Prut4): Protocol Unit Testing fo(u)r Java

Florian Joost Slob* and Sung-Shik Jongmans*
*Department of Computer Science, Open University of the Netherlands
TCentrum Wiskunde & Informatica (CWI), Netherlands Foundation of Scientific Research Institutes (NWO-I)

Abstract—This paper presents Prutdj: a tool to simplify unit
testing of channel/queue-based communication protocols in con-
current Java programs. Prutdj offers two domain-specific lan-
guages to write, compile (to Java), and execute (with JUnit) high-
level “protocol modules” and accompanying unit tests. Our first
evaluation provides evidence for Prut4j’s expressiveness (network
topologies, games, scientific kernels) and efficiency (Prut4j-based
programs perform well in a third-party benchmark).

Index Terms—concurrency, communication, DSLs

I. INTRODUCTION

Background: To take advantage of modern multi-core
processors, concurrent programming with shared memory—a
notoriously hard enterprise—is becoming increasingly impor-
tant. To alleviate some of the complexities, besides low-level
synchronisation primitives, many languages now offer core
support for higher-level communication primitives as well, in
the guise of message passing through asynchronous, reliable,
order-preserving ‘“channels” (e.g., Go, Clojure) or “queues”
(e.g.,. Java, C#). The idea is that, beyond their usage in
distributed computing, channels/queues can also serve as a
programming abstraction for shared memory, supposedly less
prone to concurrency bugs than locks, semaphores, etc.

However, evidence suggests that channel/queue-based pro-
gramming abstractions have their issues, too. For instance, a
study of 171 concurrency bugs in major open source programs
shows: “message passing does not necessarily make multi-
threaded programs less error-prone than shared memory” [[1]].

Our vision: The long-term aim of the Prut4j project [2]]
is to simplify unit testing of concurrent programs that use
channel/queue-based programming abstractions.

Motivating example: Imagine that we need to write a con-
current chess program that consists of threads White (human)
and Black (computer), plus two channels/queues. Every thread
has a local copy of the board and runs a loop. In each iteration:

o White receives a move from Black; then updates (its local
copy of) the board; then writes the board to the terminal;
then reads the next move from the terminal; then updates
the board; then sends its move to Black.

o Black pre-analyses (its local copy of) the board for
possible next moves (before knowing White’s move); then
receives a move from White; then updates the board; then
selects a move based on the pre-analysis (after knowing);
then updates the board; then sends its move to White.

Funded by the Netherlands Organisation of Scientific Research (NWO):
016.Veni.192.103. This work was carried out on the Dutch national e-
infrastructure with the support of SURF Cooperative.

1 public static BlockingQueue wb ..
2 public static BlockingQueue bw R

4 public static void runWhite () {

5 Board b = new Board();

6 while (!board.final()) {

7 if (!board.initial()) {

8 Move mBlack = (Move) bw.take();
9 b.update (mBlack) ;

10 if (board.final()) break; }

11 b.writeTo (System.out) ;

12 Move mWhite = b.readMoveFrom(System.in);
13 b.update (mWhite) ;

14 wb.put (mWhite); } }

16 public static void runBlack() {
17 Board b = new Board();

18 while (!board.final()) {

19 b.pre_analyse(); long-running method call
20 Move mWhite = (Move) wb.take();

21 b.update (mWhite) ;

22 if (board.final()) break;

23 Move mBlack = b.decide();

24 b.update (mBlack) ;

25 bw.put (mBlack); } }

27 public static void main(String[] args) {
28 new Thread(() -> runWhite()).start();

29 new Thread(() -> runBlack()).start(); }

Note: Board and Move are custom Java classes (details unimportant); Thread,
BlockingQueue, and System are Java classes in the standard library.

Fig. 1. Concurrent chess program (highlights: turn-taking protocol)

Fig.] shows a Java version of the program: White’s turn is
on lines while Black’s turn is on lines We note
that Black’s pre-analysis can run already during White’s turn.

The highlighted method calls in Fig. |1| indicate communi-
cation primitives for sending (put) and receiving (get) of
messages through channels/queues (BlockingQueue). Col-
lectively, they realise the turn taking protocol between White
and Black. This protocol is crucial: if its code is buggy (e.g.,
White takes two turns in a row), the whole program is useless
(i.e., it does not simulate chess). Therefore, it seems clear that
we must unit test the protocol code; moreover, since it forms
a logically distinct piece of functionality, this should be easy.

