
Harvesting Production GraphQL Queries
to Detect Schema Faults

Louise Zetterlund†, Deepika Tiwari*, Martin Monperrus*, and Benoit Baudry*

†Redeye AB, Sweden
*KTH Royal Institute of Technology, Sweden

Abstract—GraphQL is a new paradigm to design web APIs.
Despite its growing popularity, there are few techniques to verify
the implementation of a GraphQL API. We present a new
testing approach based on GraphQL queries that are logged
while users interact with an application in production. Our core
motivation is that production queries capture real usages of the
application, and are known to trigger behavior that may not be
tested by developers. For each logged query, a test is generated
to assert the validity of the GraphQL response with respect
to the schema. We implement our approach in a tool called
AutoGraphQL, and evaluate it on two real-world case studies that
are diverse in their domain and technology stack: an open-source
e-commerce application implemented in Python called Saleor, and
an industrial case study which is a PHP-based finance website
called Frontapp. AutoGraphQL successfully generates test cases
for the two applications. The generated tests cover 26.9% of the
Saleor schema, including parts of the API not exercised by the
original test suite, as well as 48.7% of the Frontapp schema,
detecting 8 schema faults, thanks to production queries.

Index Terms—GraphQL, production monitoring, automated
test generation, test oracle, API testing, schema

I. INTRODUCTION

Web APIs consist of programmable endpoints to interact
with software systems. They can be implemented in different
ways, including the well known REST [1] and SOAP [2],
[3] paradigms. GraphQL is a new way to define web APIs
invented by Facebook in 2015 [4]. A GraphQL API implemen-
tation consists of a schema that specifies the data structures
and operations exposed by the API, as well as a server that
implements the logic to handle API requests, resolving them
into actual data. The clients of a GraphQL API, typically a
browser or an app, send requests that specify the data they
want to retrieve. The performance [5], [6] and flexibility [7]
of GraphQL have contributed to its rapid adoption in the
industry [8], [9].

While GraphQL offers significant benefits to develop web
APIs, correctly implementing it remains a challenge. Specif-
ically, a bug in the server may cause a GraphQL query to
be resolved into data that is incompatible with the properties
defined in the schema. We designate this kind of fault as
a schema fault. Let us consider the example of Saleor, an
e-commerce platform that exposes a GraphQL API. A user
reported an error when trying to create a new product without
assigning it to a category1. This issue was identified as a

1https://github.com/mirumee/saleor/issues/5589

schema fault and fixed by the maintainers, because the API
implementation contradicted the Saleor GraphQL schema.
Schema faults are the focus of testing techniques for other
systems specified using schemas, such as databases [10],
[11], or OpenAPI REST APIs [12]–[14]. However, there has
been little work to detect schema faults in GraphQL APIs.
Only one approach, by Karlsson et al. [15] targets them,
by generating GraphQL queries randomly and using them as
inputs in property-based tests with the goal of exercising more
of the GraphQL schema.

In this work, we propose to harvest GraphQL queries from
an application in production, and use them as inputs for test
generation. Our motivation is that test cases generated from
production GraphQL queries assess the behavior of the appli-
cation with respect to real API usages. Moreover, it has been
shown that production data can lead to valuable test cases that
invoke behavior untested by developer-written tests [16], [17].
We implement our technique in a tool called AutoGraphQL,
which operates in two phases. The first phase involves moni-
toring an application in production and logging every unique
GraphQL query. In the second phase, AutoGraphQL generates
one test for each query logged in the monitoring phase. Each
generated test includes the required oracles to assess whether
the format of the response is consistent with the GraphQL
schema.

We evaluate AutoGraphQL on one open-source and one
closed-source case study. Our open-source case study is an
e-commerce platform called Saleor. Our closed-source indus-
trial case study, Frontapp, is the primary website of Redeye
AB, an equity research and investment banking company
based in Stockholm, Sweden. AutoGraphQL harvests 334 and
24, 049 unique GraphQL queries in production, for Saleor and
Frontapp, respectively. Our tool successfully generates one test
for each logged query. The generated tests exercise 26.9% of
the GraphQL schema in Saleor, including parts of the schema
not exercised by the original, developer-written test suite. The
tests generated by AutoGraphQL for Frontapp exercise 48.7%
of the schema and detect 8 schema faults.

