
This is a repository copy of An empirical study on the use of defect prediction for test case 
prioritization.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/163394/

Version: Accepted Version

Proceedings Paper:
Paterson, D., Campos, J., Abreu, R. et al. (3 more authors) (2019) An empirical study on 
the use of defect prediction for test case prioritization. In: 2019 12th IEEE Conference on 
Software Testing, Validation and Verification (ICST). 2019 12th IEEE Conference on 
Software Testing, Validation and Verification (ICST), 22-27 Apr 2019, Xian, China. IEEE , 
pp. 346-357. ISBN 9781728117379 

https://doi.org/10.1109/icst.2019.00041

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers 
or lists, or reuse of any copyrighted components of this work in other works. Reproduced 
in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


An Empirical Study on the Use of Defect

Prediction for Test Case Prioritization

David Paterson∗, José Campos†, Rui Abreu‡, Gregory M. Kapfhammer§, Gordon Fraser¶ and Phil McMinn∗

∗University of Sheffield, †University of Washington, ‡INESC-ID and IST, U.Lisbon, §Allegheny College, ¶University of Passau

Abstract—Test case prioritization has been extensively re-
searched as a means for reducing the time taken to discover
regressions in software. While many different strategies have been
developed and evaluated, prior experiments have shown them to
not be effective at prioritizing test suites to find real faults. This
paper presents a test case prioritization strategy based on defect
prediction, a technique that analyzes code features – such as the
number of revisions and authors — to estimate the likelihood
that any given Java class will contain a bug. Intuitively, if defect
prediction can accurately predict the class that is most likely to
be buggy, a tool can prioritize tests to rapidly detect the defects in
that class. We investigated how to configure a defect prediction
tool, called Schwa, to maximize the likelihood of an accurate
prediction, surfacing the link between perfect defect prediction
and test case prioritization effectiveness. Using 6 real-world Java
programs containing 395 real faults, we conducted an empirical
evaluation comparing this paper’s strategy, called G-clef, against
eight existing test case prioritization strategies. The experiments
reveal that using defect prediction to prioritize test cases reduces
the number of test cases required to find a fault by on average
9.48% when compared with existing coverage-based strategies,
and 10.5% when compared with existing history-based strategies.

Index Terms—Regression testing, Test case prioritization, De-
fect prediction, Continuous testing, Empirical studies

I. INTRODUCTION

Software regressions occur when new changes affect code

that was previously shown to be working correctly. For ex-

ample, if methodA changes its return value and methodB

relies on the return value from methodA, then it may no

longer function correctly. In order to detect regressions in

correctness, developers often create a test suite that executes

methods with example inputs and compares the expected result

to the actual result [1]. However, as software evolves and

becomes increasingly complex, the number of tests that are

required to ensure correct functionality also grows, leading to

a commensurate increase in the time taken to execute the test

suite. Since it often may take too much time to re-execute all of

the tests for every change made to the system, developers may

not know whether or not they have introduced regressions.

Aiming to reduce the time taken to detect regressions,

researchers have created a variety of regression testing tech-

niques [2]. These include test case selection, which uses

information about the current change set (i.e., the classes or

methods that have been modified) to define a subset of tests

that may discover any regressions. Test suite minimization

attempts to find test cases that are redundant or irrelevant

in light of new tests that may take similar actions. Finally,

test case prioritization aims to identify the tests that are

most likely to detect a fault, placing them first to allow for

the rapid detection of latent regressions. Importantly, recent

studies reveal that previously evaluated strategies may be less

effective at prioritizing test cases to detect real faults when

compared to other fault types (e.g., [3], [4]). This result is

due, in part, to the relative complexity of real faults and the

use of naı̈ve coverage-based approaches under the assumption

that high-coverage tests are more likely to detect faults.

Defect prediction estimates the likelihood of a file/function

within a software system as being faulty. Previous experiments

have shown that these methods are effective at highlighting the

location of real faults in complex software [5]–[8]. This paper

presents a test case prioritization strategy, called G-clef, that

uses bug prediction data to reorder a test suite so that it first

focuses on those classes that are most likely to contain faults.

Intuitively, the more accurate a defect predictor is, the smaller

the subset of the test suite needed to find potential bugs.

Since there are many ways to perform test case prioritiza-

tion, this paper considers three main groups of strategies for

comparison to G-clef. The first group of strategies are based

on a single-version of the subject program. These strategies

consider the current version of the program and order tests

according to some heuristic. Second, we study strategies,

based on the test history, which consider test cases that have

recently failed. This makes these strategies closely related to

defect prediction, which considers files that have been faulty.

Finally, strategies involving the software history have been

proposed. These approaches use features of the software under

test to predict which test cases should be executed. However,

previous work evaluating these strategies found they were less

effective [9]. Table I contains examples of single-version, test

history and software-history approaches to test prioritization.

Finally, this paper presents an empirical evaluation of G-

clef, using real faults from DEFECTS4J [10] to enhance the

study’s validity. First, we compare G-clef with four coverage-

based strategies, using 365 real faults. We also compare G-clef

to four test-history strategies. For this phase of experimenta-

tion, 82 faults of the DEFECTS4J set qualified for further use.

This experiment reveals that G-clef significantly outperforms

six of the eight strategies, reducing the average number of

test cases required to find a fault by 4.8-15.3%. In summary,

the contributions of this paper are twofold: 1) a new test case

prioritization strategy that uses defect prediction to reorder a

test suite, and 2) an empirical study on real faults to compare

the proposed strategy with nine previously proposed strategies.



II. BACKGROUND

A. Test Case Prioritization

Test case prioritization aims to decrease the cost of regres-

sion testing by finding a test case ordering that maximizes the

fault detection capability of the test suite [11], such that any

faults in a program can be quickly identified by running a

reduced number of tests. Definition 1 defines it as [12]:

Definition 1: Test Case Prioritization

Requirements:

T , a test suite

PT , the set of permutations of T

f , a function that gives a numerical score for T ′ ∈ PT

Problem: Find T ′ ∈ PT such that

(∀T ′′)(T ′′ ∈ PT )(T ′′ 6= T ′)[f(T ′) ≥ f(T ′′)]

In order to maximize the fault detection capability of the test

suite, an appropriate f function must be chosen to select the

permutation T ′ that finds all regressions as soon as possible.

Since we cannot know about either the existence or location

of faults prior to running the test suite, f can only be a

surrogate for actual fault detection. Most previous research

on test case prioritization has tried to find an implementation

of f that most closely approximates fault detection, using a

variety of strategies (e.g., [12]–[15]). In Table I, we categorize

a non-exhaustive, but representative, list of previous test case

prioritization research into three groups: strategies that are

based on a single version of the software under test (e.g., [12],

[13]), strategies based on the software history (e.g., [9], [16]),

and strategies based on the test history (e.g., [17], [18]).

B. Bug Prediction

One of the most explored topics in Mining Software Repos-

itories (MSR) is bug prediction [24]. Typically, bug prediction

(also known as fault prediction [25]) approaches predict the

likelihood of a component (e.g., file) being faulty in the future

based on historical data from a version control system [7].

As reported by Graves et al. [6], the two best predictors of

bugs are prior bugs and prior changes. As such, researchers

have proposed several techniques based on these two key

factors; due to space constraints we survey them briefly in

this section. For instance, Kim et al. [26] proposed a cache-

based approach in which files involved in a bug fix are stored

in a cache and used to predict future faults. Kim et al.’s

assumptions were that new changes are likely to be more

faulty than old changes and that a file that contained a

fault in the past is likely to contain further faults. Men-

zies et al. [8] proposed a prediction model based on static

code attributes. Moser et al. [27] and Kim et al. [28] used

machine learning techniques based on previous code changes

and Hassan et al. [29] used the complexity of previous code

changes, to predict future faults. Rahman et al. [30] proposed

an approach that ranks files by the number of times there

were involved in a fix commit. Although simple, it performed

similarly to more sophisticated and complex approaches (e.g.,

Kim et al. [26]) and the Google Engineering team has used

it1 [31]. We next discuss this approach and its enhancements.

1) Schwa: Given a Git2 repository of a Java project, the

Schwa tool3 [32] extracts information from each commit, such

as its message, author, timestamp, list of all modified files,

and the changes performed (i.e., the diff). It performs a bug

prediction computation based on three metrics that have been

shown to be effective at predicting bugs: 1) revisions [6] (how

often a Java class has been changed), 2) fixes [5] (how often

a Java class has been fixed), and 3) authors [33] (how often

a Java class has been modified by more than one developer).

Schwa is robust, readily available software that is not language

specific, making it a suitable choice for many subjects.