However, it is not: the protocol code has not been isolated in
a separate module. As a result, it can be tested only indirectly
(e.g., test if White’s and Black’s local copies of the board
reach expected configurations after some moves; if so, then
probably turn-taking is fine), but this has two disadvantages:

o It requires many thread interleavings to be investigated

(time-consuming and unsupported by mainstream tools).

o It is too imprecise for debugging (if the test fails, it is
unclear if the bug is in the protocol code or elsewhere).
Sadly, non-isolation is common: in fact, the protocol code in
Fig.|l|even has an idiomatic producer—consumer structure [3]].

Our contribution: Prut4j offers a novel approach to write,
compile, and execute high-level “protocol modules” and
accompanying unit tests to avoid the listed disadvantages.

Organisation: In Sect. we present an overview of
Prut4j. In Sect. we present design/implementation details.
In Sect. we evaluate Prut4j. In Sect. we conclude
with lessons learned, related work, and future work. Prut4;j
is available at https://github.com/prut4;j.

II. OVERVIEW OF PRUT4J
A. Foundations, Workflow, and Scope

Our research is founded on the following two observations:

o It is crucial to isolate protocol code in separate modules.
Otherwise, protocol code simply cannot be unit tested.

o In theory, mainstream general-purpose languages (GPL)
and testing frameworks are expressive enough to write
“protocol modules” and accompanying unit tests. In
practice, however, it requires too much effort and dis-
cipline to really do this (Sect. final paragraph)

Prut4;j is a research prototype to investigate if domain-specific
languages (DSL) can help to address this issue.

Regarding workflow, the general approach is that the devel-
oper continues to write most code of their concurrent programs
and unit tests in a mainstream GPL and testing framework.
There is one exception: protocol modules and accompanying
unit tests. Instead of writing these in a low-level GPL (this
paper: Java), they are written in two higher-level DSLs (this
paper: Discourje [4] and Owl [5])); tooling for these DSLs (this
paper: Prut4j) is subsequently responsible for ensuring that the
DSL code can be effortlessly integrated into the GPL code.

We currently consider Prut4j a scientific proof-of-concept
tool to investigate the feasibility of our approach in terms of
expressiveness and efficiency; our evaluation provides first
evidence (Sect. [V). We have many ideas for improvements
(Sect. [V), but their development is beyond this paper’s scope.

B. Motivating Example, Revisited

To demonstrate the workflow/usage of Prut4j, we revisit the
concurrent chess program (Sect. [[): first, we present the turn
taking protocol in Discourje; then, we present a selection of
unit tests in Owl; finally, we show how the two are integrated
into the program in Java. (The first two steps are actually
independent.) Here, we cover only the minimum material to
explain the basic workings of Prut4j; Sect. |I1I| contains details.

Turn taking protocol in Discourje: Discourje is a DSL
for channel/queue-based protocols, based on Lisp.

Fig. 2] (left) shows the turn taking protocol in Discourje. It
consists of a parametrised loop. The parameters of the loop,
p and g, store thread names and are initialised to "White"
and "Black": at the start of an iteration, p and g indicate
the active and passive player; at the end, a next iteration is
initiated with the names swapped. Furthermore, the body of
the loop consists of a single communication, namely the send
and subsequent receive of a message of type Move through
the channel/queue from p to g (= passing the turn).

[Black,White]|?Move [Black,White]lMove

1 (loop [p "White"

2 g "Black"] [White,Black]!Move [White,Black]?Move
3 (=—>> Move p q)

4 (recur g p)) Note: Transition label [p,q]tm indicates a send (if

=) or receive (if t1=7) of a message of type m
through the channel/queue from thread p to thread gq.

Fig. 2. Turn taking protocol in Discourje (left) and state machine (right)

| public interface Pr {

2 Optional exch(String threadName, Optional box);

3 default void send(String threadName, Object message) {
4 exch (threadName, Optional.of(m)); }

5 default Object recv(String threadName) {

6 return exch(threadName, Optional.empty()).get(); } }

Note: send and recv are just wrappers for special usages of exch.

Fig. 3. API

The main Discourje component of Prutdj is a compiler:
it consumes as input a protocol in Discourje; it produces as
output a Java class that implements interface pr in Fig.