Our evaluation of AutoGraphQL with two diverse case
studies demonstrates that it can successfully generate tests
with GraphQL queries harvested from production. The gen-
erated tests complement developer-written tests by triggering
untested behavior, and are able to discover schema faults in
the implementation of the GraphQL API. To sum up, our

ar
X

iv
:2

11
2.

08
26

7v
2

 [
cs

.S
E

]
 1

7
D

ec
 2

02
1

https://github.com/mirumee/saleor/issues/5589

contributions are as follows:
• A novel technique to harvest GraphQL queries from

production and use them to generate test cases with
oracles tailored for the detection of schema faults

• The evaluation of our technique with one industrial and
one open-source case study, which demonstrates that the
generated tests trigger untested behavior, and discover
schema faults

• An open-source implementation of our methodology
in a tool called AutoGraphQL, as well as a publicly
available dataset for reproducibility at https://github.com/
castor-software/autographql/

The rest of this paper is organized as follows: section II
discusses GraphQL, section III introduces AutoGraphQL, and
section IV describes the methodology we use to evaluate it.
We present the results from this evaluation in section V,
and discuss some aspects of AutoGraphQL in section VI.
section VII includes related work and section VIII concludes
the paper.

II. BACKGROUND

This section introduces GraphQL, a specification for web
APIs, as well as its implementation.

A. GraphQL APIs

GraphQL is a new paradigm to build web APIs. A GraphQL
API consists of one schema that defines the data structures
that are available through the API, and a set of requests, or
‘queries’, that can be made against the schema. The implemen-
tation of the API is composed of so-called ‘resolvers’ which
map the information requested by the queries to actual data
from the underlying database or storage of the application.

GraphQL requests are typically triggered from clients such
as the frontend of an application, and are handled by a server
at the backend. Unlike REST APIs [7], [18], the requests are
not centered around resources [1]. Instead, they are struc-
tured around operations. There are two types of requests in
GraphQL: queries and mutations, defined as follows. A request
that only fetches data, such as the details of a product on
a website, is called a Query; a request that changes, or
“mutates” data, such as adding or updating a shipping address,
is called a Mutation. Both kinds of requests are sent to a
GraphQL endpoint exposed by the application backend, where
they are resolved. The corresponding responses are sent back
to the frontend, typically as JSON.

B. GraphQL Schemas

A GraphQL schema serves as a contract between the
frontend and the backend of the application [19]. A schema is
specified with the strongly-typed Schema Definition Language
(SDL), which is defined in the GraphQL specification2. It
includes declarations of object, enum, interface, and union
types. The types themselves are composed of fields that define
their properties. These fields may be a scalar, such as Int,

2https://spec.graphql.org

String, or ID, other object types defined in the schema,
or an array thereof. An exclamation mark ! represents non-
nullable fields. In addition to the type declarations, the schema
also defines the Query and Mutation operations that can
be performed on them.

interface Node {
id: ID!

}

enum VideoTypeEnum {
ANIMATION
LIVE_ACTION
SCREENCAST

}

type Video implements Node {
id: ID!
title: String!
url: String!
videoType: VideoTypeEnum
teaser: Teaser

}

type Teaser {
title: String!
subTitle: String
publishedOnSite: Boolean
url: String!
duration: Float

}

type Query {
video(id: ID!): Video
teasers(first: Int!):

[Teaser]
}

Listing 1: An excerpt from the GraphQL schema of Frontapp

Listing 1 is an excerpt from the GraphQL schema of
Frontapp, the primary website of a company called Redeye
AB3, employing one of the authors. The schema defines an
interface called Node which has a non-nullable id of
type ID. The schema also defines two object types. The
Video type represents a video published on Frontapp. It
implements Node and it has non-nullable String fields
that specify its title and its url. The field videoType
expresses the kind of a video as one of the values enlisted
in the enumeration type VideoTypeEnum. A video may
also have a teaser of type Teaser, which itself has non-
nullable String fields for its title and url, and a nullable
subTitle. A teaser also has a duration expressed as
a Float. The Boolean field publishedOnSite deter-
mines if the teaser has been published on Frontapp.
Query is a special GraphQL type that defines the entry-

points of all GraphQL queries that fetch data. This excerpt
of the Frontapp schema defines two entry-points, video and
teasers. A Video object can be fetched through a non-
nullable id argument, through the video entry-point. The
teasers entry-point returns a list of the first n Teaser-type
objects, based on the value of n provided as the non-nullable
Int argument to the variable first.

