reachability. A visual
representation of this taxonomy is proposed, the cube of
coverage criteria1;
2. We propose HTOL (Hyperlabel Test Objective Language),
a formal specification language for test objectives (Section V)
based on hyperlabels. While labels reside in the cube origin,
our language adds new constructs for combining (atomic)
labels, allowing us to encode any criterion from the cube
taxonomy. We present HTOL’s syntax and give a formal se-
mantics in terms of coverage. Finally, we give a few encodings
of criteria beyond labels. Notably, HTOL can express subtle
differences between the variants of MCDC (Section V-D1);
3. As a first application of hyperlabels, and in order to
demonstrate their expressiveness, we provide in Section VI a
list of encodings for almost all code coverage criteria defined
in the Ammann and Offutt book [4], including many criteria
beyond labels (cf. Table II). The only missing criteria are
strong mutations and full weak mutations, yet a large subset
of weak mutations can be encoded [8].
4. As a second application of hyperlabels, and in order to
demonstrate their practicality, we present the design and imple-
mentation of a universal and easily extensible code coverage
measurement tool (Section VII) based on HTOL. The tool
already supports in a unified way fourteen coverage criteria,
including all criteria from Table I and six which are beyond
labels. We report on several experiments demonstrating that
the approach is efficient enough and scales well, both in terms
of program size and number of tests.

Potential impact and future work. Hyperlabels provide a
lingua franca for defining, extending and comparing criteria in
a clearly documented way, as well as a specification language
for writing universal, extensible and interoperable testing tools.
By making the whole variety and sophistication of academic
coverage criteria much more easily accessible in practice,
hyperlabels help bridging the gap between the rich body of
academic results in criterion-based testing and their limited
use in the industry.

We intend to develop a test generation tool dedicated to
hyperlabels in a middle term. Actually, automatic test genera-
tion can already be obtained by combining test generation for
atomic labels [8] with coverage measurement for hyperlabels,
yet a more dedicated technique is certainly desirable.

1By analogy to the λ-cube of functional programming.

TABLE I
CRITERIA SUPPORTED IN A FEW POPULAR COVERAGE TOOLS

Tool / Criterion FC BBC DC CC DCC MCDC BPC

Gcov X X X

Bullseye X X

Parasoft X X X X X X

Semantic Designs X X

Testwell CTC++ X X X X

FC: functions, BBC: basic blocks, DC: decisions, CC: conditions, DCC: decision
condition, MCDC: modified decision condition, BPC: basis paths

II. OVERVIEW

We briefly sketch in Figure 1 the workflow of our universal
coverage measurement tool, in order to give an idea of how
HTOL helps to build test automation tools supporting a wide
range of coverage criteria.

Fig. 1: Workflow of the universal coverage measurement tool

The user provides a program under test P and a test suite
TS, selects a coverage criterion C among a list of supported
criteria and obtains the coverage score of the test suite for the
criterion C. Internally, the program P is first automatically
annotated with hyperlabels representing exactly the coverage
objectives defined by C (cf. Figure 2 for an example) –
we call annotation function (or labeling function) such a
transformation, then coverage achieved by TS is measured
on the annotated program and reported to the user.

From a developer’s point of view, the analysis engine (here,
coverage measurement) is written once and for all (shared
among criteria), and supporting a new criterion simply comes
down to write a new annotation function (shared among
analysis engines).

III. BACKGROUND

A. Basics: Programs, Tests and Coverage

We give here a formal definition of coverage and coverage
criteria, following [8]. Given a program P over a vector
V of m input variables taking values in a domain D ,
D1 × · · · × Dm, a test datum t for P is a valuation of V ,
i.e. t ∈ D. A test suite TS ⊆ D is a finite set of test data.
A (finite) execution of P over some t, denoted P (t), is a
(finite) run σ , 〈(loc0, s0), . . . , (locn, sn)〉 where the loci
denote successive (control-)locations of P (≈ statements of
the programming language in which P is written) and the
si denote the successive internal states of P (≈ valuation
of all global and local variables and of all memory-allocated



structures) after the execution of each loci (loc0 refers to the
initial program state).

A test datum t reaches a location loc at step k with
internal state s, denoted t  k

P 〈loc, s〉, if P (t) has the form
σ · 〈loc, s〉 · ρ where σ is a partial run of length k. When
focusing on reachability, we omit k and write t P 〈loc, s〉.

Given a test objective c, we write t  P c if test datum
t covers c. We extend the notation for a test suite TS and
a set of test objectives C, writing TS  P C when for any
c ∈ C, there exists t ∈ TS such that t P c. A (source-code
based) coverage criterion C is defined as a systematic way of
deriving a set of test objectives C = C(P ) for any program
under test P . A test suite TS satisfies (or achieves) a coverage
criterion C if TS covers C(P ). When there is no ambiguity,
we identify the coverage criterion C for a given program P
with the derived set of test objectives C = C(P ).

These definitions are generic and leave the exact definition
of “covering” to the considered coverage criterion. For exam-
ple, test objectives derived from the Decision Coverage crite-
rion are of the form c , (loc,cond) or c , (loc,!cond),
where cond is the condition of the branching statement at
location loc, and t P c if t reaches some (loc, S) such that
cond evaluates to true (resp. false) in S.

Finally, for a test suite TS and a set C of test objectives,
the coverage score of TS w.r.t. C is the ratio of the number
of test objectives in C covered by TS to its cardinality |C|.
The coverage score of TS w.r.t. a coverage criterion C is then
its coverage score w.r.t. the set C = C(P ).