The idea is that a pr class encapsulates a protocol. That
is: when a thread is ready to send/receive, instead of calling
put/take of BlockingQueue, it calls send/recv of pr. The
crucial point is that the caller indicates only that it intends
to communicate, but not when, how, or with whom; these
decisions are made inside the Pr class (senders/receivers do
not know whereto/wherefrom messages go/come; send/recv
have no such parameters). The caller remains blocked until
its “request” to send/receive has eventually been “granted”. In
this way, no protocol logic resides with the caller any more.

Fig. @] shows the Java class that Prut4j’s compiler generates
for Fig. 2] First, we note that the queues are now encapsulated
as private attributes of class TurnTakingPr; this means that
White and Black can no longer call put/take directly, but
only indirectly via a TurnTakingPr object. Second, we note
that method exch (on which send and recv rely; Fig.
effectively runs the state machine in Fig. 2] (right): when
exch is called, depending on the state, the request is either
immediately granted (and a state change is effectuated), or not.

For instance (lines PHI2), if the state machine is in state 0,
and White calls send, then this request is immediately granted
(cf. Fig. 2): the message-to-send is put into a queue, the state is
changed, Black is notified (if Black is waiting), and an empty
container is returned (because send was called; if recv were
called, the container would contain a message-to-receive). In
contrast (line [I7), if the state machine is not in state 0 or 3,
then no request of White can be granted in the current state (cf.
Fig. [2). Instead, White is suspended (wait) and will resume
only when Black effectuates a state change (notifyAll).

To summarise: the developer writes Fig. E] (left), and then,
Prut4j’s compiler internally constructs the corresponding state
machine in Fig. 2] (right) and generates Fig.]

Unit tests in Owl: Many protocol requirements can be
naturally expressed as rules of the form: if these sends/receives
have happened (or not), then those sends/receives are enabled
(or not). The antecedent and consequent of such rules can be
interpreted as the input and expected output of unit tests. For

https://github.com/prut4j

1 public class TurnTakingPr implements Pr {
2 private BlockingQueue bw = ..., wb = ...;
3 private volatile int state = 0;

5 public exch(String threadName, Optional box) {

6 switch (threadName) ({

7 case "White": synchronized (this) { while (true) {
8 switch (state) {

9 case 0: if (box.isPresent()) { send
10 wb.put (box.get ());

11 state = 1; notifyAll();

12 return new Optional.empty(); }
13 case 3: if (box.isEmpty()) { receive
14 Object m = bw.take();

15 state = 0; notifyAll();

16 return new Optional.of (m); } }
17 wait (); } }

18 case "Black": ... } }

Fig. 4. Turn taking protocol in Java >8, generated for Fig. 2]

1 !"Black SEND Move"

2 !"Black SEND Move" U "Black RECV Move"

3 G("Black SEND Move" =>

4 X (!"Black SEND Move" U "Black RECV Move"))

LR

Fig. 5. Selection of unit tests in Owl

instance: “if Black has not received from White, then Black
cannot send to White” (otherwise, Black passes the turn back
to White, but it is not Black’s turn). Owl is a DSL to concisely
write such requirements, based on temporal logic.

Fig. E] shows a selection of unit tests in Owl, stored in files
test[1,2,3].owl. The unit test on line 1 states that initially,
Black cannot (1) send a message of type Move. The unit test
on line 2 states that Black cannot send until (U) Black receives;
this is equivalent to the if—then example, above. The unit test
on lines 3—4 states that always (G), if Black sends (=>), then
next (X), it cannot send again until it has received.

The main Owl component of Prut4j is an execution engine:
it consumes as input a unit test in Owl, a Pr object, and
“dummies”; it produces as output a true/false verdict.

The idea is that the engine inspects every possible run of
the Pr object, to see if the unit test in Owl succeeds or fails;
to obtain these runs, the engine basically makes sequences of
exch calls on the Pr object, using the dummies as messages-
to-send. However, the engine does not naively execute the pr
object every time from scratch. Instead, first, the engine re-
constructs the state machine of the “initial” Pr object as a
set of “successor” Pr objects, organised in a graph. Then, it
inspects the whole re-constructed state machine, using a model
checking algorithm. The advantage is that the Pr object is
executed every time only from the point where different runs
start to diverge; their shared “history” is executed only once.