Schwa uses a ranked-based technique, Time-Weighted Risk

(TWR) [31], [32], to estimate how reliable a Java class is:

TWR(α) =
1

1 + e−12α+w
(1)

where α is a normalized timestamp of a bug-fixing commit in

the range 0.0 ≤ α ≤ 1.0, where 0.0 represents the first bug fix

commit’s timestamp and 1.0 is the timestamp of the last bug

fix commit; here w is used to weight the importance of newer

bug fix commits as opposed to older commits. Lewis et al. [31]

suggested w = 12 as a good value to score the files of two

Google projects by their bug-propensity. Rather than a fixed

value, Schwa uses w = 2 + ((1 − TR) × 10), where TR

represents the time-range of bug fix commits: TR values close

to 0.0 indicate that newer commits are more important than

older commits, whereas TR values close to 1.0 indicate the

inverse. It is important to note that if TR = 0.0, then w is

equal to 12, the original value suggested by Lewis et al. [31].

Schwa estimates the likelihood that a Java class c contains a

bug using Equation 2, in which each of the three factors (i.e.,

revisions, authors, and fixes) is calculated and modified by a

weight, where the sum of all weights must be equal to 1.

βc = RevisionsWeight ×
∑

Rc∈R

TWR(Rc)

+ AuthorsWeight ×
∑

Ac∈A

TWR(Ac)

+ FixesWeight ×
∑

Fc∈F

TWR(Fc)

(2)

∑
Rc∈R

TWR(Rc) is the sum of all TWRs in which c has

been modified.
∑

Ac∈A
TWR(Ac) is the sum of all TWRs

in which a new author has modified c.
∑

Fc∈F
TWR(Fc) is

the sum of all TWRs in which c has been involved in a fix

operation. R, A, and F represent the revisions’, authors’, and

fixes’ timestamps in which c has been involved. The value βc

is normalized to [0, 1] and estimates the defect probability of

c, defectc = 1− e−βc . Intuitively, a Java class c with a higher

defectc value is less reliable (i.e., is more likely to contain a

bug) than those classes with a low defectc value.

1http://google-engtools.blogspot.co.uk/2011/12/, accessed January 31, 2019.
2https://git-scm.com/, accessed January 31, 2019.
3https://github.com/andrefreitas/schwa, accessed January 31, 2019.

http://google-engtools.blogspot.co.uk/2011/12/
https://git-scm.com/
https://github.com/andrefreitas/schwa


Table I: Existing strategies for test case prioritization based on single versions of software, software history, and test history.

This technique listing in the table is not exhaustive, but includes a representative sample of previous research categorized as either single-version, software history, or test history.

Ref. Category No. Subjects No. Faults Fault Type Name/Description

[12] Single Version 7 Unknown Seeded

Random Prioritization — Completely random ordering. Often used as a baseline

Total Statement — Selects test cases based on the total number of lines covered.

Additional Statement — As above, but only considers previously unseen lines

Total Fault-Exposing Potential (FEP) — Selects tests that kill the most mutants

(small modifications introduced programmatically designed to simulate real faults).

Additional FEP — As above, but with previously unkilled mutants.

[13] Single Version 11 11 Seeded Adaptive Random — Enhances purely random ordering by continually selecting

the test case that is most different from the already selected test cases.

[14] Single Version 6 None N/A Genetic Algorithm (GA) — A GA makes continuous small modifications to the

test suite and keep those that result in a positive outcome.

[16] Software History 1 3 Real Singular Value Decomposition — Identifies the test cases for files that frequently

change together using change set information from version control.

[9] Software History 8 167 Seeded
Fault Index — Uses a set of standardized measurable code attributes to estimate

the likelihood of each function in a given file containing a bug.

Diff — Uses syntactic differences between two versions of a program, specifically

the number of lines inserted, deleted, or changed at the function level.

[19]

[20]

Software History None None N/A History-based Recommendations for Testing — Uses information from version

control systems about files that frequently change together and association between

files to identify likely areas in which regressions may occur.

[17] Test History Unknown Unknown Unknown [Elbaum et al.] — Assigns each test case a priority score based on whether the test

case has (a) not been run recently, (b) failed recently, or (c) is new. Test cases that

match any of these criteria are assigned higher priority.

[18] Test History 1 Unknown Unknown ROCKET — Assigns each test case a priority score based on the total number of

failures observed in its history, with weighting to favor more recent failures, and

deducts priority for longer running test cases.

[21] Test History 5 25 Seeded MCCTCP — Maximizes the APFDc [22] score of the previous test case execution

by placing the test cases that detected the “most severe” (according to function

criticality) faults at the start of the prioritized suite.

[23] Test History 2 Unknown Real AFSAC — Creates a probability that a test case will fail based on the minimum,

average and maximum number of times we have observed this test case to fail

consecutively, as well as the current number of consecutive failures.

III. G-CLEF

Algorithm 1 illustrates the procedure of G-clef, which inte-

grates defect prediction into a test case prioritization strategy.

In order to prioritize test cases using Schwa, G-clef first orders

the classes in a program by the bug prediction score produced

by Schwa (line 1). For each of the classes c ∈ C, G-clef then

identifies the tuple of test cases T ′′ ⊆ T that execute lines

in c (line 4). Since this process returns many test cases, G-

clef applies a secondary objective g (line 5), discussed in the

following subsection, to order T ′′ using an alternative heuristic

(e.g., coverage). Finally, G-clef places the ordered test cases

into the prioritized suite (T ′) (line 5). Since G-clef starts with

the class that is most likely to be faulty, and selects all tests

that cover this class, better bug prediction will directly result

in faster fault detection during test suite execution.

To illustrate how G-clef works, we introduce a small ex-

ample program with 3 classes — ClassA has 100 test cases

and a defectc score of 0.8. ClassB has 30 test cases and a

defectc score of 0.35, while ClassC has 1000 test cases and

a defectc score of 0.1. G-clef starts by selecting all the test

cases for ClassA, since this is the most likely to contain a

bug. Following this, the secondary objective decides how the

100 tests for ClassA should be ordered. A good secondary

objective will place first the test case that detects the fault.

Algorithm 1 G-clef

Input: Classes Under Test C = {c1, c2, ..., cn}
Test Suite T = 〈t1, t2, ..., tm〉
Function to return defectc score for class ci, b(ci)
Function to determine classes covered by test tj , s(tj)
Secondary Objective Function g

Output: Prioritzed Test Suite T ′

1: C ← SORT(C, b)
2: T ′ ← ∅
3: for all ci ∈ C do

4: T ′′ ← 〈tj ∈ T |ci ∈ s(tj)〉
5: T ′ ← UNIQUE(T ′ ∪ SORT(T ′′, g))
6: end for

7: return T ′

Now consider a bug report that incorrectly assigns ClassC

a defectc score of 0.9. Since G-clef takes all the tests for

ClassC first, there are now 1000 test cases being executed

before they detect a bug. To address this problem, our approach

groups classes together based on their likelihood of containing

a fault. In this instance, a group size of 2 would include

ClassC and ClassA in the first group of classes, meaning

the secondary objective has the combined set of tests from

ClassC and ClassA (i.e., 1100 tests) from which to choose.



A. Secondary Objective

G-clef utilizes a secondary objective to determine the or-

dering of test cases given a set of tests that cover a target

class. For this paper, we investigate the use of four secondary

objectives to prioritize test cases once we have established a

subset based on bug prediction: greedy (or total statement)

orders test cases by the total number of statements covered,

additional greedy (or additional statement) keeps a track of

the combined set of lines covered by the prioritized suite,

selecting the test that covers the most previously uncovered

lines, random returns a purely random ordering for test cases,

ensuring diversity of the prioritized test cases. Finally, similar

to the work by Hao et al. [34] and Campos and Abreu [35],

we apply a constraint solver, representing the lines of code

as constraints that must be covered by one or more test cases

and finding the minimal set of tests that satisfies all of the

constraints, thereby covering all of the lines of code.

B. Grouping Classes

In addition to the secondary objective, G-clef may also need

to group classes together. If a bug prediction report incorrectly

assigns a high defectc score to a class with many test cases,

G-clef may suffer as a result. In this paper, we investigate

four different settings for grouping classes, with the default

behavior of G-clef being the use of a single class. In addition,

we run experiments using 5%, 10%, and 25% of the total

classes that exist in each subject program. To avoid bias for or

against subject programs that contain more classes than others,

we use a percentage of the classes in the chosen project.

IV. EMPIRICAL EVALUATION

In order to evaluate G-clef against the existing test case

prioritization strategies described in Section II-A, we con-

ducted experiments using real programs, tests, and faults. The

experiments aim to answer the following research questions:

RQ1: Which configuration of G-clef is the most effective?

With this RQ, we aim to identify the best parameters

for initializing G-clef, based on the weights for Schwa,

secondary objectives, and the grouping of classes.

RQ2: How does G-clef compare to previously proposed

coverage-based test case prioritization strategies at pri-

oritizing manually-written test cases?