GraphQL allows the requesting entity to explicitly specify,
in a single declarative GraphQL query [20], the data or fields
required in the response. Listing 2 shows a query made against
the schema defined in Listing 1. The query is given an explicit
name, called its operation name, which is GetTeasers. This
query is generated by the interactions of end-users as they
browse through the videos published on the Frontapp website.
This interaction would trigger the teasers entry-point and
fetch a list of objects of type Teaser. The query requests for
the title, subTitle, and url of the first 2 teasers. The

3https://www.redeye.se

https://github.com/castor-software/autographql/
https://github.com/castor-software/autographql/
https://spec.graphql.org
https://www.redeye.se

query GetTeasers {
teasers(first: 2) {
title
subTitle
url
__typename

}
}

Listing 2: A production GraphQL query made against the
schema defined in Listing 1

{
"data": {
"teasers": [
{
"title": "Finance 101",
"subTitle": "The basics of finance",
"url": "https://youtu.be/dQw4w9WgXcQ",
"__typename": "Teaser"

},
{
"title": "Development 101",
"subTitle": null,
"url": "https://youtu.be/jNQXAC9IVRw",
"__typename": "Teaser"

}
]

}
}

Listing 3: The response for the query in Listing 2

meta-field __typename, wherever used in a query, specifies
the type of the object at that point in the query.

C. GraphQL Resolvers

Resolvers are functions to map each field requested in
incoming queries with actual data in the application. The re-
solvers are not written in GraphQL, they may be implemented
in any programming language supported by the underlying
GraphQL engine, including Java, JavaScript, PHP, Python, and
others4. Therefore, GraphQL API implementations can evolve
[7] while providing stable APIs.

Listing 4 shows a resolver for Frontapp, written in PHP.
The resolver fetches the first n Teaser objects, from the
teaserRepository, which is the component that interacts
with the Frontapp database. The resolver then prepares the
response, with values for all the fields requested by the query
in Listing 2 fetched from the database. The response is a list
of teaser objects with their title, subTitle, and url. We
present the response in Listing 3. It contains only the fields
explicitly requested in the query, for the first 2 teasers,
including their title, subtitle, and url, and with their
__typename being Teaser.

III. AUTOGRAPHQL

This section describes AutoGraphQL, a tool that auto-
matically generates tests for the GraphQL backend of an
application. We first discuss schema faults, which are the
targets for the tests generated by AutoGraphQL. Then, we
present an overview of AutoGraphQL, and describe the phases

4https://graphql.org/code/#language-support

1 @@ -0 +2 @@
2 public function resolveTeasers(int $first) {
3 $teasers = $this->teaserRepository->findMatching($first);
4 $data = [];
5 foreach ($teasers as $teaser) {
6 $newTeaser = new \stdClass();
7 $newTeaser->title = $teaser->getTitle();
8 $newTeaser->subTitle = $teaser->getSubTitle();
9 + if ($teaser->isPublishedOnSite()) {

10 $newTeaser->url = $teaser->getUrl();
11 + }
12 $data[] = ["teaser" => $newTeaser];
13 }
14 return (array_column($data, "teaser"));
15 }

Listing 4: A resolver that fetches a list of the first n teasers,
with a schema fault that has just been introduced

in which it operates. We conclude this section by discussing
the implementation of the tool.

A. Schema Faults

In this work, we aim at detecting faults in the implemen-
tation of the GraphQL resolvers, leading them to return data
with a format that does not conform to the schema. We call
these faults “schema faults”. They occur in GraphQL APIs
when valid queries get resolved into invalid responses, as a
result of incorrect mapping between the fields requested and
the actual data storage in the application. This response may
be sent to the client without the error being explicitly identified
as such (say HTTP 5xx or a JSON error object). Such invalid
responses basically break the interface contract between the
server and the client as specified in the schema. This kind
of fault is common, for example, a user of the e-commerce
platform Saleor reported an issue5, confirmed by a developer,
due to a schema fault.