Fig. [6] shows a JUnit class that the developer can write for
Fig. [First, we note that we use only one dummy in this
example: every time a message is sent, it will just be a default
Move object. In general, the array of dummies can consist of
any number of objects, of any type; the engine will randomly
pick a dummy of the right type, by need. Second, we note that
the engine can be accessed through class Engine.

To summarise: the developer writes Figs. [5]and [6] and then,
Prut4j’s execution engine re-constructs the state machine of
the Pr object and inspects it.

1 public class TurnTakingPrTest {
2 private Object[] dummies = new Object|[]
3 private Pr p;

{ new Move () };

5 @BeforeEach public void init () {

6 p = new TurnTakingPr(); }

7 @Test public void testBlackCannotSend() {

8 assertTrue (Engine.exec ("testl.owl", p, dummies)); }

9 @Test public void testBlackCannotSendUntil () {

10 assertTrue (Engine.exec ("test2.owl", p, dummies)); }

11 @Test public void testBlackCannotSendAgainUntil() {

12 assertTrue (Engine.exec ("test3.owl", p, dummies)); } }

Fig. 6. Selection of unit tests in JUnit >5, using Fig.]

@Test public void testBlackCannotSendUntil_1() {

1

2 p.send ("White", dummies[0]);

3 synchronized (p) {

4 new Thread(() -> {

5 synchronized (p) { p.interrupt(); } }

6) .start ();

7 assertThrows (InterruptedException.class,
8 () —> p.send("Black", dummies[0])); } }
9 @Test public void testBlackCannotSendUntil_2 () {
10 p.send("White", dummies[O0]);

11 p.recv("Black");

12 p.send("Black", dummies[0]); }

Fig. 7. Selection of unit tests in JUnit >5, not using Fig. 5] (cf. Fig. [6)

Integration: Integrating the TurnTakingPr class (Fig. [
into the program requires little effort. We can simply refactor
Fig. |l| by replacing the queues with a TurnTakingPr object,
and the put/take calls with send/recv calls. Of course, new
programs can be written against the Pr interface from the start;
in that case, no additional refactoring or integration effort is
needed. The same holds for Fig. [6} it already uses JUnit, so
it can be directly incorporated in an existing JUnit suite.

Finally, we note that it is surely possible to manually apply
our approach to write protocol modules and accompanying
unit tests (e.g., using object-oriented refactoring techniques).
For instance, Fig. E] contains standard Java code, so it can be
written by hand as well. Moreover, Fig. [7| shows an incom-
plete set of hand-written unit tests for the same property as
test2.owl in Figs.[5and[6] However, it requires considerable
effort and discipline to write all this by hand: state machines
(e.g., Fig. i) tend to be verbose and laborious to program as
they get larger, while many test methods tend to be needed
(e.g., testBlackCannotSendUntil_[1,2,...] in Fig. m)
to attain the same “maximal” coverage as Prut4j’s execution
engine. Prut4j takes away much of the effort.

III. DESIGN AND IMPLEMENTATION DETAILS

A. Core Components

Fig. [§ shows the core components of Prut4j and the data
flow among them. The two main components are the compiler
for Discourje and the execution engine for Owl.

Briefly, the compiler for Discourje works as follows:

o The input is a protocol in Discourje. Specifically, the
supported syntax is a subset of Clojure (= Lisp on the
JVM), plus macros for protocols (e.g., ——>> in Fig. [2).

o The output is a Java class that implements interface pr.

] AST [tr] LTS [t 5

@—4 'O'q. Y 'o'a. Y Qq. E

dej parser [4] interpreter [4] code :Java
generator

state machine
re-constructor

COMPILER FOR DISCOURJE

owl

parser |5] interpreter [S]

v EXECUTION ENGINE FOR OWL ‘

Fig. 8. Architecture

o The parser, written in Clojure, converts Discourje code
into an internal abstract syntax tree (AST), by taking
advantage of Clojure’s own macro expansion mechanism.

o The interpreter, written in Clojure, converts an AST
into a labelled transition system (LTS), which is a state
machine-like data structure. The conversion is based on
Discourje’s formal semantics, which mathematically de-
fines possible transitions for every operator of Discourje.

o The code generator, written in Java, converts an LTS
into Java code (e.g., Fig. [).