With this RQ, we evaluate G-clef against existing

coverage-based strategies for test case prioritization.

RQ3: How does G-clef compare to previously proposed

history-based test case prioritization strategies at priori-

tizing manually-written test cases?

With this RQ, we evaluate G-clef against existing history-

based strategies for test case prioritization.

A. Experimental Setup

1) Subject Programs: To automatically perform our exper-

imental analysis, the selection of subject programs used in our

empirical evaluations adhered to the following requirements:

1) the programs used should be developed in Java (as the

test prioritization tools used only support Java), 2) it must

be possible to “roll-back” changes from the repository (i.e.,

obtain previous versions of the source code) in order to

support the collection of test history data for the history-

based strategies, and 3) it must be possible to detect faulty

behavior in the current version of the program using a test

suite. One particular collection of subject programs that meets

all of the aforementioned requirements is DEFECTS4J [10], a

collection of 395 reproducible and isolated real software faults

from six Java large open-source programs. All DEFECTS4J

projects were collected from version control systems, meaning

that it is possible to identify, check-out, and execute tests on

previous versions of the software using a version control tool

such as Git. Finally, DEFECTS4J provides a developer-written

test suite for each program in the repository, which includes

at least one test that triggers the faulty behavior of the current

version of the software, which we refer to as the trigger tests.

2) Coverage Analysis: Some of the algorithms described in

Table I rely on the collection of code coverage (e.g., greedy

and additional greedy [12]). Thus, for each subject program,

we had to collect the code coverage of the developer written

test suite. For this, we used GZoltar [36], [37]. One of the

important features of GZoltar is that it executes the test cases

using the same build tools that developers would be using (e.g.,

ANT, MAVEN, and GRADLE), meaning that the code coverage

collected is as similar as is possible to a “natural” execution of

test cases by a developer. Additionally, since GZoltar produces

a serialized coverage file, we can use the same file across test

case prioritization strategies to better ensure consistency.

3) Test History Analysis: As shown in Table I, the history-

based approaches require the collection of information from

previous versions of the program, including how many times

each test case has been executed, how many times each test

case has failed, and how recently a test case failed, amongst

other information. To collect this information, we wrote a

script that uses version control details to iteratively checkout

previous versions of the program, compile it, execute the

test cases and record their results, execution times and, if

necessary, cause of failure, in a history file. In some cases,

previous versions of the program may not compile due to ei-

ther mistakes made in particular commits or missing libraries.

In these instances, since the code does not compile, it is not

possible for us to run the tests. In experiments with history-

based methods, if we encounter a version of the code that does

not compile, we continually retry for five preceding versions.

If we cannot compile any of the preceding five versions, we

terminate the history analysis for the subject at that point.

Depending on the subject, we were able to collect test case

execution data for up to 2522 previous versions (in Math-1).

4) Schwa: The default configuration of Schwa uses these

weights: 0.25 for revisions and authors, 0.5 for fixes, and

0.4 for TR. As each software project is unique in terms

of, for instance, repository history and development model,

these weights may vary in suitability for different projects.

For example, the “authors” metric is irrelevant if only a single

developer contributed to a project. For RQ1, we performed

a tuning study of Schwa’s weights and the TR value. As



Schwa’s feature weights and TR value are in the range of 0.0
and 1.0, we chose all values in this range with interval 0.1.

Although there are 13310 different combinations, the sum of

all weights must be equal to 1, leaving 726 valid combinations.

To assess the effectiveness of each combination at ranking

a class that is buggy, we randomly selected 5 faults of each of

DEFECTS4J’s [10] projects (a total of 30 faults), and executed

Schwa on the repository history of those faults. As Schwa

returns a defectc value for each class of the software under

test, we ranked all classes by this value value and identified,

for each combination, the ranking position of the known buggy

class. The best combination of weights and TR would rank

the known buggy class first, on the other hand, the worst

combination of parameters would rank the buggy class last.

5) Test Case Prioritization: For RQ2 and RQ3, we used the

test case prioritization tool KANONIZO (https://github.

com/kanonizo/kanonizo). KANONIZO already has an

implementation of four coverage-based strategies: greedy, ad-

ditional greedy, genetic algorithm, and random search [3].

These coverage-based strategies will be used to answer RQ2.

We extended the KANONIZO tool with four history-based

strategies for RQ3: ROCKET [18], MCCTCP [21], AF-

SAC [23], and Elbaum et al. [17]. These strategies were se-

lected to be a representative sample of previous history-based

strategies, and importantly, each strategy requires information

that is possible to collect using the DEFECTS4J framework.

For ROCKET, higher priority is given to newer failures over

older failures. In this method’s paper, Marijan et al. adopt a

variable ω where ω = 0.7 if the test failed on its most recent

execution, ω = 0.2 if the test failed on the execution before

that, and ω = 0.1 for any failures on executions further back.

For MCCTCP, the authors use the APFDc metric, which is

the cost-cognizant version of the Average Percentage of Faults

Detected (APFD) metric described in Section IV-A6. APFDc

prioritizes test cases that a) discover faults that are more

“severe” and b) run in the least amount of time. In their study,

Huang et al. use a function criticality metric to determine how

severe faults are, based on how many times buggy functions

are used elsewhere in the code base. In our implementation, we

assign priority to failing test cases according to the severity of

the failure cause (e.g., NullPointerExceptions are very

serious). Notably, Sabor et al. showed that using stack traces

to model failure severity is an effective method [38].

AFSAC uses four weights, distinct from the Schwa pa-

rameters of Section II-B1, to model the likelihood that tests

fail again, given the average number of times a test has

consecutively failed in the past. It uses the weight α if, in the

history of the test, it has always failed more consecutive times

than the current streak. β represents consecutive failures that

are higher than the minimum but below the average number

of consecutive failures. γ is used when the current number

of failures is above average but lower than the maximum

number of consecutive failures observed for the test, and δ is

used when the current number of failures is more than has ever

been observed. Since Cho et al. state that α ≥ β ≥ γ ≥ δ ≥ 0,

we choose 1, 0.7, 0.4, and 0.1, respectively.

For Elbaum et al., there are three conditions under which a

test case is given a higher priority over another test. These are

the “failure window”, denoted WF , which is the time since

the most recent failure of the test case, and the “execution

window”, denoted WE , which represents how long it has been

since a test case was last run. Since, during testing with JUnit,

it is common for testers to run all tests every time, we discard

the WE variable. Finally, if a test case is “new”, then it is

assigned a priority denoted WN . In our implementation, we

assign values of 5 to both the failure window, WF , and the

“new test” value, WN , meaning if a test has been executed less

than five times, or has failed in its most recent five executions,

then it will be assigned higher priority than other test cases.

We also added G-clef, from Algorithm 1, to KANONIZO.

6) Evaluation Measurements: For RQ2 and RQ3, we com-

pare the effectiveness G-clef to that of the existing test priori-

tization strategies. The most commonly used evaluation metric

in this field is the Average Percentage of Faults Detected

(APFD), an area-under-curve metric that compares the per-

centage of test cases executed to the percentage of faults found.

However, in our study we consider 395 program versions, each

containing a single fault. This reduces the APFD metric to

the percentage of tests that were executed before the fault was

detected. DEFECTS4J provides a list of the trigger tests that

detect each fault. To compare the strategies in the experimental

evaluation, we calculate the percentage of each prioritized test

suite that was placed higher than the trigger test for the subject

program. For example, if the trigger test is the 50th test case

out of 1000 test cases, the suite is scored as 5%.

7) Analysis Procedure: We analyzed all of the data re-

sulting from the experiments by following well-established

guidelines [39]. For instance, we use the Mann-Whitney U-

test to compare two different data sets, obtaining a p-value

representing the likelihood that our data was observed as a

result of chance. For the Mann-Whitney U-test, we adopt a

95% confidence interval, meaning p < 0.05 indicates that

our results are statistically significant. In addition, we use

the Vargha-Delaney Â test to compare G-clef with existing

strategies. For this, Â values closer to 0 indicate that G-clef, on

average, is expected to outperform the existing strategy, while

a value closer to 1 indicates that the previous prioritization

strategy, on average, is expected to outperform G-clef.

8) Threats to Validity: Despite the fact we used a high

number of real faults from six different Java programs, this

paper’s results may not generalize to other programs with

either different characteristics or types of test suites or faults.

Although we evaluate prioritization strategies on manually

written test suites, it is conceivable that the use of different

test suites could improve the results for some prioritization

strategies, while degrading the results for others — in such

cases, our results and conclusions would not be generally valid.

Even though we do not have evidence to suggest that this

would occur, future work should further study prioritization

effectiveness for different types of test suites (e.g., automati-

cally generated test cases from tools such as EVOSUITE [40]

and Randoop [41]). While Just et al. [42] suggest that there is

https://github.com/kanonizo/kanonizo
https://github.com/kanonizo/kanonizo


Table II: Best and worst of top and bottom three Schwa
configurations. For each configuration we report the revision, fixes, and authors

weights, TR value, average, standard deviation (σ), and confidence intervals (CI) using

bootstrapping at 95% significance level of the ranking position of the known buggy class.