In order to detect schema faults, AutoGraphQL automati-
cally generates test oracles, derived from the schema. These
test oracles determine that the data returned by the API
is well-formed, with respect to the schema. For example,
the Boolean field publishedOnSite for a Teaser is
defined as nullable in the schema in Listing 1. If the condition
on line 9 is introduced in the resolver presented in Listing 4,
the url of the teaser object will be resolved to null if
publishedOnSite is false or null. This contradicts the
schema which specifies that the url of a teaser cannot be
null, and is therefore a bug in the implementation of the re-
solver. This kind of fault would be detected by AutoGraphQL.

B. Overview of AutoGraphQL

AutoGraphQL generates tests that (i) exercise the GraphQL
API implementation, and (ii) assess that the data returned as
a resolution to a GraphQL query conforms to the schema.
AutoGraphQL operates in two phases, illustrated in Figure 1.
The first phase consists in monitoring the application in
production, in order to collect the queries that are performed
by users, as well as their arguments. This data collection
process is performed for a given amount of time, decided by

5https://github.com/mirumee/saleor/issues/6750

https://graphql.org/code/#language-support
https://github.com/mirumee/saleor/issues/6750

GraphQL
schema

Backend

Monitoring
Test generation

GraphQL queryProduction

Test cases

Production
query

database

Application
database

Test inputs

Query
analyzer

Test oracles

Query
interceptor

Test
generator

A
ut

oG
ra

ph
Q

L

Fig. 1: Overview of AutoGraphQL

developers. The second phase of AutoGraphQL is triggered by
developers and consists in analyzing the data that was observed
in production to turn them into test cases. AutoGraphQL
automatically extracts test inputs from the monitored data, as
well as the corresponding oracles from the GraphQL schema.
The tests generated by AutoGraphQL use a single GraphQL
query as the test input and verify the format of the response to
the query. The following two subsections discuss the details
of each phase of test generation with AutoGraphQL.

C. Monitoring in Production

Monitoring GraphQL queries in production constitutes the
first phase of AutoGraphQL, and is illustrated in the top-
half of Figure 1. AutoGraphQL’s query interceptor monitors
the requests sent from the frontend of an application to
its backend. It intercepts incoming GraphQL query requests,
and the arguments with which they were invoked, and logs
them into a database. It also aggregates metadata about these
queries, including the number of times a specific query request
was invoked or when it was last invoked. The output from
this phase is a database of GraphQL queries logged from
production.

Listing 5 presents an example of a logged query. The keys
query and variables represent the actual query executed
as well as the argument passed to it, respectively. In this
case, the query is the same as in Listing 2, and the value
of 2 is passed as argument for first, to fetch the first
2 teasers. The entry also includes the operation name
for the query (operation_name), which is GetTeasers.
In order to gather statistics about the queries triggered in
production, we also save timestamps for when they are first
logged (created_at) and when they are logged most re-
cently (updated_at). Moreover, during our experiments,
we observe that a query may frequently be invoked with

{
"query":
"query GetTeasers($first: Int!) {
teasers(first: $first) {
title
subTitle
url
__typename

}
}",
"variables": {
"first": 2

},
"operation_name": "GetTeasers",
"created_at": "2021-03-03 08:57:46",
"updated_at": "2021-05-05 16:55:19",
"times_called": 301016

}

Listing 5: A logged GraphQL query from production

the same arguments. We create one entry for each unique
combination of query and arguments, and record the frequency
of its occurrence with the times_called field. The value of
301, 016 means that this combination of query and argument
occurred as many times, in production, during the course of
our experiment.

D. Test Generation

The second phase of AutoGraphQL, presented in the
bottom-half of Figure 1, is triggered by developers whenever
they want to generate tests after a period of monitoring. It
involves automatically fetching the GraphQL schema of the
application from the configured GraphQL endpoint, and using
this schema in conjunction with the queries logged in the
monitoring phase, in order to produce the inputs and oracles
for the generated tests. The output from this phase is the test
suite generated from the logged production queries. We now
discuss the two components that are responsible for analyzing
the logged queries and using them to generate tests.

1) Query Analyzer: The goal of the query analyzer is to
use the GraphQL schema of an application and the queries
logged in the query database to generate test inputs and
their corresponding oracles. Given a logged GraphQL query,
such as the one in Listing 5, the analyzer extracts the test
input, which is the combination of query and its associated
variables, as well as the operation_name given to
the query. Next, the query analyzer produces two sets of
oracles. We summarize them in Table I, together with their
implementation as assertions in the PHPUnit framework6.
The first set of oracles verify the format of the response,
specifically i) its HTTP status code, ii) the validity of the
JSON text, and iii) that it does not contain a JSON error object
because of an invalid request. The second set of oracles are
specific to the schema and i) verify that the response contains
all the data requested by the query, and ii) map each object
and field requested by the query with the properties defined for
it in the schema. These properties include its type, its kind,
i.e., whether it is an object, enum, list, or interface, and its
nullability.