The parser and interpreter for Discourje were originally devel-
oped as part of a library for runtime verification in Clojure [4];
we refer to that paper for details (including formal semantics).
In contrast, the code generator is implemented from scratch.
Briefly, the execution engine for Owl works as follows:

o The input is a pr class and a unit test in Owl (plus
configuration data, such as dummies; omitted in Fig. B])

o The output is a verdict: the unit test succeeds for every
run of the Pr class (v), or a bug is reported (%) and the
engine gives diagnostics information about a failing run.

o The state machine re-constructor, written in Java, cre-

ates a graph data structure that represents the same state
machine as the LTS in the compiler. Specifically, every
vertex v is a Pr object, while every edge (v, v’) represents
a send/recv call on v, resulting in v". Thus, every path
v1vVg - - - U, through the graph represents a run of v;.
To build the graph, first, the re-constructor creates a fresh
object of the input Pr class; this is the “initial” vertex
Uinit- Lhen, every possible send/recv call is made on
(deep-)clones of viyie; these calls result in the “successor”
vertices of wvy,y. The graph is iteratively expanded by
computing successors of successors, of successors, etc.

o The parser and interpreter, written in Java, convert a
piece of Owl code into an internal AST, and an AST into
a state machine that represents every protocol run that is
allowed according to the Owl code. The supported syntax
is based on linear temporal logic (LTL) [6]. This is a form
of logic to specify dynamic behaviour over time.

o The model checker, written in Java, compares the two
state machines: it checks if every run of the re-constructed
state machine is also a run of the state machine for the
Owl code; if so, the run satisfies the LTL property and
passes the unit test. To do this efficiently, we implemented
an algorithm based on nested depth-first search 7], using
on-the-fly techniques [8]].

The parser and interpreter for Owl come from an advanced
library for temporal logic [3]. In contrast, the state machine re-
constructor and model checker are implemented from scratch.

We note that to execute unit tests in Owl, alternatively, it
seems possible to inspect the LTS instead of the re-constructed
state machine; this would save re-construction work. However,
there is a decisive reason why not to do this: the LTS is not
the code that is executed, so we would be testing the wrong
artefact. Specifically, if the code generator produces a Pr
class that differs from the LTS—intentionally (optimisations)
or otherwise (bugs)—then it may fail even when used in
“successfully” unit tested conditions. To avoid this, when unit
testing, it is crucial to re-construct the state machine with
exactly the same code as the code that is normally executed.

B. Key Challenges

We discuss two key implementation challenges of Prut4j:
scalability of generated code and computation of successors.
Scalability of generated code: The naive approach to gen-
erate a Pr class is to let method exch simulate a single state
machine, as in Fig. [Z_f} However, in this approach, threads that
call send/recv require tight synchronisation to ensure that
only one thread can effectuate a state change at a time. This
is what synchronized (this) { ... } in Java achieves, as
on line [/} However, for larger numbers of threads, the need to
synchronise has an increasingly negative impact on scalability
(waiting times increase super-linearly), so this is inefficient.
To address this issue, we implemented an optimisation that
uses multiple state machines, instead of a single one. The idea
is that we can decompose the original “large” state machine
into thread-specific “small’ ones, such that every small state
machine has transitions only for one thread (e.g., [9]]). In this
approach, method exch simulates all small state machines
simultaneously: whenever a thread calls exch, it accesses and
mutates only its own small state machine without affecting the
other ones. Thus, no synchronisation among threads is needed.
However, not every state machine can be decomposed while
fully preserving its semantics (e.g., [9]), which could be a
problem. This is why state machine re-construction is so
important in Prut4j: even when the semantics of the large state
machine is not fully preserved, because of re-construction, the
engine always executes unit tests on the actual code. Thus, if
the unit tests succeed, then the decomposition optimisation is
semantics-preserving at least for the scenarios of interestﬂ
Computation of successors: As explained, to compute
successors of v (a Pr object), every possible send/recv call is
made on (deep-)clones of v. To enumerate all possible send/
recv calls, the state machine re-constructor uses additional
configuration data, namely thread names and dummies; it
simply calls send/recv with every combination of them.
The key challenge is defecting whether such a call succeeds.
Specifically, a problem occurs when the requested send/receive

UIf a unit test fails, then the decomposition optimisation either is semantics-
preserving (and the original state machine does not satisfy the tested property),
or it is not semantics-preserving. In the latter case, the original state machine
might actually satisfy the tested property.

is not enabled. In that case, the underlying exch method
blocks the caller. However, if there are no other threads to
effectuate a state change, the caller will never unblock, so the
re-constructor indefinitely gets stuck. A naive way to solve
this, is to let a second thread concurrently perform another
exch call, in an attempt to effectuate a state change and un-
block the first thread. However, non-deterministic scheduling
make this approach problematic as well.