B. A Quick Tour of Coverage Criteria

A wide variety of criteria have been proposed in the
literature [2], [4], [3]. We briefly review in this section the
main criteria used throughout the paper.

Control-flow graph coverage criteria include basic block
coverage (BBC, equivalent to statement coverage), branch
coverage (BC) and several path-based criteria (where each one
specifies a particular set of paths to cover in the graph) such as
edge-pair (EPC), prime path (PPC), basis path (BPC), sim-
ple/complete round trip (SRTC/CRTC) and complete/speci-
fied path (CPC/SPC) coverage.

Call graph coverage criteria include notably function cov-
erage (FC, all the call graph nodes, i.e. each program function
should be called at least once) and call coverage (FCC, all the
graph edges, i.e. each function should be called at least once
from each of its callers).

Data-flow coverage [5] concerns checking that each value
defined in the tested program is actually used, either by one
of its possible uses (all-defs), or by all of them (all-uses), or
even along any of its def-use paths (all-du-paths).

Logic coverage criteria focus on exercising various truth
value combinations for the logical predicates (i.e. branching
conditions) of the tested program. The most basic criteria
here are decision coverage (both values for each predicate,
DC – equivalent to BC), (atomic) condition coverage (both

values for each literal in each predicate, CC) and multi-
ple condition coverage (all literal value combinations for
each predicate, MCC). Advanced criteria include MCDC [7]
and its variants [14], [4] GACC, CACC (masking MCDC)
and RACC (unique-cause MCDC), as well as their inactive
clause coverage counterparts GICC and RICC. Other criteria
consider the disjunctive normal form of the predicates [4,
Chap. 3.6], such as implicant coverage IC, unique true point
coverage UTPC and corresponding unique true point and near
false point pair coverage CUTPNFP [15].

Finally, in mutation coverage [6], test requirements address
the ability to detect that each of slight syntactic variants of
the tested program (the mutants) behaves differently from
the original code. In strong mutation coverage (SM), the
divergence must be detected in the program outputs, whereas
in weak mutation coverage (WM) [9] the divergence must be
detected just after the mutation. Both SM and WM are very
powerful [16], [17]. Recently, Bardin et al. identified side-
effect-free weak mutations (WM’) [8], [18] as an expressive
yet efficiently automatable fragment.

C. Criterion Encoding with Labels
In previous work, we have introduced labels [8], a code

annotation language to encode concrete test objectives, and
shown that several common coverage criteria can be simulated
by label coverage, i.e. given a program P and a criterion C,
the concrete test objectives instantiated from C for P can
always be encoded using labels. As our main contribution is
a major extension of labels into hyperlabels, we recall here
basic results about labels.
Labels. Given a program P , a label ` ∈ LabsP is a pair
〈loc, ϕ〉 where loc is a location of P and ϕ is a predicate
over the internal state at loc, that is, such that: (1) ϕ contains
only variables and expressions (using in the same language as
P ) defined at location loc in P , and (2) ϕ contains no side-
effect expressions. There can be several labels defined at a
single location, which can possibly share the same predicate.
More concretely, our labels can be compared to labels in the
C language, decorated with a pure C expression.

We say that a test datum t covers a label ` , 〈loc, ϕ〉 in P ,
denoted t L P `, if there is a state s such that t reaches 〈loc, s〉
(i.e. t  P 〈loc, s〉) and s satisfies ϕ. An annotated program
is a pair 〈P,L〉 where P is a program and L ⊆ LabsP is a set
of labels for P . Given an annotated program 〈P,L〉, we say
that a test suite TS satisfies the label coverage criterion (LC)
for 〈P,L〉, denoted TS L 〈P,L〉 LC, if TS covers every label
of L (i.e. ∀` ∈ L : ∃t ∈ TS : t L P `).
Criterion Encoding. Label coverage simulates a coverage
criterion C if any program P can be automatically annotated
with a set of labels L in such a way that any test suite TS satis-
fies LC for 〈P,L〉 if and only if TS covers all the concrete test
objectives instantiated from C for P . We call annotation (or
labeling) function such a procedure automatically adding test
objectives into a given program for a given coverage criterion.

It is shown in [8] that label coverage can notably simu-
late basic-block coverage (BBC), branch coverage (BC) and



decision coverage (DC), function coverage (FC), condition
coverage (CC), decision condition coverage (DCC), multi-
ple condition coverage (MCC) as well as the side-effect-
free fragment of weak mutations (WM’). The encoding of
GACC can also be deduced from [10]. Figure 2 illustrates the
simulation of some criteria with labels on sample code – that
is, the resulting annotated code automatically produced by the
corresponding annotation functions.

statement_1;
if(x==y && a<b)

{...};
statement_3;

→

statement_1;
//! l1: x==y
//! l2: x!=y
//! l3: a<b
//! l4: a>=b
if(x==y && a<b)

{...};
statement_3;

statement_1;
//! l1: x==y && a<b
//! l2: x!=y && a<b
//! l3: x==y && a>=b
//! l4: x!=y && a>=b
if(x==y && a<b)

{...};
statement_3;

Condition
Coverage (CC)

Multiple Conditon
Coverage (MCC)

Fig. 2. Encoding of standard test requirements with labels (from [8])

The main benefit of labels is to unify the treatment of test
requirements belonging to different classes of coverage criteria
in a transparent way, thanks to the automatic insertion of labels
in the program under test.