Revision Fixes Authors Time Avg. Std. Dev. Conf. Inter.

Weight Weight Weight Range Pos. σ CI

top 3

0.6 0.1 0.3 0.0 46.53 49.12 [27.71, 63.97]

0.7 0.1 0.2 0.4 46.57 49.49 [29.00, 62.93]

0.6 0.1 0.3 0.4 46.73 49.26 [27.90, 63.33]

bottom 3

0.1 0.6 0.3 1.0 88.07 109.20 [43.82, 125.10]

0.1 0.7 0.2 1.0 90.73 112.25 [46.46, 127.09]

0.1 0.8 0.1 1.0 91.43 109.50 [52.14, 125.59]

a correlation between real faults and synthetic mutants, recent

work from Luo et al. [4] and Paterson et al. [3] shows that

the most effective test prioritizer on mutants may not be the

best on real faults, thus motivating us to focus on real faults

in DEFECTS4J. Finally, even though DEFECTS4J’s programs

have fast tests for which prioritization is less necessary, our

experiments yield useful insights when, for instance, tests run

in a continuous integration environment (e.g., [17], [43]).

Moreover, this paper does not consider the runtime of test

cases when evaluating prioritizations. It is possible that with

long running test cases, new orderings may actually be slower

to detect faults, even if they require fewer tests. However, in

our experience, approximately 98% of tests ran in under one

second, making it unlikely that this would occur in practice.

G-clef prioritizes tests from an entire test suite rather than

using a test case selection approach to identify relevant test

cases. While this is consistent with many previous approaches

(e.g., [9], [12], [17]), it is conceivable that using subsets of test

cases may lead to different results. Future work should also

examine the effectiveness of a hybrid approach that selects

subsets of test cases in conjunction with defect prediction.

Additionally, the random sample of 30 faults used to tune

Schwa’s parameters in RQ1 may not have resulted in the

best overall parameters for this tool, and thus using different

subjects may have resulted in different parameters. To mitigate

this, we chose bugs from each of the projects in DEFECTS4J,

thereby avoiding bias towards any particular project. Next,

we selected the test case prioritization strategies used in the

experiments as a representative sample of previous history-

based approaches. Since our evaluation is not exhaustive, it

is possible that using other strategies may lead to different

results. We mitigated this threat by using a range of strategies

from the literature that require different input and process

the test execution history in different ways. One of the

considerations when running Schwa is the number of commits

that it analyzes when calculating prediction scores. If Schwa

can analyze the entire repository history, while a history-based

strategy only has a small number of commits available due

to reasons discussed in Section IV-A3, then it may give G-

clef an unfair advantage. Although space constraints restrict

us from including the results, we also conducted experiments

in which we limited the number of commits available to Schwa

to be equal to the number used by the history-based strategies,

observing no significant differences in the overall results.

Table III: Relative ranking position of buggy classes reported
by the best Schwa configuration. We report the average number of classes

(ranking size), minimum, maximum, average, and standard deviation (σ) of the relative

ranking position of a buggy class, and the average defect
c

value of a buggy class (def ).

Ranking Relative Ranking Position
Project Size min max avg σ def

Chart 1016 0.1% 56.0% 16.6% 19.9 0.39
Closure 1478 0.1% 90.4% 9.2% 15.6 0.89
Lang 344 0.3% 52.3% 12.8% 14.3 0.96
Math 1069 0.1% 94.0% 17.7% 21.3 0.91
Mockito 1018 0.1% 86.6% 10.6% 19.7 0.85
Time 585 0.1% 67.6% 12.6% 17.1 0.80

Overall 1046 0.1% 74.5% 13.0% 18.0 0.86

The bug prediction described in Section II-B uses the com-

mit history of a repository as a black box. It has been shown,

for example, that modelling commit authors could improve the

effectiveness of identifying which commits introduce a bug,

thereby improving the effectiveness of bug-predictors [44].

With that said, this paper’s main goal is to evaluate how

leveraging defect prediction in test case prioritization could

lead to faster regression detection — and not what is the best

bug prediction approach for this particular problem.

A final validity threat is potential defects in the

tools used during experimentation (i.e., KANONIZO [3]

and Schwa [32]). Used without error in prior experi-

ments, both of these publicly available tools have been

extensively tested. Moreover, all of this paper’s data

and the scripts needed to reproduce the experiments

are available at https://bitbucket.org/josecampos/

history-based-test-prioritization-data/.

B. RQ1: Which configuration of G-clef is the most effective?

1) RQ1.1: What are the best parameters for Schwa?

Table II reports the three best and the three worst of Schwa’s

configurations identified during tuning. For the 30 randomly

selected faults, Schwa works best, on average, with a revision

weight of 0.6, fixes weight of 0.1, authors weight of 0.3, and a

TR value of 0.0, which lines up with Graves et al. [6] finding

that recent changes have a higher impact on the likelihood of

code being buggy. A TR value of 0.0 means that w, as given

in Equation (1), is equal to 12, which is the same value sug-

gested by Lewis et al. [31]. With 99% confidence, according to

the Anderson-Darling statistical test [45], the ranking position

of each buggy class of any Schwa configuration is not normally

distributed. When ranking buggy classes, according to the

Mann-Whitney U-test, no Schwa configuration X performs

significantly better than any other Schwa configuration Y.

RQ1.1: For the 30 faults randomly selected from the DE-

FECTS4J’s dataset, Schwa works best with the following

parameters: revision weight of 0.6, fixes weight of 0.1,

authors weight of 0.3, and a TR value of 0.0.

2) RQ1.2: How effective is the best Schwa configuration

at ranking a buggy class? Table III and Figure 1 report

the relative ranking position of buggy classes for the 395

faults in DEFECTS4J’s [10] dataset when Schwa uses the best

parameters found by RQ1.1. For instance, on average, the

buggy classes of the Closure project appear in the first 9.2%

https://bitbucket.org/josecampos/history-based-test-prioritization-data/
https://bitbucket.org/josecampos/history-based-test-prioritization-data/


Relative ranking position of the faulty classes (%)

F
re

q
u
e
n
c
y

0 20 40 60 80 100

0

50

100

150

200

250

Figure 1: Relative ranking position of the buggy class. This is

calculated by Schwa as the position divided by the total number classes for the subject.

positions, for a total of 1478 classes, with a defect value of

0.89. As shown by Figure 1, a total of 267 bugs were correctly

estimated within the top 10% of all classes in the subject

programs. In fact, for 17 faults, Schwa ranks the buggy class

as the most buggy one, and for 281 faults the relative ranking

position of the buggy class is lower than the average value.

RQ1.2: Schwa ranks the buggy classes of all projects in the

top 13.0%, with an average defectc value of 0.86.

3) RQ1.3: Assuming either an ideal and non-ideal bug-

prediction report, what are the best parameters for G-clef? As

described in Section III, G-clef can be instantiated with differ-

ent secondary objective functions and grouping classes values.

To assess which combination of parameters works best (i.e.,

requires the execution of fewer test cases) we ran G-clef on

365 faults4 with four different secondary objective functions

(i.e., greedy, additional greedy, random, and constraints) and

four grouping classes values (1, 5%, 10%, and 25%). As G-clef

relies on the outcome of a bug-prediction tool, we also defined

two different scenarios to assess the influence of the underlying

tool: 1) an ideal scenario in which a bug-prediction tool always

ranks first a true buggy class and 2) a real scenario when a

bug-prediction tool ranks classes as previously described.

Table IV reports the total number of test cases that must be

executed in order to trigger the faulty behavior of each real

fault. For each configuration/project, Table IV also reports the

ranking position of each configuration at prioritizing the failure

revealing test case. For instance, if a configuration A ranks

the trigger test in 3rd and configuration B ranks it in 16th,

configuration A is ranked first and configuration B is second.

In case of a tie, all configurations are ranked in the same posi-

tion. As an example, for the Closure project the configuration

requiring the execution of the fewest tests is constraints as a

secondary objective and a grouping classes value of 1 (which

ranked 5th, on average, among all configurations). Overall,

for the real bug-prediction scenario, G-clef performs best with

constraints as a secondary objective (5 out of 6 projects) and

grouping classes value of 1 (3 out of 6 projects). On the other

hand, for the ideal bug-prediction scenario, G-clef works best

with additional greedy as a secondary objective for 3 out of 6

projects (Chart, Lang, and Mockito).

4Although DEFECTS4J [10] contains 395 real faults, we used 30 faults to
tune Schwa’s parameters, thus prohibiting us from using them in this study.