Our solution is more advanced: it uses a main thread, an
auxiliary thread, and an intrinsic lock (via Java’s synchro-
nized keyword). The idea is that the main thread acquires the
lock, spawns the auxiliary thread, and calls send/recv. The
auxiliary thread only tries to acquire the lock; when successful,
it interrupts the main thread. Now, there are two scenarios:

o If the requested send/receive is enabled, the request is
immediately granted. When the call subsequently returns
(without blocking), the main thread releases the lock and
waits until the auxiliary thread terminates. The auxiliary
thread then acquires the lock and interrupts the main
thread; this interrupt can be safely ignored.

o If the requested send/receive is not enabled, the caller
becomes blocked: it calls wait and temporarily releases
the lock (Java’s intrinsic locks work this way). The
auxiliary thread then acquires the lock and interrupts
the main thread. Subsequently, the main thread’s wait
call abnormally terminates with an InterruptedEx-
ception; this exception can be caught and indicates that
the requested send/receive is not enabled in the current
state (and does not produce a successor of v).

Fig. [7] lines 1-8, shows a simplified version of this solution.

We note that the alternative of adding a non-blocking
version of exch to the generated code for the sole purpose of
state machine re-construction might work and be simpler, but
is unsatisfactory: it violates the important principle to unit test
exactly the same code as the code that is normally executed.

IV. EVALUATION
A. Expressiveness (Case Studies)

As noted in Sect. our current efforts are geared towards
studying the feasibility of our approach along two dimensions:
expressiveness and efficiency. Regarding expressiveness, we
have conducted a first set of case studies to see if a broad range
of different programs and protocols are supported by Prut4;.
Specifically, we wrote 12 protocol modules and 125 accompa-
nying unit tests in Discourje and Owl to investigate different
aspects in three categories: network topologies, games, and
scientific kernels.

Network topologies: The aim of this category is to investi-
gate the distinguishing power of unit tests in Owl. To this end,
we wrote protocol modules in Discourje for a distributed token
algorithm, for six common network topologies, parametrised
in the number of threads n: directed ring, undirected ring, star,
binary tree, full mesh, and 2D mesh. For n=4, every network
is unique, so the generated Pr classes are different.

We succeeded to write a suite of distinguishing unit tests in
Owl: every generated Pr class passes a unique combination.

Games: The aim of this category is to investigate the ability
to write unit test in Owl for protocols with complex control
flow. To this end, we wrote protocol modules in Discourje
for two more games, parametrised in the number of threads
n (“players”): rock—paper—scissors and go fish. The protocols
for these games are substantially more complicated than chess
(Sect. [lI-B)). Notably, with rock—paper—scissors, the number of
threads that participate in the protocol decreases over time;
with go fish, the order in which threads take turns is not
statically fixed, but dynamically determined while playing.

We successfully wrote unit tests in Owl for generic proper-
ties (e.g., boundedness of channels/queues; every sent message
is eventually received; liveness) and specific ones (e.g., for
rock—paper-scissors, “loser threads” drop out; for go fish, if a
thread does not have an asked card, it takes the next turn).

Scientific kernels: The aim of this category is to investigate
the ability to use Prut4j in real, existing programs. To this
end, we adapted four scientific kernels (in computational fluid
dynamics) that are part of NPB [10], a third-party benchmark
suite designed to evaluate the efficiency of parallel computing
architectures. Specifically, we took NPB’s reference programs,
replaced all existing non-modular protocol code with Pr
interface calls, wrote equivalent protocols in Discourje, and
simply integrated the generated Pr classes. Also, we wrote
unit tests in Owl and successfully executed them.

To our knowledge, this is the first time that channel/queue-
based communication protocols in scientific kernels have been
unit tested. We also note that computational science is an area
where unit testing of protocols can be particularly important,
because: programs in computational science are often con-
current, while publications in prestigious journals (including
Science and PNAS) have been retracted because of bugs [|11].

B. Efficiency (Benchmarks)

We recognise two possible efficiency concerns with Prut4;j.