6https://phpunit.de

https://phpunit.de

TABLE I: The oracles generated by AutoGraphQL depending on the response

CATEGORY ORACLE IMPLEMENTATION AS PHPUnit ASSERTION

Format
HTTP status code of the response is 200 assertEquals(200, ...)
Response to query is well-formed, valid JSON json_decode doesn’t throw exceptions; assertIsArray(...)
Response does not contain a JSON error object assertArrayNotHasKey(’errors’, ...)

Schema

Response contains all requested fields assertArrayHasKey(...)
Correct kind of each element in response assertIsArray(...) assertContains(...) assertEquals(...)
Correct type of each element in response assertIsString(...) assertIsBool(...) assertIsNumeric(...)

assertIsInt(...) assertEquals(...)
Nullability-contract of each field in response assertNotNull(...)

For example, a subset of the oracles produced for the
query in Listing 5 is that the response would contain a
field called title (assertArrayHasKey(’title’,
...)), which is a non-null (assertNotNull(...))
String type object (assertIsString(...)).

2) Test Generator: The test generator uses the test input
and test oracles produced by the query analyzer in order to
generate a valid and executable test case that verifies the
implementation of the GraphQL API for the application. The
output of the test generator is one test case for each logged
query. By default, AutoGraphQL generates tests in PHP, using
the PHPUnit framework as test driver.

Listing 6 shows the test generated for the query in Listing 5.
The test fetches the response to the query (lines 10 to 23) by
sending it as an HTTP request to the GraphQL endpoint of
an application (lines 25, 26). After verifying its HTTP status
code (line 28), the test decodes the response and verifies that
it is well-formed JSON (lines 30, 31). Next, the assertion
on line 33 ensures that the response does not contain an
error due to an invalid query, due to the query trying to
fetch data that does not exist, or an exception being raised
during query resolution. Lines 36 to 51 contain the assertions
produced by the test generator using the oracles derived from
the schema. We use the assertion available in PHPUnit to
check the validity of collections: assertIsArray verifies
that teasers is a list. Next, for each of the items within
teasers, assertEquals verifies that its __typename is
Teaser. assertArrayHasKey assertions verify that each
of the teaser objects in the list has a title, a subTitle,
and a url, as requested by the query. The assertions for the
title and the url of a Teaser are assertNotNull
since they are defined as non-nullable, per the schema in List-
ing 2. Moreover, assertIsString verifies that the title
and url, and if present, the subTitle of a teaser are all
strings. When this test is executed, assuming the server returns
the response shown in Listing 3, 22 assertions are evaluated
in total. A failure in any of the assertions in a generated test
causes the test to fail, which could be indicative of a schema
fault. On the other hand, a generated test that passes can serve
as a regression test.

E. Challenges

We now discuss the challenges of test generation with
AutoGraphQL.

Query Interception: In order for the query interceptor of
AutoGraphQL to monitor and log incoming GraphQL queries,
it must be tailored to fit the technology stack of an application.
For example, the configuration of the query interceptor used by
an application with a backend implemented in Python would
differ from the one implemented in Ruby. This is a potentially
significant engineering effort.

Testing Database: The execution of the generated test suite
requires a running application server with a testing database.
This is typically provided by a staging environment. The state
of the staging database may have an impact on the execution of
the generated tests. Thus an important engineering challenge
is to be able to re-initialize a clean staging database before
running the AutoGraphQL tests.

F. Implementation

AutoGraphQL is implemented in Python. The query an-
alyzer uses the GraphQLParser of graphql-py7 to map the
elements of a query with the schema and produce test oracles.
By default, AutoGraphQL populates a template with the test
input and oracles in order to produce tests in the PHPUnit
framework. This allows the properties of each node to be
expressed as PHPUnit assertions, which serve as oracles in
the generated test. Jinja28 is the templating language used
to render the assertions into PHPUnit test files. We choose
PHPUnit for the generated tests, since PHP is a popular
server-side language for the implementation of web APIs
[21]. AutoGraphQL can generate tests for applications that
do not use PHP, or even be extended to support any testing
framework, since the generated tests only interact with the
HTTP GraphQL endpoint of the application.