The reason why the constraint solver performed relatively

poorly with ideal bug prediction is that it also applies a

minimization to the test set. For example, if the buggy class

is covered by 100 tests (including the trigger test), but the

constraint solver finds a minimized set of 80 tests completely

covers the class but does not include the trigger test, then G-

clef will not prioritize the trigger test until it covers another

class. Future work could enhance the constraint solver sec-

ondary objective to ensure that all tests are used. Although

G-clef with constraints as a secondary objective only works

best for 2 out of 6 projects (Closure and Time), overall it is

ranked 2.4 (nearly the same as additional greedy). The overall

configuration ranking, for both the real and ideal scenarios, is

statistically significant according to the Friedman test.

RQ1.3: Assuming a perfect bug-prediction tool exists, G-clef

works best with constraints as a secondary objective and a

grouping classes value of 1; for a real bug-prediction report

additional greedy is the best secondary objective for G-clef.

C. RQ2: How does G-clef compare to previously proposed

coverage-based test case prioritization strategies at prioritiz-

ing manually-written test cases?

As stated in Section IV-A5, KANONIZO has implementa-

tions for four coverage-based strategies that are commonly

used in test case prioritization evaluations, as well as a

completely random ordering. Thus, for this research question,

we compare G-clef to these strategies. Since we use 30

subject programs for the tuning study in RQ1, we eliminate

those subject programs from this RQ to avoid bias, leaving

a total of 365 real faults. For each of these subjects, we run

KANONIZO with each of the coverage-based strategies and the

best configuration of G-clef found in RQ1. We then evaluate

the prioritized test suite by the percentage of the test suite

that is executed before the fault is found. Table V reports

the average number of tests that are required to be executed

before a fault is found across all projects and strategies, with

the percentage of the test suite required reported in brackets.

As shown by Figure 2, G-clef often requires the fewest overall

test cases in order to detect a fault (Closure, Math, Time). For

the remaining three projects, in two cases (Chart and Lang) G-

clef was only beaten by a single other strategy. Furthermore,

as reported by Table VI, there are a number of cases in which

G-clef significantly outperformed other strategies, as reported

by the Mann-Whitney U-Test. For the Closure project, G-clef

significantly outperformed all other strategies except additional

greedy, while for both Math and Time, G-clef significantly

outperforms a further three strategies. Notably, there are only

four combinations of project/strategy with an Â score of > 0.5
(meaning on average the alternative approach is expected to

outperform G-clef). Overall, of the 1,825 combinations of

subject/strategy included in this study, G-clef performs best for

1,165, and significantly outperforms four of the five coverage-

based strategies we compare against.

RQ2: G-clef performs better than any other coverage-based

strategy, statistically better than 4 out of 5 strategies.



Table IV: Test case prioritization results of G-clef with different secondary objective functions and grouping classes values.
The α column represents the grouping classes parameter (see Section III-B for more details), #t stands for the number of test cases that have to be executed in order to trigger the

faulty behavior, and R is the ranking position of a configuration. For the overall ranking position of each configuration the χ2 and p-value of the Friedman test is also reported.

Chart Closure Lang Math Mockito Time Overall

Sec. Obj. α #t R #t R #t R #t R #t R #t R #t R

Real bug-prediction data — χ2 = 201.11, p − value < 0.0001
Greedy 1 626.8 (34.9%) 9.3 3404.2 (47.1%) 10.4 701.7 (37.3%) 8.3 1003.7 (35.1%) 8.7 528.5 (46.1%) 9.9 910.7 (23.2%) 7.8 1196.0 (38.1%) 9.3

Greedy 5% 691.4 (38.5%) 10.3 3436.3 (47.6%) 10.1 696.4 (37.0%) 7.7 927.6 (32.4%) 7.3 540.5 (47.1%) 10.1 954.6 (24.4%) 8.0 1207.8 (38.5%) 8.8

Greedy 10% 703.9 (39.2%) 9.6 3436.4 (47.6%) 10.1 670.9 (35.6%) 7.7 934.5 (32.7%) 7.7 540.5 (47.1%) 10.0 967.0 (24.7%) 8.5 1208.9 (38.5%) 8.9

Greedy 25% 790.6 (44.0%) 11.5 3436.0 (47.6%) 10.1 691.7 (36.7%) 8.2 948.7 (33.2%) 8.3 540.5 (47.1%) 10.1 932.1 (23.8%) 8.1 1223.3 (39.0%) 9.2

Add. Greedy 1 605.8 (33.7%) 7.7 2635.9 (36.5%) 7.6 711.8 (37.8%) 8.9 1032.0 (36.1%) 9.2 439.3 (38.3%) 6.8 987.1 (25.2%) 7.6 1068.6 (34.1%) 8.2

Add. Greedy 5% 559.1 (31.1%) 7.3 2783.2 (38.5%) 7.9 713.6 (37.9%) 8.4 998.7 (34.9%) 8.8 375.2 (32.7%) 6.5 1164.0 (29.7%) 9.4 1099.0 (35.0%) 8.2

Add. Greedy 10% 614.1 (34.2%) 7.9 2787.5 (38.6%) 8.6 748.2 (39.7%) 9.2 1024.0 (35.8%) 9.2 383.7 (33.5%) 7.0 1184.5 (30.2%) 10.5 1123.7 (35.8%) 8.8

Add. Greedy 25% 675.0 (37.6%) 10.0 2769.8 (38.4%) 9.5 825.0 (43.8%) 9.9 1070.8 (37.4%) 9.6 396.8 (34.6%) 7.9 1141.9 (29.1%) 10.4 1146.6 (36.5%) 9.5

Random 1 611.3 (34.1%) 8.2 2870.2 (39.7%) 9.1 712.4 (37.8%) 9.0 1016.7 (35.6%) 9.1 432.6 (37.7%) 7.2 1023.6 (26.1%) 8.8 1111.1 (35.4%) 8.8

Random 5% 576.4 (32.1%) 7.5 2806.9 (38.9%) 9.5 726.1 (38.5%) 8.8 986.5 (34.5%) 8.7 401.5 (35.0%) 7.6 1176.6 (30.0%) 9.8 1112.3 (35.4%) 8.9

Random 10% 553.5 (30.8%) 7.1 2786.3 (38.6%) 9.5 725.9 (38.5%) 9.1 1027.1 (35.9%) 9.2 410.2 (35.8%) 7.2 1205.9 (30.8%) 10.2 1118.2 (35.6%) 9.1

Random 25% 594.5 (33.1%) 9.0 2734.5 (37.9%) 9.3 761.1 (40.4%) 9.8 1086.2 (38.0%) 9.9 410.8 (35.8%) 8.4 1211.6 (30.9%) 10.2 1133.1 (36.1%) 9.5

Constraints 1 701.0 (39.0%) 7.2 1691.3 (23.4%) 5.0 708.6 (37.6%) 7.6 875.9 (30.6%) 7.1 452.0 (39.4%) 8.4 773.8 (19.7%) 5.9 867.1 (27.6%) 6.5

Constraints 5% 640.0 (35.7%) 6.8 1822.9 (25.2%) 5.8 780.5 (41.4%) 7.6 935.5 (32.7%) 7.5 444.7 (38.8%) 9.2 785.7 (20.0%) 6.0 901.6 (28.7%) 6.9

Constraints 10% 640.5 (35.7%) 7.3 1810.1 (25.1%) 6.5 789.7 (41.9%) 7.5 938.0 (32.8%) 7.6 447.3 (39.0%) 9.7 761.9 (19.4%) 6.6 897.9 (28.6%) 7.3

Constraints 25% 686.1 (38.2%) 9.1 1790.4 (24.8%) 7.1 824.2 (43.8%) 8.3 945.6 (33.1%) 8.2 432.2 (37.7%) 9.8 781.7 (19.9%) 8.1 910.1 (29.0%) 8.0

Ideal bug-prediction data — χ2 = 39.63, p − value < 0.0001
Greedy 1 51.9 (2.9%) 3.2 1394.8 (19.3%) 3.2 36.9 (2.0%) 2.5 81.4 (2.8%) 2.7 229.6 (20.0%) 2.8 422.4 (10.8%) 2.5 369.5 (11.8%) 2.9

Add. Greedy 1 15.7 (0.9%) 1.8 879.7 (12.2%) 2.3 28.4 (1.5%) 2.2 78.9 (2.8%) 2.4 181.2 (15.8%) 2.0 431.6 (11.0%) 2.9 269.2 (8.6%) 2.3

Random 1 25.1 (1.4%) 2.5 839.8 (11.6%) 2.5 29.6 (1.6%) 2.5 75.2 (2.6%) 2.3 167.8 (14.6%) 2.2 539.4 (13.8%) 2.6 279.5 (8.9%) 2.4

Constraints 1 314.8 (17.5%) 2.5 1154.1 (16.0%) 2.0 349.3 (18.5%) 2.8 439.0 (15.4%) 2.6 335.7 (29.3%) 3.0 377.0 (9.6%) 2.1 495.0 (15.8%) 2.4

Table V: Test case prioritization results of G-clef and coverage-based strategies. For each prioritization strategy we report the total number of test

cases (#t) that have to be executed to trigger the faulty behavior, and its ranking position when compared to the other strategies.