Limits. A label can only express the requirement that an
assertion at a single location in the code must be covered by a
single test execution. This is not expressive enough to encode
the test objectives coming from path-based criteria, data-flow
criteria, strong variants of MCDC or full mutations.

Our goal. In this work, we aim at extending the expressive
power of labels towards all the criteria presented in Section
III-B (except WM and SM). The proposed extension should
preserve the automation capabilities of labels.

IV. A NEW TAXONOMY: THE CUBE

We propose a new taxonomy for code coverage criteria,
based on the semantics of the associated reachability problem2.
We take standard reachability constraints as a basis, and
consider three orthogonal extensions:
Basis location-based reachability, constraining a single pro-

gram location and a single test execution at a time,
Ext1 reachability constraints relating several executions of the

same program (hyperproperties [19]),
Ext2 reachability constraints along a whole execution path

(safety [20]),
Ext3 reachability constraints involving choices between sev-

eral objectives.
The basis corresponds to criteria that can be encoded with

labels. Extensions 1, 2 and 3 can be seen as three euclidean
axes that spawn from the basis and add new capabilities to
labels along three orthogonal directions. This gives birth to
a visual representation of our taxonomy as a cube, depicted
in Figure IV, where each coverage criterion from Section
III-B (but mutations) is arranged on one of the cube vertices,

2More precisely: the reachability problem of the test requirements associ-
ated to the coverage criterion.

depending on the expressiveness of its associated reachabil-
ity constraints. Intuitively, strong mutation falls outside the
cube because it relates two executions on two programs, the
program under test and the mutant. Yet, we can classify test
objectives corresponding to the violation of security properties
such as non-interference (cf. Example 4, Section V-B).

This taxonomy is interesting in several respects. First, it
is semantic, in the sense that it refers to the reachability
problems underlying the test requirements rather than to the
artifact which the test requirements are drawn from. In that
sense it represents progress toward abstraction compared to
the older taxonomies [4], [3], the one of [4] being already
more abstract than [3]. Second, it is very concise (only three
basic parameters) and yet almost comprehensive, yielding new
insights on criteria, through their distance to basic reachability.
Interestingly, while many criteria require two extensions, we
do not know of any criterion involving the three extensions.
More generally, no criterion seems to be using a disjunction
of constraints over several executions of the same program.

V. HYPERLABELS

The previous section shows that our semantic taxonomy is
suitable to represent the whole set of coverage criteria we
are interested in. Since labels correspond to basic reachability
constraints, we seek to extend them in the three directions of
axes in order to build a universal test requirement description
language. We detail here the principle, syntax and semantics
of the proposed HTOL language.

A. Principles

HTOL is based on labels [8] (referred to as atomic now) to
which we add five constructions, namely: bindings, sequences,
guards, conjunctions and disjunctions. By combining these
operators over atomic labels, one builds new objectives to be
covered, which we call hyperlabels.

• Bindings ` B {v1 ← [ e1; . . .} store in meta-variable(s)
v1, . . . the value of well-defined expression(s) e1, . . . at
the state at which atomic label ` is covered;



• Sequence `1
φ−→ `2 requires two atomic labels `1 and `2 to

be covered sequentially by a single test run, constraining
the whole path section between them by φ;

• Conjunction h1 · h2 requires two hyperlabels h1, h2 to
be covered by (possibly distinct) test cases, enabling to
express hyperproperties about sets of tests;

• Disjunction h1 + h2 requires covering at least one of
hyperlabels h1, h2. This enables to simulate criteria in-
volving disjunctions of objectives;

• Guard 〈h | ψ〉 expresses a constraint ψ over meta-
variables observed (at different locations and/or during
distinct executions) when covering labels underlying h.

B. First Examples
We present here a first few examples of criterion encodings

using hyperlabels. They are presented in an informal way, a
formal semantics of hyperlabels being given in Section V-C.

Example 1 (MCDC) We start with conjunction, bindings and
guards. Consider the following code snippet:
statement_0;
// loc_1
if (x==y && a<b) {...};
statement_2;

The (strong) MCDC criterion requires demonstrating that
each atomic condition c1 , x==y and c2 ,a<b alone can
influence the whole branch decision d , c1 ∧ c2. For c1, it
comes down to providing two tests where the truth value of c2
at loc1 remains the same, while values of c1 and d change. The
requirement for c2 is symmetric. This can be directly encoded
with hyperlabels h1 and h2 as follows:

l , (loc1, d)B {c1 ← [ x==y; c2 ← [ a<b}
l′ , (loc1,¬d)B {c′1 ←[ x==y; c′2 ← [ a<b}
h1 , 〈l · l′ | c1 6= c′1 ∧ c2 = c′2〉
h2 , 〈l · l′ | c1 = c′1 ∧ c2 6= c′2〉

h1 requires that the test suite reaches loc1 twice (through
the · operator) – with one or two tests but different values
for decision d. The values taken by the atomic conditions
when loc1 is reached are bound (through B ) to metavariables
c1, c2 (first execution) and c′1, c

′
2 (second one). Moreover, these

recorded values must satisfy the guard c1 6= c′1 ∧ c2 = c′2,
meaning that c1 alone can influence the decision. Similarly,
h2 ensures the desired test objective for c2.