The first one is about executing unit tests: some state
machines grow exponentially large in the number of threads
(especially in larger programs with higher complexities), so
executing unit tests based on state machines could turn out to
be prohibitively slow. However, it seems reasonably realistic
to assume that protocols are unit tested with 2, 3, or 4 threads,
but not hundreds (“if it works for 2<n<4, it should work for
n>4"); with such low numbers, execution times seem ﬁneE]

The second possible efficiency concern is about running
generated code: even if it is sufficient to unit test with low
numbers of threads, programs are likely to be run with high(er)
numbers. As our approach adds an extra layer of abstraction
to the program, we may face considerable overhead.

To investigate such possible overhead, we used the four
scientific kernels of NPB (Sect. [[V-A) in a quantitative exper-
iment. Specifically, using standardised input (part of the NPB

2 Anecdotally, the mean execution time of the 125 unit tests of Sect.
is roughly 61 seconds per test, on an ordinary dev machine. We believe this is
acceptable, given that: (1) Prut4j achieves “maximal” coverage (every possible
run of the protocol is inspected); (2) protocols are complex functionality; (3)
there is still substantial room for optimisations (e.g., caching techniques); (4)
protocols cannot conveniently be unit tested at all using mainstream tools.

mnaive wmoptimised mnaive

4

2 2
.|||||

LR 1

0.5 0.5
2 6 10 14 18 22 2 6 10 14 18 22

optimised

mnaive

optmsed}‘
1 .II||||“
TNy

0.5 0.5
2 6 10 14 18 22 2 6 10 14 18 22

mnaive moptimised

N
N

1

Fig. 9. Slowdown (y) of Prut4j-based versions of kernels CG, FT, IS, MG (from left to right) relative to reference programs, against numbers of threads (x)

distribution), we compared NPB’s reference programs with
the naive and decomposition-optimised Prut4j-based versions,
by running each of these programs thirty times with various
numbers of threads on a high-end multi-core machine (24
cores, ample memory). Fig. [0 shows slowdowns (if y>1)
and speedups (if y<1) of the Prut4j-based versions relative
to the reference programs (computed using mean run-times);
standard deviations were mostly below 5% of the means.
Here, we highlight three findings. First, we observe that the
concern is real for the naive Prutd4j-based versions: the run-
times become progressively worse for kernels CG (leftmost
chart) and MG (rightmost chart) as the number of threads
increases, up to almost 4x slowdown in the worst case. The
reason is that CG and MG, in contrast to kernels FT and IS
(middle charts), are communication-heavy; thus, protocol over-
head has a substantial impact. Second, however, we observe
that the decomposition optimisation is really effective: (1) it
eliminates the rising curves for CG and MG completely, (2) the
worst slowdown is only 1.05x%, and (3) we actually observe a
speedup in many cases. This brings us to the third observation:
especially for IS, the generated code is consistently faster than
the hand-written code. This is a potential advantage of our
work that we did not anticipate and warrants further research.

V. CONCLUSION

Lessons Learned: Regarding expressiveness, the unit tests
that we wrote in Owl would have been prohibitively tedious to
write by hand in Java (cf. Fig.[7). This seems to hold especially
for unit tests that exercise complicated temporal dynamics.
Interestingly, writing the unit tests also forced us to carefully
think about the protocols; as a result, we found mistakes in
our Discourje code, even before executing the unit tests.

Regarding efficiency, we conclude that especially with the
decomposition optimisation enabled, the Prut4j-based versions
really can compete with third-party reference programs.

Related work: Substantial research has been conducted on
unit testing of concurrent programs (e.g., [12]-[16]). The cen-
tral issue under study has been flakiness (e.g., [17]-[19]): unit
tests for concurrent programs succeed or fail non-determinis-
tically, due to the many interleavings in which threads can be
scheduled. To address this, “existing automated testing tools
for multi-threaded code mainly focus on re-executing existing
test cases with different schedules” [20]. In contrast, Prut4;j
targets a different problem: unit testing of functionality that is
crucial in concurrent programs but difficult to modularise.

Future work: The first evidence in support of the feasibility
of our approach (in terms of expressiveness and efficiency;
Sect. encourages us to continue the development of Prut4;.
Specifically, we aim for improved usability/ergonomics (user-
friendlier/simpler syntax; less JUnit boilerplate), improved
DSL features (advanced parametrisation; data-dependent pro-
tocols), optimisations, and real(istic) case studies.