Chart Closure Lang Math Mockito Time Overall

Strategy #t R #t R #t R #t R #t R #t R #t R

χ2 = 110.70, p− value < 0.0001
Greedy 859.1 (47.9%) 3.7 3439.4 (47.6%) 4.2 623.4 (33.1%) 2.6 909.5 (31.8%) 2.9 540.1 (47.1%) 4.1 970.0 (24.7%) 3.1 1223.6 (39.0%) 3.5

Add. Greedy 740.4 (41.2%) 3.6 1955.3 (27.1%) 2.6 939.8 (49.9%) 3.9 1046.2 (36.6%) 3.1 408.2 (35.6%) 3.1 953.1 (24.3%) 3.0 1007.2 (32.1%) 3.1

GA 719.4 (40.1%) 3.7 2817.6 (39.0%) 3.9 840.4 (44.6%) 3.9 1287.9 (45.0%) 4.1 423.9 (37.0%) 3.3 1385.3 (35.3%) 4.1 1245.8 (39.7%) 3.9

Random 674.6 (37.6%) 3.5 2811.0 (38.9%) 3.9 826.1 (43.8%) 3.6 1271.9 (44.5%) 4.1 425.5 (37.1%) 3.6 1410.2 (36.0%) 4.4 1236.6 (39.4%) 3.9

Rand. Search 717.7 (40.0%) 3.7 2828.7 (39.2%) 3.9 829.4 (44.0%) 3.6 1267.3 (44.3%) 4.0 422.1 (36.8%) 3.4 1400.6 (35.7%) 4.3 1244.3 (39.7%) 3.9

G-clef 701.0 (39.0%) 2.8 1691.3 (23.4%) 2.5 708.6 (37.6%) 3.3 875.9 (30.6%) 2.8 452.0 (39.4%) 3.5 773.8 (19.7%) 2.1 867.1 (27.6%) 2.8

Table VI: G-clef vs coverage-based strategies. The # column reports the number of bugs for which G-clef performed better than X and the total number of bugs

per project, Â column reports the effect size of X vs. G-clef (a value lower than 0.5 means X performed worse than G-clef, and a value greater than 0.5 means G-clef performed

worse than X), and p column reports the p-value of the Mann-Whitney U-test. Statistically significantly results at 95% significance level are given in bold-face.

Chart Closure Lang Math Mockito Time Overall

Strategy # Â p # Â p # Â p # Â p # Â p # Â p # Â p

Greedy 14 / 21 0.41 0.30 97 / 128 0.29 0.00 25 / 60 0.55 0.34 49 / 101 0.50 0.97 21 / 33 0.43 0.33 14 / 22 0.44 0.52 220 / 365 0.42 0.00

Add. Greedy 12 / 21 0.47 0.72 63 / 128 0.50 0.97 38 / 60 0.41 0.09 54 / 101 0.47 0.41 14 / 33 0.53 0.66 16 / 22 0.44 0.50 197 / 365 0.48 0.35

GA 14 / 21 0.44 0.48 96 / 128 0.25 0.00 33 / 60 0.41 0.10 73 / 101 0.28 0.00 13 / 33 0.48 0.79 18 / 22 0.23 0.00 247 / 365 0.31 0.00

Random 14 / 21 0.44 0.53 93 / 128 0.26 0.00 35 / 60 0.42 0.14 72 / 101 0.29 0.00 16 / 33 0.48 0.81 19 / 22 0.22 0.00 249 / 365 0.31 0.00

Rand. Search 14 / 21 0.44 0.48 98 / 128 0.26 0.00 32 / 60 0.42 0.14 73 / 101 0.28 0.00 17 / 33 0.48 0.80 18 / 22 0.24 0.00 252 / 365 0.31 0.00

●

●

●
●

●

●
●

●

●●

●

●

●
●
●●●

●

●

●

●

●

●
●

●
●
● ●

●

●

●

●

●

●

●

Math Mockito Time

Chart Closure Lang

R
an

do
m

G
re

ed
y

Add
. G

re
ed

y
G
A

R
an

d.
 S

ea
rc

h

G
−c

le
f

R
an

do
m

G
re

ed
y

Add
. G

re
ed

y
G
A

R
an

d.
 S

ea
rc

h

G
−c

le
f

R
an

do
m

G
re

ed
y

Add
. G

re
ed

y
G
A

R
an

d.
 S

ea
rc

h

G
−c

le
f

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Strategy

%
 o

f 
te

s
t 

c
a

s
e

s
 t

h
a

t 
h

a
ve

 t
o

 b
e

e
xe

c
u

te
d

 t
o

 t
ri

g
g

e
r 

th
e

 f
a

u
lt
y
 b

e
h

a
v
io

u
r

∗ represents the average % of test cases that have to be executed to trigger the faulty behavior.

Figure 2: Test case prioritization results of G-clef and the coverage-based strategies.



Table VII: Test case prioritization results of G-clef and history-based strategies. (Please refer to Table V for an explanation of each column.)

Chart Closure Lang Math Mockito Time Overall

Strategy #t R #t R #t R #t R #t R #t R #t R

χ2 = 15.87, p− value = 0.003
G-clef 854.7 (46.3%) 3.7 1576.0 (21.6%) 2.0 437.6 (24.0%) 2.2 931.0 (33.5%) 2.5 344.7 (26.6%) 3.8 439.7 (11.0%) 1.0 763.9 (24.1%) 2.5

ROCKET [18] 243.0 (13.2%) 3.8 2873.1 (39.4%) 3.3 628.3 (34.4%) 2.8 1270.3 (45.8%) 3.3 162.0 (12.5%) 3.0 2842.7 (71.2%) 3.7 1336.6 (42.1%) 3.2

Elbaum et al. [17] 151.2 (8.2%) 2.7 2452.2 (33.6%) 2.9 984.9 (54.0%) 3.7 1474.3 (53.1%) 3.4 392.3 (30.3%) 3.0 1521.3 (38.1%) 2.7 1162.7 (36.7%) 3.2

MCCTCP [21] 147.2 (8.0%) 1.9 2849.1 (39.1%) 3.3 734.9 (40.2%) 3.2 956.7 (34.5%) 2.5 169.3 (13.1%) 2.2 2619.7 (65.6%) 3.8 1246.1 (39.3%) 2.9

AFSAC [23] 165.7 (9.0%) 2.9 2854.6 (39.1%) 3.5 694.1 (38.0%) 3.1 980.2 (35.3%) 3.2 198.0 (15.3%) 3.0 2619.7 (65.6%) 3.8 1252.0 (39.5%) 3.2

Table VIII: G-clef vs history-based strategies. (Please refer to Table VI for an explanation of each column.)

Chart Closure Lang Math Mockito Time Overall

Strategy # Â p # Â p # Â p # Â p # Â p # Â p # Â p

ROCKET [18] 2 / 6 0.76 0.15 15 / 20 0.34 0.08 12 / 21 0.43 0.42 15 / 26 0.39 0.16 2 / 6 0.78 0.13 3 / 3 0.00 0.08 49 / 82 0.42 0.09

Elbaum et al. [17] 2 / 6 0.78 0.13 13 / 20 0.36 0.15 15 / 21 0.27 0.01 19 / 26 0.32 0.03 3 / 6 0.56 0.81 3 / 3 0.22 0.38 55 / 82 0.38 0.01

MCCTCP [21] 2 / 6 0.86 0.04 16 / 20 0.25 0.01 16 / 21 0.32 0.04 15 / 26 0.46 0.63 1 / 6 0.67 0.38 3 / 3 0.00 0.08 53 / 82 0.39 0.02

AFSAC [23] 2 / 6 0.81 0.09 16 / 20 0.25 0.01 15 / 21 0.37 0.16 15 / 26 0.45 0.55 1 / 6 0.64 0.47 3 / 3 0.00 0.08 52 / 82 0.40 0.02

● ●

●

●

●

●

● ●

●

Math Mockito Time

Chart Closure Lang

AFSAC

Elb
au

m
 e

t a
l.

M
C
C
TC

P

R
O
C
KET

G
−c

le
f

AFSAC

Elb
au

m
 e

t a
l.

M
C
C
TC

P

R
O
C
KET

G
−c

le
f

AFSAC

Elb
au

m
 e

t a
l.