Example 2 (Call coverage) Let us continue by showing the
interest of the disjunction operator. Consider the following
code snippet where f and g are two functions.
int f() {
if (...) { /* loc_1 */ g(); }
if (...) { /* loc_2 */ g(); }}

The function call coverage criterion (FCC) requires a test
case going from f to g, i.e. passing either through loc1 or
loc2. This is exactly represented by hyperlabel h3 below:

h3 , (loc1, true) + (loc2, true)

Example 3 (all-uses) We illustrate now the sequence opera-
tor ·−→. Consider the following code snippet.

/* loc_1 */ a := x;
if (...) /* loc_2 */ res := x+1;
else /* loc_3 */ res := x-1;

In order to meet the all-uses dataflow criterion for the
definition of variable a at line loc1, a test suite must cover the
two def-use paths from loc1 to loc2 and to loc3. These two
objectives are represented by hyperlabels h4 , (loc1, true) −→
(loc2, true) and h5 , (loc1, true) −→ (loc3, true).

Example 4 (Non-interference) Last, we present a more de-
manding example that involves bindings, sequences and
guards. Non-interference is a strict security policy model
which prescribes that information does not flow between
sensitive data (high) towards non-sensitive data (low). This
is a typical example of hypersafety property [19], [13]. Hy-
perlabels can express the violation of such a property in a
straighforward manner. Consider the code snippet below.

int flowcontrol(int high, int low) {
// loc 1
{...}
// loc 2
return res; }

Non-interference is violated here if and only if two execu-
tions with the same low input exhibit different output (res)
– because it would mean that a difference in the high input
is observable. This can be encoded with hyperlabel h6:

l1 , (loc1, true)B {lo ←[ low} → (loc2, true)B {r ←[ res}
l2 , (loc1, true)B {lo′ ← [ low} → (loc2, true)B {r ′ ←[ res}
h6 , 〈l1 · l2 | lo = lo′ ∧ r 6= r′〉

C. Formal definition

Syntax. The syntax is given in Figure 3, where:
• ` , 〈loc, ϕ〉 ∈ LabsP is an atomic label.
• B ∈ Bindingsloc is a partial mapping between arbitrary

metavariable names v ∈ HVars and well-defined expres-
sions e at the program location loc;

• l, l1, · · · , li, · · · , ln are atomic labels with bindings;
• φi is a predicate over the metavariable names defined

in the bindings of labels l1, . . . , li, over the current
program location pc (≈ program counter) and over the
variable names defined in all program locations that can
be executed in a path going from loci to loci+1.

• h, h1, h2 ∈ HypsP are hyperlabels;
• ψ is a predicate over the set nm(h) of h-visible names

(i.e. metavariable names guaranteed to be recorded by
h’s bindings), defined as follows:

nm(`BB) , all the names defined in B

nm([l1
φ1−→ · · · ln]) , nm(l1) ∪ · · · ∪ nm(ln)

nm(〈h | ψ〉) , nm(h)

nm(h1 · h2) , nm(h1) ∪ nm(h2)

nm(h1 + h2) , nm(h1) ∩ nm(h2);



h ::= l label

| [l1
φ1−→ {li

φi−→ }* ln] sequence of labels
| 〈h | ψ〉 guarded hyperlabel
| h1 · h2 conjunction of hyperlabels
| h1 + h2 disjunction of hyperlabels

l ::= `BB atomic label with bindings

B ::= {v1 ←[ e1; . . .} bindings

Fig. 3: Syntax of Hyperlabels

Well-formed hyperlabels. In general, a name can be bound
multiple times in a single hyperlabel, which would result in
ambiguities when evaluating guards. To prevent this issue,
we define in Figure 4 a well-formed predicate wf(·) over
hyperlabels. In the remaining part of this paper, we will only
consider well-formed hyperlabels.

∀i, j, i 6= j ⇒ vi 6= vj

wf(`B {v1 ← e1; ...; vn ← en})
wf(h)

wf(〈h | ψ〉)

∀i, j, i 6= j ⇒ nm(li) ∩ nm(lj) = ∅

wf([l1
φ1−→ · · · ln])

wf(h1) wf(h2) nm(l1) ∩ nm(l2) = ∅
wf(h1 · h2)

wf(h1) wf(h2) nm(l1) = nm(l2)

wf(h1 + h2)

Fig. 4: Well-formed hyperlabels

In particular, on well-formed hyperlabels, nm is compatible
with distributivity of · and +. For instance, if we have wf(h)
with h , h1 · (h2 + h3), then, with h′ , (h1 · h2) + (h1 · h3),
we have wf(h′) and nm(h) = nm(h′).

Semantics. HTOL is given a semantics in terms of coverage
and execution traces, as was done for atomic labels [8]. This
kind of semantic is not tied to syntactic elements of the
program under test, allowing for example to express WM’.

A primary requirement for covering hyperlabels is to capture
execution states into the variables defined in bindings. For
that, we introduce the notion of environment. An environment
E ∈ Envs is a partial mapping between names and values, that
is, Envs , HVars 9 Values. Given an execution state s at
the program location loc and some bindings B ∈ Bindingsloc ,
the evaluation of B at state s, noted JBKs is an environment
E ∈ Envs such that E(v) = val iff B(v) evaluates to val
considering the execution state s.