IV. EVALUATION METHODOLOGY

This section describes our two real-world case studies,
Saleor and Frontapp. We also present our experimental setup,
including the configuration of AutoGraphQL with the two case
studies, their production workloads, as well as the metrics used
to evaluate the effectiveness of AutoGraphQL in generating
tests for them.

7https://github.com/ivelum/graphql-py
8https://jinja.palletsprojects.com/en/2.11.x/

https://github.com/ivelum/graphql-py
https://jinja.palletsprojects.com/en/2.11.x/

1 <?php declare(strict_types=1);

2 namespace GraphQL;
3 use PHPUnit\Framework\TestCase;
4 use Symfony\Bundle\FrameworkBundle\Test\WebTestCase;
5 use Symfony\Component\HttpFoundation\Request;

6 class GetTeasersTest extends WebTestCase {
7 public function testGraphQL() {
8 $client = static::createClient();

9 /* Use the details from the logged query */
10 $query = <<<’JSON’
11 {
12 "query": "query GetTeasers($first: Int!) {
13 teasers(first: $first) {
14 title
15 subTitle
16 url
17 __typename
18 }
19 }",
20 "variables": { "first": 2 },
21 "operationName": "GetTeasers"
22 }
23 JSON;

24 /* Make an HTTP request with the query */
25 $client->request(’POST’, ’/graphql/’, [], [],

["CONTENT_TYPE" => ’application/json’], $query);
26 $response = $client->getResponse();

27 /* Verify the HTTP status code of the response */
28 $this->assertEquals(200, $response->getStatusCode());

29 /* Decode the response and verify that it contains valid
JSON */

30 $responseArray = json_decode($response->getContent(),
true);

31 $this->assertIsArray($responseArray, ’Response is not
valid JSON’);

32 /* Verify that the response does not have errors */
33 $this->assertArrayNotHasKey(’errors’, $responseArray,

’Response contains errors’);
34 $responseContent = $responseArray[’data’];

35 /* Verify the properties of the response payload per the
schema */

36 $this->assertArrayHasKey(’teasers’, $responseContent);
37 if ($responseContent[’teasers’]) {
38 $this->assertIsArray($responseContent[’teasers’]);
39 for($i = 0; $i < count($responseContent[’teasers’]);

$i++) {
40 if ($responseContent[’teasers’][$i]) {
41 $this->assertEquals(’Teaser’ ,

$responseContent[’teasers’][$i][’__typename’]);
42 $this->assertArrayHasKey(’title’,

$responseContent[’teasers’][$i]);
43 $this->assertNotNull(

$responseContent[’teasers’][$i][’title’]);
44 $this->assertIsString(

$responseContent[’teasers’][$i][’title’]);
45 $this->assertArrayHasKey(’subTitle’,

$responseContent[’teasers’][$i]);
46 if ($responseContent[’teasers’][$i][’subTitle’]) {
47 $this->assertIsString(

$responseContent[’teasers’][$i][’subTitle’]);
48 }
49 $this->assertArrayHasKey(’url’,

$responseContent[’teasers’][$i]);
50 $this->assertNotNull(

$responseContent[’teasers’][$i][’url’]);
51 $this->assertIsString(

$responseContent[’teasers’][$i][’url’]);
52 }
53 }
54 }
55 }
56 }

Listing 6: A PHPUnit test generated using the logged query
in Listing 5, based on the schema in Listing 1

TABLE II: Case studies for the evaluation of AutoGraphQL

PROJECT LOC COMMITS LANGUAGE DOMAIN

Saleor 691K 17.4K Python E-commerce
Frontapp 154K 7K PHP Finance

A. Case Studies

We use one open-source and one industrial project as case
studies in order to evaluate the effectiveness of AutoGraphQL.
We describe these projects and some relevant metrics below.