M
C
C
TC

P

R
O
C
KET

G
−c

le
f

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Strategy

%
 o

f 
te

s
t 

c
a

s
e

s
 t

h
a

t 
h

a
ve

 t
o

 b
e

e
xe

c
u

te
d

 t
o

 t
ri

g
g

e
r 

th
e

 f
a

u
lt
y
 b

e
h

a
v
io

u
r

∗ represents the average % of test cases that have to be executed to trigger the faulty behavior.

Figure 3: Test case prioritization results of G-clef and the history-based strategies.

D. RQ3: How does G-clef compare to previously proposed

history-based test case prioritization strategies at prioritizing

manually-written test cases?

As with RQ2, RQ3 involves the execution of G-clef com-

pared against four history-based approaches described in Sec-

tion IV-A5. In the DEFECTS4J dataset, there are a substantial

number of subject programs for which the test case that

detects a fault has no execution history. This may cause an

unnecessary bias either in favor of or against certain history-

based strategies, since some strategies rely on the number

of prior executions and/or failures. In order to give a fair

opportunity to all strategies, we only include bugs where

the trigger test has at least one prior execution before the

current version of the subject program. This means that, for

this RQ, we use 82 bugs for the evaluation. Table VII reports

the average number of tests that have to be executed before

a fault is found across all projects and strategies. For four

of the six projects (Closure, Lang, Math, Time), G-clef had

the lowest number of test cases required of any strategy.

Additionally, as shown by Table VIII, G-clef was significantly

better for five project/strategy combinations, and was only

significantly outperformed once (Chart/MCCTCP [21]). For

the Time project, while the Vargha-Delaney Â effect size was

0.00 for three of the four competing approaches, due to only

having three bugs for this project, we were unable to achieve a

significant result for this project. Yet, G-clef overall achieved

significantly better results than three of the four history-based

strategies evaluated in this paper, and outperformed ROCKET

for 49 out of the 82 bugs used in this evaluation.

Figure 3 contains a boxplot showing the percentage of

test cases executed before the trigger test. One of the most

noticeable results in Figure 3 is how effective history-based

strategies were on the Chart project. On average, only 10.5%
of the total test cases were required to find a fault, and for

four of the six Chart subjects used, at least one of the history-

based strategies was able to detect the fault in fewer than

10 test cases. Table IX shows, for each project, the average

number of commits analyzed, percentage of commits in which

the trigger test was present, and for the times when the trigger

test was present, the percentage of occasions on which the test

case failed. In the Chart project, a relatively low number of

commits were analyzed compared to other projects, however



Table IX: Test execution statistics. For each project, this reports the average

number of commits analyzed, the percentage of commits in which the trigger test was

present, and the percentage of occasions on which the trigger test failed when present.

Project # Commits % Occurences % Failures

Chart 24.33 72.78% 66.67%

Closure 178.19 81.81% 0.00%

Lang 159.33 87.16% 5.11%

Math 382.61 77.38% 5.56%

Mockito 105.33 65.20% 19.12%

Time 35.67 100.00% 0.00%

the trigger test was very often present in the commits (72.78%

of commits contained the trigger test), and more importantly,

the trigger test failed on average two-thirds of the time it

was included in a commit. Likewise, for the Mockito project,

on which history-based strategies outperformed G-clef, the

percentage of occasions on which the trigger test failed is

higher than on the other projects. Conversely, two of the

projects for which history-based strategies did not perform as

well, Closure and Time, featured zero previous failures of the

trigger test, meaning history-based strategies are unlikely to

effectively prioritize test suites for these projects.

RQ3: G-clef performs better than any other history-based

strategy, statistically better than 3 out of 4 strategies.

V. RELATED WORK

Many previous papers proposed and/or evaluated test case

prioritization. Rothermel et al. [12] and Elbaum et al. [9] con-

sidered a number of coverage-based and mutation-based ap-

proaches to greedily prioritizing test cases, while Li et al. [14]

and Conrad et al. [46] studied search-based methods. Finally,

Walcott et al. [47] and Alspaugh et al. [48] developed test

prioritization methods that take into account the time budget

allocated for testing. Yet, unlike this paper, neither these

studies, nor those omitted due to space constraints, used defect

prediction to support the process of test prioritization.

There also has been prior work that uses historical test case

information in order to predict the future results of test cases.

For instance, Huang et al. [21] proposed an approach for test

case prioritization based on historical test failures and their

associated severities, while Elbaum et al. [17] presented a

method that considered how recently a test had either been

run or failed. Marijan et al. [18] suggested an approach based

on test failures (with higher weighting for recent failures) and

Cho et al. [23] used test history statistics to predict future

failures. Importantly, all of these approaches look at the history

of test case behavior, while in contrast this paper’s approach

focuses on historical changes to the project’s source code.

Finally, there have been prior studies that used variations

of fault proneness or defect prediction for test case prior-

itization. For instance, Li et al. [49] adopted 32 software

metrics to identify sub-systems that were most likely to

fail. Srikanth et al. [50] considered requirements that have

been reported by users as most likely to contain failures.

Wang et al. [51] proposed a test prioritization technique based

on software quality, incorporating an unsupervised machine

learning model based on software quality metrics. Moreover,

Mirarab et al. [52] used software quality metrics in a Bayesian

model that supported test prioritization. Notably, all of these

studies used software quality metrics as a surrogate for fault

proneness, while G-clef uses the history of the software from

version control as an indicator for future defect locations.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a new strategy, called G-clef, that uses

defect prediction for test case prioritization. After explaining

how G-clef works, we present an empirical study comparing

it to four coverage-based strategies on 365 real faults, and

to four history-based strategies on 82 real faults from the

DEFECTS4J dataset. When compared against four coverage-

based strategies, G-clef resulted in the lowest number of test

cases required to find a fault for 1,165 out of 1,825 combi-

nations of project/strategy, statistically outperforming three of

the four strategies. Notably, while there are some strategies

that work better on some subject programs, G-clef is never

statistically outperformed by any other strategy, suggesting

that G-clef is at least as good for all projects as existing

strategies. Moreover, when compared against the four history-

based strategies, such as ROCKET, the experiments show that

G-clef results in the lowest number of tests required to find

a fault in 199 out of 312 combinations of project/strategy,

statistically outperforming three of the four strategies.

Given the importance of test prioritization for decreasing

the cost of regression testing and the demonstrated promise

of G-clef, we intend to improve the presented approach and

conduct additional experiments with new subjects. In this

paper, we present a test prioritization strategy based on defect

prediction values. In future work, we will investigate how

defect prediction is able to capture characteristics of test

suites in comparison with other strategies described in this

paper. Additionally, since Schwa uses features of the version

control repository’s history to calculate its prediction values,

we will investigate whether defect prediction techniques based

on software features (e.g., Chidamber-Kemerer [53]) are able

to achieve similar or better results. Since, in our experiments,

even an ideal bug prediction report admits opportunities to

decrease the number of required test cases, we will also

develop and study new secondary objectives. As improvements

are made to bug prediction methods, we will update G-clef

and evaluate the effectiveness of new test prioritizers. Finally,

since current defect prediction tools rely on constructs such as

classes and methods, we will investigate how the choice of a

programming language influences the effectiveness of G-clef.

ACKNOWLEDGMENTS

This work was partially funded by the ERDF through

COMPETE 2020 Program and by National Funds through

the Portuguese funding agency (FCT) with reference

UID/CEC/50021/2019, and by the FaultLocker project

(PTDC/CCI-COM/29300/2017).



REFERENCES

[1] G. M. Kapfhammer, “Software testing,” in The Computer Science

Handbook, 2004.
[2] S. Yoo and M. Harman, “Regression testing minimization, selection and

prioritization: A survey,” Software Testing, Verification and Reliability,
vol. 22, no. 2, 2012.

[3] D. Paterson, G. M. Kapfhammer, G. Fraser, and P. McMinn, “Using
controlled numbers of real faults and mutants to empirically evaluate
coverage-based test case prioritization,” in International Workshop on

the Automation of Software Test, 2018.
[4] Q. Luo, K. Moran, D. Poshyvanyk, and M. D. Penta, “Assessing test

case prioritization on real faults and mutants,” in Proceedings of the

International Conference on Software Maintenance and Evolution, 2018.
[5] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting defects for

Eclipse,” in Proceedings of the 3rd International Workshop on Predictor

Models in Software Engineering, 2007.
[6] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy, “Predicting fault

incidence using software change history,” Transactions on Software

Engineering, vol. 26, no. 7, 2000.
[7] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, “Predicting the location and

number of faults in large software systems,” Transactions on Software

Engineering, vol. 31, no. 4, 2005.
[8] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code

attributes to learn defect predictors,” Transactions on Software Engi-

neering, vol. 33, no. 1, 2007.
[9] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Test case pri-

oritization: A family of empirical studies,” Transactions on Software

Engineering, vol. 28, no. 2, 2002.
[10] R. Just, D. Jalali, and M. D. Ernst, “Defects4J: A database of existing

faults to enable controlled testing studies for Java programs,” in Pro-

ceedings of the 2014 International Symposium on Software Testing and

Analysis.
[11] G. M. Kapfhammer, “Regression testing,” in The Encyclopedia of

Software Engineering, 2010.
[12] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Test case

prioritization: An empirical study,” in Proceedings of the International

Conference on Software Maintenance, 1999.
[13] B. Jiang, Z. Zhang, W. K. Chan, and T. H. Tse, “Adaptive random test

case prioritization,” in Proceedings of the International Conference on

Automated Software Engineering, 2009.
[14] Z. Li, M. Harman, and R. M. Hierons, “Search algorithms for regression

test case prioritization,” Transactions on Software Engineering, vol. 33,
no. 4, 2007.