We can now define hyperlabel coverage. A test suite TS
covers a hyperlabel h ∈ HypsP , noted TS H P h, if there

exists some environment E ∈ Envs such that the pair 〈TS , E〉
covers h, noted 〈TS , E〉 H P h, defined by the inference rules
of Figure 5. An annotated program is a pair 〈P,H〉 where
P is a program and H ⊆ HypsP is a set of hyperlabels for
P . Given an annotated program 〈P,H〉, we say that a test
suite TS satisfies the hyperlabel coverage criterion (HLC) for
〈P,H〉, noted TS H 〈P,H〉 HLC if the test suite TS covers
every hyperlabel from H (i.e. ∀h ∈ H : TS H P h).

The criterion simulation introduced for labels [8] is general-
ized to hyperlabels. Hyperlabel coverage simulates a coverage
criterion C if any program P can be automatically annotated
with a set of hyperlabels H , so that, for any test suite TS,
TS satisfies HLC for 〈P,H〉 iff TS fulfills all the concrete
test objectives instantiated from C for P .

Disjunctive Normal Form. Any well-formed hyperlabel h
can be rewritten into a disjunctive normal form (DNF), i.e a
coverage-equivalent hyperlabel hdnf arranged as a disjunction
hdnf , c1 + · · · + ci + · · · + cn of guarded conjunctions
ci , 〈lsi1 · . . . · lsip | ψ(Blsi1 , · · · , Blsip)〉 over atomic labels or
sequences. The equivalence between h and hdnf is stated as

∀ TS ⊆ D ∀ E ∈ Envs, 〈TS , E〉 H P h⇔ 〈TS , E〉 H P hhnf .

DNF normalization is an important step of our coverage
measurement algorithm (cf. Section VII-A).

D. Advanced Examples

1) Playing with MCDC variants: Example 1 provides an
encoding of the strongest version of MCDC (a.k.a. RACC).
Yet, weaker variants exist. Encoding them into hyperlabels
helps clarify the subtle differences between those variants.

GACC (General Active Clause Coverage) is the weakest
variant of MCDC. It is also the sole variant encodable with
atomic labels [10]. Let us assume that we have a predicate p
composed of n atomic conditions c1, . . . , cn. GACC requires
that for each ci, the test suite triggers two distinct executions
of the predicate: one where ci is true, one where ci is false,
and both such that the truth value of ci impacts the truth value
of the whole predicate. Yet, it is not required that switching
the value of ci is indeed feasible, and the two executions do
not have to be correlated. Going back to the code snippet of
Example 1, GACC requirement for c1 can be simulated by
l3 and l4, where d(x, y) denotes decision d (cf. Example 1)
where c1 and c2 are replaced by x and y.
l3 , (loc1, c1 ∧ d(true, c2) 6= d(false, c2))
l4 , (loc1,¬c1 ∧ d(true, c2) 6= d(false, c2))

CACC (Correlated Active Clause Coverage), or masking
MCDC is stronger than GACC. It includes every requirement
from GACC and additionally requires that for each clause ci,
the two executions are such that if p is true (resp. false) in
the first one, then it is false (resp. true) in the second one.
CACC cannot be encoded into atomic labels because of this
last requirement that correlates the two executions together.
Yet, it can be encoded with hyperlabels. Using the same code
as in Example 1, CACC requirement for c1 can be simulated



LABEL

t ∈ TS t k
P 〈loc, s〉 s � ϕ E ⊇ JBKs

t k
E 〈loc, ϕ〉BB 〈TS , E〉 H P 〈loc, ϕ〉BB

GUARD

〈TS , E〉 H P h E � ψ
〈TS , E〉 H P 〈h | ψ〉

CONJUNCTION

〈TS , E〉 H P h1 〈TS , E〉 H P h2

〈TS , E〉 H P h1 · h2

DISJUNCTION LEFT

〈TS , E〉 H P h1

〈TS , E〉 H P h1 + h2

DISJUNCTION RIGHT

〈TS , E〉 H P h2

〈TS , E〉 H P h1 + h2

SEQUENCE

t ∈ TS ∀i ∈ [1, n] , t ki
E li ∀i ∈ [1, n− 1] , ki < ki+1

∀i ∈ [1, n− 1] , ∀j ∈ ]ki, ki+1[ , (locj , sj) = P (t)j ∧ φi(E , locj , sj)

〈TS , E〉 H P [l1
φ1−→ {li

φi−→ }* ln]
Naming convention: TS test suite; E hyperlabel environment; h, h1, h2 hyperlabels; ψ hyperlabel guard predicate; n positive integer; l1, . . . , ln atomic labels with bindings;

t test datum; k, k1, . . . , kn execution step numbers; locj , loc program locations; sj , s execution states; P (t)j the j-th step of the program run P (t) of P on t; φ1, . . . , φn

predicates over sequences of labels; ϕ label predicate; B hyperlabel bindings.

Fig. 5. Inference rules for hyperlabel semantics

by the following hyperlabel h7, built on the two atomic labels
l3 and l4 defined for GACC:
h7 , 〈l3 B {r ← [ d} · l4 B {r′ ← [ d} | r 6= r′〉

2) More DataFlow criteria: The all-defs coverage criterion
requires that each definition of a variable must be connected to
one of its uses. The criterion adds a disjunction of objectives
to the all-uses criterion. Going back to Example 3, the all-defs
requirement for the definition of variable a at line loc1 can be
simply simulated by hyperlabel h8 , h4 + h5.