REFERENCES

[1] T. Tu, X. Liu, L. Song, and Y. Zhang, “Understanding real-world
concurrency bugs in go,” in ASPLOS. ACM, 2019, pp. 865-878.

[2] S. Jongmans, “Toward new unit-testing techniques for shared-memory
concurrent programs,” in /ICECCS. 1EEE, 2019, pp. 164-169.

[3]1 B. Goetz, Java Concurrency in Practice. Addison-Wesley, 2006.

[4] R. Hamers and S. Jongmans, “Discourje: Runtime verification of com-
munication protocols in clojure,” in TACAS (1), ser. Lecture Notes in
Computer Science, vol. 12078. Springer, 2020, pp. 266-284.

[5] J. Kretinsky, T. Meggendorfer, and S. Sickert, “Owl: A library for w-
words, automata, and LTL,” in ATVA, ser. Lecture Notes in Computer
Science, vol. 11138. Springer, 2018, pp. 543-550.

[6] A. Pnueli, “The temporal logic of programs,” in FOCS. IEEE Computer
Society, 1977, pp. 46-57.

[7]1 C. Courcoubetis, M. Y. Vardi, P. Wolper, and M. Yannakakis, “Memory
efficient algorithms for the verification of temporal properties,” in CAV,
ser. Lecture Notes in Computer Science, vol. 531, 1990, pp. 233-242.

[8] R. Gerth, D. A. Peled, M. Y. Vardi, and P. Wolper, “Simple on-the-
fly automatic verification of linear temporal logic,” in PSTV, ser. IFIP
Conference Proceedings, vol. 38. Chapman & Hall, 1995, pp. 3-18.

[9] K. Honda, N. Yoshida, and M. Carbone, “Multiparty asynchronous
session types,” J. ACM, vol. 63, no. 1, pp. 9:1-9:67, 2016.

[10] M. A. Frumkin, M. G. Schultz, H. Jin, and J. C. Yan, “Performance and
scalability of the NAS parallel benchmarks in java,” in /PDPS. 1EEE
Computer Society, 2003, p. 139.

[11] Z. Merali, “Computational science: ...Error,” Nature, no. 467, pp. 775—
771, 2010.

[12] B. Long, D. Hoffman, and P. A. Strooper, “Tool support for testing
concurrent java components,” IEEE Trans. Software Eng., vol. 29, no. 6,
pp. 555-566, 2003.

[13] W. Pugh and N. Ayewah, “Unit testing concurrent software,” in ASE.
ACM, 2007, pp. 513-516.

[14] K. Coons, S. Burckhardt, and M. Musuvathi, “GAMBIT: effective unit
testing for concurrency libraries,” in PPOPP. ACM, 2010, pp. 15-24.

[15] V. Jagannath, M. Gligoric, D. Jin, Q. Luo, G. Rosu, and D. Marinov,
“Improved multithreaded unit testing,” in SIGSOFT FSE. ACM, 2011,
pp. 223-233.

[16] A. Nistor, Q. Luo, M. Pradel, T. R. Gross, and D. Marinov, “Ballerina:
Automatic generation and clustering of efficient random unit tests for
multithreaded code,” in ICSE, 2012, pp. 727-737.

[17] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical analysis
of flaky tests,” in SIGSOFT FSE. ACM, 2014, pp. 643-653.

[18] W. Lam, P. Godefroid, S. Nath, A. Santhiar, and S. Thummalapenta,
“Root causing flaky tests in a large-scale industrial setting,” in ISSTA.
ACM, 2019, pp. 101-111.

[19] D. Silva, L. Teixeira, and M. d’Amorim, “Shake it! detecting flaky tests
caused by concurrency with shaker,” in ICSME, 2020, pp. 301-311.

[20] S. Steenbuck and G. Fraser, “Generating unit tests for concurrent
classes,” in /CST. IEEE Computer Society, 2013, pp. 144-153.

	Introduction
	Overview of Prut4j
	Foundations, Workflow, and Scope
	Motivating Example, Revisited

	Design and Implementation Details
	Core Components
	Key Challenges

	Evaluation
	Expressiveness (Case Studies)
	Efficiency (Benchmarks)

	Conclusion
	References