[15] A. Gonzalez-Sanchez, R. Abreu, H.-G. Gross, and A. J. van Gemund,
“Prioritizing tests for fault localization through ambiguity group reduc-
tion,” in Proceedings of the 26th International Conference on Automated

Software Engineering, 2011.
[16] M. Sherriff, M. Lake, and L. Williams, “Prioritization of regression tests

using singular value decomposition with empirical change records,” in
Proceedings of the 18th International Symposium on Software Reliabil-

ity, 2007.
[17] S. Elbaum, G. Rothermel, and J. Penix, “Techniques for improving

regression testing in continuous integration development environments,”
in Proceedings of the 22nd International Symposium on Foundations of

Software Engineering, 2014.
[18] D. Marijan, A. Gotlieb, and S. Sen, “Test case prioritization for

continuous regression testing: An industrial case study,” in Proceedings

of the International Conference on Software Maintenance, 2013.
[19] T. Rolfsnes, “Mining change history for test-plan generation,” in Pro-

ceedings of the International Symposium on Software Testing and

Analysis, 2015.
[20] T. Rolfsnes, R. Behjati, and L. Moonen, “Generating test-plans by

mining version histories,” Simula Research Laboratory, Tech. Rep. 2015-
1, 2015.

[21] Y.-C. Huang, K.-L. Peng, and C.-Y. Huang, “A history-based cost-
cognizant test case prioritization technique in regression testing,” Journal

of Systems and Software, vol. 85, no. 3, 2012.
[22] S. Elbaum, A. Malishevsky, and G. Rothermel, “Incorporating varying

test costs and fault severities into test case prioritization,” in Proceedings

of the 23rd International Conference on Software Engineering, 2001.
[23] Y. Cho, J. Kim, and E. Lee, “History-based test case prioritization for

failure information,” in Proceedings of the 23rd Asia-Pacific Software

Engineering Conference, 2016.

[24] H. Hemmati, S. Nadi, O. Baysal, O. Kononenko, W. Wang, R. Holmes,
and M. W. Godfrey, “The MSR cookbook: Mining a decade of research,”
in Proceedings of the 10th Working Conference on Mining Software

Repositories, 2013.
[25] C. Catal and B. Diri, “A systematic review of software fault prediction

studies,” Expert Systems with Applications, vol. 36, no. 4, 2009.
[26] S. Kim, T. Zimmermann, E. J. Whitehead Jr., and A. Zeller, “Predicting

faults from cached history,” in Proceedings of the 29th International

Conference on Software Engineering, 2007.
[27] R. Moser, W. Pedrycz, and G. Succi, “A comparative analysis of

the efficiency of change metrics and static code attributes for defect
prediction,” in Proceedings of the 30th International Conference on

Software Engineering, 2008.
[28] S. Kim, E. J. Whitehead, Jr., and Y. Zhang, “Classifying software

changes: Clean or buggy?” Transactions on Software Engineering,
vol. 34, no. 2, 2008.

[29] A. E. Hassan, “Predicting faults using the complexity of code changes,”
in Proceedings of the 31st International Conference on Software Engi-

neering, 2009.
[30] F. Rahman, D. Posnett, A. Hindle, E. Barr, and P. Devanbu, “BugCache

for inspections: Hit or miss?” in Proceedings of the 19th Symposium and

the 13th European Conference on Foundations of Software Engineering,
2011.

[31] C. Lewis, Z. Lin, C. Sadowski, X. Zhu, R. Ou, and E. J. Whitehead Jr.,
“Does bug prediction support human developers? Findings from a
Google case study,” in Proceedings of the 25th International Conference

on Software Engineering, 2013.
[32] A. Freitas, “Software repository mining analytics to estimate software

component reliability,” Master’s thesis, Faculdade de Engenharia da
Universidade do Porto, 2015.

[33] M. D’Ambros, M. Lanza, and R. Robbes, “Evaluating defect prediction
approaches: A benchmark and an extensive comparison,” Empirical

Software Engineering, vol. 17, no. 4-5, 2012.
[34] D. Hao, L. Zhang, L. Zang, Y. Wang, X. Wu, and T. Xie, “To be optimal

or not in test-case prioritization,” Transactions on Software Engineering,
vol. 42, no. 5, 2016.

[35] J. Campos and R. Abreu, “Encoding Test Requirements as Constraints
for Test Suite Minimization,” in Proceedings of the 10th International

Conference on Information Technology: New Generations, 2013.
[36] J. Campos, A. Riboira, A. Perez, and R. Abreu, “GZoltar: An Eclipse

plug-in for testing and debugging,” in Proceedings of the 27th Interna-

tional Conference on Automated Software Engineering, 2012.
[37] GZoltar, “GZoltar,” 2012 (accessed January 31, 2019). [Online].

Available: http://www.gzoltar.com
[38] K. K. Sabor, M. Hamdaqa, and A. Hamou-Lhadj, “Automatic prediction

of the severity of bugs using stack traces,” in Proceedings of the 26th

Annual International Conference on Computer Science and Software

Engineering, 2016.
[39] A. Arcuri and L. Briand, “A hitchhiker’s guide to statistical tests for

assessing randomized algorithms in software engineering,” Software

Testing, Verification & Reliability, vol. 24, no. 3, 2014.
[40] G. Fraser and A. Arcuri, “EvoSuite: Automatic test suite generation for

object-oriented software,” in Proceedings of the 19th Symposium and

the 13th European Conference on Foundations of Software Engineering,
2011.

[41] C. Pacheco and M. D. Ernst, “Randoop: Feedback-directed random
testing for Java,” in Companion to the 22nd International Conference

on Object-oriented Programming Systems and Applications Companion,
2007.

[42] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser,
“Are mutants a valid substitute for real faults in software testing?” in
Proceedings of the 22nd International Symposium on Foundations of

Software Engineering, 2014.
[43] D. Saff and M. D. Ernst, “An experimental evaluation of continuous

testing during development,” in Proceedings of the International Sym-

posium on Software Testing and Analysis, 2004.
[44] J. Eyolfson, L. Tan, and P. Lam, “Do time of day and developer

experience affect commit bugginess?” in Proceedings of the 8th Working

Conference on Mining Software Repositories, 2011.
[45] T. W. Anderson and D. A. Darling, “Asymptotic theory of certain

”goodness of fit” criteria based on stochastic processes,” The Annals

of Mathematical Statistics, vol. 23, no. 2, 1952.

http://www.gzoltar.com


[46] A. P. Conrad, R. S. Roos, and G. M. Kapfhammer, “Empirically
studying the role of selection operators during search-based test suite
prioritization,” in Proceedings of the 12th International Conference on

Genetic and Evolutionary Computation, 2010.
[47] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer, and R. S. Roos,

“Time-aware test suite prioritization,” in Proceedings of the International

Symposium on Software Testing and Analysis, 2006.
[48] S. Alspaugh, K. R. Walcott, M. Belanich, G. M. Kapfhammer, and M. L.

Soffa, “Efficient time-aware prioritization with knapsack solvers,” in
Proceedings of the International Workshop on Empirical Assessment

of Software Engineering Languages and Technologies, 2007.
[49] P. L. Li, J. Herbsleb, M. Shaw, and B. Robinson, “Experiences and re-

sults from initiating field defect prediction and product test prioritization
efforts at abb inc.” in Proceedings of the 28th International Conference

on Software Engineering, 2006.
[50] H. Srikanth, L. Williams, and J. Osborne, “System test case prioritization

of new and regression test cases,” in Proceedings of the International

Symposium on Empirical Software Engineering, 2005.
[51] S. Wang, J. Nam, and L. Tan, “QTEP: Quality-aware test case prioriti-

zation,” in Proceedings of the 11th Joint Meeting European Software

Engineering Conference and the Symposium on the Foundations of

Software Engineering, 2017.
[52] S. Mirarab and L. Tahvildari, “A prioritization approach for software test

cases based on Bayesian networks,” in Proceedings of the 10th Interna-

tional Conference on Fundamental Approaches to Software Engineering,
2007.

[53] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design,” Transactions on Software Engineering, vol. 20, no. 6, 1994.