Finally, data-flow criteria can be refined to consider the
definition and use of single array cells, while the standard
approach considers arrays as a whole. Indeed, the index of
the accessed cells may not be known statically, making it
impossible to relate defs and uses, as well as to define def-
free paths without dynamic information. For example, in the
following code, the path from loc1 to loc3 is a valid du-path
iff i = k 6= j, which cannot be known statically:
int foo(int i,int j,int k){
/* loc_1 */ a[i] = x;
/* loc_2 */ a[j] = y;
/* loc_3 */ z = a[k] + 1; }

With hyperlabels, we just have to add bindings to the atomic
labels for saving the values of i and j and use the guard
operator to force them being equal. Encoding for the previous
example is given below, with pc the current line of code:
l5 , (loc1, true) l6 , (loc3, true)

h9 , 〈l5 B {v1 ← [ i}
pc=loc2
⇒j 6=v1−−−−−→ l6 B {v2 ← [ k} | v1 = v2〉

3) Path-based Criteria: Most test objectives coming from
path-based criteria have a straightforward encoding with the
−→ operator, typically complete path coverage (for a finite
number of paths). A few criteria also require operator + for
choices between paths, e.g. simple round trip coverage.

VI. EXTENSIVE CRITERIA ENCODING

As a first application of hyperlabels, we perform an ex-
tensive literature review and we try to encode all coverage
criteria with hyperlabels. Especially, we have been able to
encode all criteria from the Ammann and Offutt book [4],

but strong mutations and full weak mutations. Indeed, these
two criteria really require the ability to run tests on variants
of the original program, whereas HTOL does not modify the
code itself. These results are summarized in Table II, where
we also specify which criteria can be expressed by atomic
labels alone, and the required hyperlabel operators otherwise.

TABLE II
SIMULATION OF CRITERIA FROM [4].

Encodable by See Sec.

la
be

ls hyperlabels or ref.
using

φ−→ |ψ〉 · +
Control-flow graph coverage
Statement, Basic-Block, Branch X [8]
Path coverage:

EPC, PPC, CRTC, CPC, SPC • V-D3
Simple Round Trip coverage • • V-D3

Call-graph coverage
Function coverage (all nodes) X III-C
Call coverage (all edges) • 2
Data-flow coverage
All Definitions (all-defs) • • V-D2

+ array cell definitions • • • V-D2
All Uses (all-uses) • 3

+ array cell definitions • • V-D2
All Def-Use Paths (all-du-paths) • V-D3

+ array cell definitions • • V-D2
Logic expression coverage
BBC, CC, DCC, MCC X [8]
MCDC variants:

GACC, GICC X V-D1, [10]
CACC, RACC, RICC • • V-D1

DNF-based criteria:
IC, UTPC X
CUTPNFPPC • •

Mutation coverage
Side-effect-free Weak Mut. X [8]
(Full) Weak Mut., Strong Mut. not encodable

X: expressible by atomic labels •: required hyperlabel operators

Interestingly, many criteria fall beyond the scope of atomic
labels, and many also require combining two or three HTOL
operators. This is a strong a posteriori evidence that the lan-
guage of hyperlabel is both necessary and (almost) sufficient
to encode state-of-the-art coverage criteria. Detailed encodings
are available on the companion website3.

3Companion website: http://icst17.marcozzi.net

http://icst17.marcozzi.net


VII. UNIVERSAL COVERAGE MEASUREMENT TOOL

As a second application, we describe a universal coverage
measurement tool, built on HTOL, following the view of
Section II and the philosophy of LTest [21]. The two basic
building blocks are: (1) a coverage measurement procedure
for test suites on programs annotated with hyperlabels, and (2)
pre-defined (hyperlabeling) annotation functions for standard
criteria (cf. Section VI).

This prototype is the first coverage measurement tool able
to handle all coverage criteria from [4] (but strongest mutation
variants) in a unified way. Fourteen criteria are supported so
far – their annotation functions are provided: six based on
hyperlabels (CACC, RACC, FCC, BPC, all-defs and all-use),
plus eight based on atomic labels4. Supporting a new coverage
criterion amounts to implement its annotation function.

While our coverage measurement algorithm runs in worst-
case exponential time considering the whole HTOL expres-
siveness, experiments demonstrate that the tool is efficient
enough on existing coverage criteria, and scales well with both
program size and number of tests.

A. Computing the coverage of a test suite

Given an annotated program 〈P,H〉 and a test suite TS,
our coverage measurement algorithm follows three steps.
normalization First, each hyperlabel h ∈ H is rewritten into

its disjunctive normal form (cf. Section V-C).
harvesting Second, each test case t from TS is run on P .

Every atomic label and label sequence covered during
the run is saved on-the-fly, together with the environment
(values of metavariables) that instantiates the label’s
bindings at the coverage points.

consolidation Third, the collected coverage information is
propagated within the syntax tree (in DNF) of every
h ∈ H , in order to establish if TS covers h or not.

These steps are now described in more details.
Normalization. As stated in Section V-C, any (well-formed)
hyperlabel h can be rewritten into an equivalent hyperlabel
hdnf in disjunctive normal form. This form of labels is both
very convenient for coverage measurement and very common
in practice. This is done by applying the rewrite rules of
Figure 6 bottom-up from the leaves of the hyperlabel tree.
The proof of equivalence between h and hdnf can easily be
obtained by induction on h.
Environment harvesting. Once hyperlabels in DNF have been
obtained, each test t from the suite TS is run on P , and the
coverage information for basic labels, sequences and binding
values is collected. Note that we need to store all possible
binding values encountered along the execution of t, not just
the first one. While this is easy for atomic labels, sequences
must be treated with care, as there are some non deterministic
choices there. Due to space limitations, we do not describe
this point here, common in runtime monitoring A detailed
description is available on the companion website5.

4Namely: FC, BBC, DC, CC, DCC, MCC, GACC and WM’.
5Companion website: http://icst17.marcozzi.net
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Fig. 6: Rewriting hyperlabel into DNF

Consolidating coverage result. Once the coverage informa-
tion for basic labels, sequences and binding values is fully
collected, we can compute the whole hyperlabel-coverage
information. This is straightforward on DNF hyperlabels:
• atomic labels and sequences with no guard are covered

iff they have been covered in the harvesting step;
• a guarded conjunction c , 〈ls1 ·...·lsp | ψ(Bls1 , ...Blsp)〉

is covered iff each label or sequence lsj , j ∈ 1..p is
saved as covered in E and there is at least one set of
environments Ej ∈ E (one for every lsj with bindings)
such that ψ(E1, · · · , Ep) is true;

• a disjunction hhnf , c1 + · · ·+ ci + · · ·+ cn is covered
iff at least one of the ci is covered.

In practice, the tool tries every possible combination of Ej
from E for every ci, until it finds one which makes ψ true
(in which case TS covers h) or proves that none exists (in
which case h is not covered by TS). Note that under the
assumption that P terminates for all test cases in TS, this
algorithm is both correct and complete with respect to HTOL’s
semantics, that is, it will find a combination covering a well-
formed hyperlabel h iff TS H P h. This can be shown by
induction on the number of disjunctions and conjunctions in
the normalized form of h.

Optimizations. We first preprocess hyperlabels under consid-
eration in order to remove all unused metavariables appearing
in bindings. Then, during harvesting, we ensure that each
binding is recorded only once, avoiding duplicated values.
Finally, we perform conjunction and disjunction evaluation
in a lazy way, in order to avoid unnecessary combinatorial
reasoning on guarded conjunctions.

About complexity. The algorithm presented so far runs in
worst-case exponential time, mainly because of three factors:
(1) normalization may yield an exponential-size hyperlabel,
(2) consolidation for guarded conjunctions may lead to check-
ing a number of solutions exponential in the size of the
conjunction, and (3) monitoring sequences of labels may
include harvesting a number of environments exponential in
the length of the considered run.

Yet, in practice, our algorithm appears to perform well on
existing classes of testing requirements (cf. Section VII-C).

http://icst17.marcozzi.net


Here are a few explanations. First, criteria as encoded in the
previous sections are naturally in DNF. Second, the critical
parameters indicated above are strongly limitated in existing
criteria: conjunctions of length 2; sequences of length 2 or
without bindings; small domains of metavariables (boolean).
In that setting, complexity becomes polynomial.

B. Implementation

We have implemented a basic hyperlabel support in
LTest [21], an open-source all-in-one testing platform for
C programs, developed as a Frama-C [22] plugin. LTest is
built on standard labels, and provides (labeling) annotation
functions to automatically encode requirements from common
coverage criteria, coverage measurement, automatic coverage-
oriented test generation [8] and automatic detection of infea-
sible requirements [18]. LTest relies on PathCrawler [23] for
test generation and on Frama-C for static analysis.

Our prototype extends LTest in two aspects. First, we pro-
vide an hyperlabeling mechanism, together with (hyperlabel-
ing) annotation functions dedicated to the supported criteria.
Second, we have implemented coverage measurement for
hyperlabels.

C. Experimentations

Objective. We want to assess the practical applicability of our
universal coverage measurement tool, at least for unit testing.

[RQ 1] Is the proposed unified approach practical and
efficient enough? More precisely, how does the tool scale with
large test suites on criteria beyond labels?

Protocol. We consider 13 C functions split up into 3 groups:
• 5 small witness functions, mainly from Siemens [24],

Verisec [25] & MediaBench [26], as already used in [8];
• 5 functions from OpenSSL 1.0.2 [27], a 250kloc open-

source application. We focus on modules of about 1kloc.
• 3 functions from SQLite 3.13 [28], a 215kloc open-source

application. We focus on modules of a few kloc.
The C files automatically annotated with HTOL test objectives
are available on companion website http://icst17.marcozzi.net.

For [RQ 1], a set of up to 10,000 test cases is randomly
generated for each C function. Our tool is successively run
with an increasing number of these unit test cases, which
can also be downloaded from the companion website. Each
tool run is repeated 7 times. First, tests are executed without
measurement (baseline), and then measuring coverage for the
CC and GACC label-encodable criteria (witness). Second,
tests are measured for the CACC, RACC, FCC and all-defs
criteria, which involve the five operators from hyperlabels. All
experiments are performed under Ubuntu Linux 14.04 on an
Intel Core i7-4712HQ CPU at 2.30GHz, with 16GB of RAM.

Results and discussion. Our main results are presented in
Figure 7. Detailed results are part of the annexes and full
results are available on the companion website.

[RQ 1] Figure 7 plots, for each criterion and the baseline
(no-cov), the mean measurement time for all programs, as

a function of the test suite size. We can notice that: (1)
the measurement time grows linearly with the number of
test cases, (2) the time overhead is very reasonable for all
criteria but all-defs (between 1.1x and 2x), and still not so
high for all-defs (between 2x and 4x), and (3) these results
hold on the three benchmarks, regardless of program size.
Note that all-defs yields a tangible time overhead on some
programs, due to the higher number of test objectives that our
implementation defines. However, many of these objectives
are trivial or redundant, which could be detected using some
control-flow analysis in an optimized version of the tool.

Conclusion. These results indicate that upgrading labels
with hyperlabels makes it possible to build an (almost) uni-
versal coverage measurement tool, without losing practical
applicability. The measurement time for criteria beyond labels
is acceptable and remains linear with the size of the test suite.
Moreover, as our tool implementation is not optimized, there
is still room for a strong reduction of coverage measurement
time, when using the approach in a more industrial context.

Fig. 7. Scalability of Coverage Measurement

http://icst17.marcozzi.net


VIII. RELATED WORK

The two closest works to ours are labels [8] and FQL.
Since the difference with labels has already been presented
(Sections III-C and V-A, Table II), we focus here on FQL.

Specification of white-box coverage criteria. The Fshell
Query Language (FQL) by Holzer et al. [11] for test suite
specification and the associated Fshell [12] tool represent the
closest work to ours. FQL enables encoding code coverage
criteria into an extended form of regular expressions, whose
alphabet is composed of elements from the control-flow graph
of the tested program. Fshell takes advantage of an off-
the-shelf model-checker to automatically generate from a C
program a test suite satisfying a given FQL specification.

The scope of criteria that can be encoded in FQL is
incomparable with the one offered by HTOL, as FQL handles
complex safety-based test requirements but no hyperproperty-
based requirement. Moreover, FQL is limited to syntactic
elements of the program under analysis. As a consequence,
FQL cannot encode neither MCDC nor WM’.

Yet, FQL offers the interesting ability to encode, in an
elegant and standardized way, generic coverage criteria (in-
dependently of any concrete program), where HTOL encodes
concrete test objectives (i.e. particular instantiations of cover-
age criteria for given programs). Note also that FShell provides
automatic test generation, while we focuses on coverage
measurement for now.

Specification of model-based coverage criteria. Blom et al.
[29] proposes to specify test objectives on extended finite state
machines (EFSMs) as observer automata with parameters,
while Hong et al. [30] considers CTL temporal logic. Formal
encodings have also been proposed for several model-based
coverage criteria in different other formalisms, like set theory
[31], graph theory [32], predicate logic [33], [34], OCL
[35] and Z [36]. However, for each formalism, the scope of
supported criteria is limited to safety-based criteria, with no
support of hyperproperties.

Coverage objectives and hyperproperties. Hyperproper-
ties [19] are properties over several traces of a system. Testing
hyperproperties is a rising issue, notably in the frame of
security [37]. However, research in the topic still remains
exploratory. Rayadurgam et al. [38] suggests that MCDC can
be encoded with temporal logics, by writing the formulas for a
self-composition of the tested model with itself. The paper re-
ports that model-checking the obtained formulas rapidly faces
scalability issues. Clarkson et al. [13] introduces HyperLTL
and HyperCTL*, which are extensions of temporal logics
for hyperproperties, as well as an associated model-checking
algorithm. This work makes no reference to test criterion
encoding, but the proposed logics could be used to provide
[30] with the ability to encode criteria like MCDC. However,
the complexity results and first experiments [13] indicate that
the approach faces strong scalability limits. HTOL being a
priori less generic (yet, sufficient in practice), it is likely to
be more amenable to efficient automation. In future work, we

intend to explore how HTOL formally compares to HyperLTL
and HyperCTL*.

Test description languages. Some languages have been de-
signed to support the implementation of test harnesses at
the program (TSTL [39], UDITA [40]) or model (TTCN-3
[41], UML Testing Profile [42]) level. A test harness is the
helper code that executes the testing process in practice, which
notably includes test definition, documentation, execution and
logging. These languages offer general primitives to write and
execute easily test suites, but independently of any explicit
reference to a coverage criterion.

Coverage measurement tools. Code coverage is used ex-
tensively in the industry. As a result, there exists a lot of
testing tools that embed some sort of coverage measurement.
For instance, in 2007, a survey [43] found ten tools for
programs written in the C language: Bullseye [44], CodeTEST,
Dynamic [45], eXVantage, Gcov (part of GCC) [46], Intel
Code Coverage Tool [47], Parasoft [48], Rational PurifyPlus,
Semantic Designs [49], TCAT [50]. To this date, there are
even more tools, such as COVTOOL, LDRAcover [51], and
Testwell CTC++ [52].

As a rule of thumb, these tools support a limited number
of test criteria in a hard-coded, non-generic manner. Table I
(Section I) summarizes implemented criteria for some popular
tools. Our prototype already supports all these criteria in a
generic and extensible way, plus seven other criteria (cf. Sec-
tion VII-B). However, to be fair, code coverage tools also aim
at causing as little overhead as possible. In contrast, as a first
step, we only aim at getting a reasonable overhead.

IX. CONCLUSIONS

To sum up, HTOL proposes a unified framework for de-
scribing and comparing most existing test coverage criteria.
This enables in particular implementing generic tools that can
be used for a wide range of criteria. We propose as a first
application a universal coverage measurement tool, with an
overhead sufficiently low to not be a concern in practice.
Future work includes the efficient lifting of automatic test
generation technologies to HTOL.
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