1) Saleor: Saleor is a widely-used, open-source e-
commerce platform, maintained by more than 170 contrib-
utors. The project has more than 13K stars on GitHub. It is
a well-documented and mature project, that can be deployed
with Docker. Saleor is crafted with modern technologies, such
as Django9, PostgreSQL, Redis, React, and TypeScript. It
offers both a storefront for customers to browse through a
catalog of products and make purchases, as well as a dashboard
for administrators to manage products, users, and orders.
Incoming requests from both of these frontends are handled by
a GraphQL server implemented as part of the core component
of Saleor. The test suite of Saleor contains automated tests
for both the backend and the two frontend components. We
choose Saleor as a case study in order to have reproducible
experiments with an open-source project, and to demonstrate
the versatility of AutoGraphQL in generating tests that target
the GraphQL implementation of an application, regardless of
the underlying backend technology.

Table II summarizes the key characteristics of the case
studies: the number of lines of code and of commits, the
language implementing the GraphQL API and the domain
of the case study. We use the latest stable release of Saleor,
version 2.11, for our experiments. As mentioned in the table,
this version contains 691K lines of code and the backend is
in Python.

2) Frontapp: Frontapp is the primary website of our in-
dustrial partner, Redeye AB. Frontapp contains articles, fi-
nancial analyses, tools, and video streams of events hosted
by Redeye. The site is implemented in Symfony10, a web
application framework for PHP projects, and in JavaScript.
Its GraphQL API is connected to multiple data sources and
receives approximately 64K requests daily. Frontapp has been
in production for more than 7 years. There is no automated
test for the application, and it is tested manually by the QA
team before major versions are released.

As presented in Table II, more than 20 Redeye developers
have contributed about 7K commits to Frontapp. The applica-
tion contains nearly 154K lines of code (LOC), as measured
on February 09, 2021, and the GraphQL API is implemented
in PHP.

9https://www.djangoproject.com/
10https://symfony.com/

https://www.djangoproject.com/
https://symfony.com/

B. Experiments
This section describes the experimental protocol followed

and the metrics used to evaluate AutoGraphQL with Frontapp
and Saleor.

1) Query Interceptor Configuration: As described in sub-
section III-E, the query interceptor of AutoGraphQL is specific
to a given software stack. In order to conduct experiments with
Saleor, we extend it with an agent, implemented as a GraphQL
middleware [22]. This agent allows the query interceptor of
AutoGraphQL to access queries that arrive at the GraphQL
endpoint of Saleor, /graphql/, and log them into the query
database. For our experiments with Frontapp, we configure a
PHP event listener that triggers the query interceptor, which
then logs all queries arriving on the GraphQL endpoint, which
is also /graphql/.

2) Production Workloads: AutoGraphQL generates tests
for queries that are triggered by user actions as part of
interactions in production, during the monitoring phase of
AutoGraphQL. We define such a production workload for each
case study, as follows.

For our experiments with Saleor, we deploy the e-commerce
application in a local server in our laboratory. In order to
produce a realistic production workload, one of the authors
interacted with the components on the frontend to perform
typical operations related to e-commerce websites, such as
browsing through the catalog of products, searching for spe-
cific products from the search bar, viewing the web-page
for a product, and making orders. Additionally, the author
performed administrative actions such as fetching the list of
registered customers and orders, or searching for a specific
customer or order. The experiment was carried out over the
duration of nearly 3 hours.

The production workload for Frontapp consists of the in-
teractions of actual end-users with the system. We do not ask
the end-users to perform any specific operations, and simply
log the queries that are generated as they browse through the
website, reading articles or using its search feature, etc. We
log these queries for a period of 33 days.

3) Metrics for Evaluation: In order to gauge the effective-
ness of the tests generated by AutoGraphQL, we adopt the
concept of schema coverage introduced by Karlsson et al.
[15]. Compared to traditional code coverage, schema coverage
is a more relevant metric to assess the tests generated by
AutoGraphQL since they are intended to directly target the
GraphQL schema.

Schema Coverage: We consider a GraphQL schema to be
composed of a set of tuples of the form {Objecto, Fieldn}, by
combining all Object o, defined as a type or an interface
in the schema, with each of its n fields. A query is said to reach
a tuple {o, f} if it requests for a field f defined in the object o.
This is determined statically by analyzing the Abstract Syntax
Tree of the query. The schema coverage (SCHEMA COV)
of a test, or the test suite, generated by AutoGraphQL is
then defined as the number of tuples in the schema that are
reached by the query, or set of queries, invoked by the test(s)
(COVERED TUPLES), divided by the total number of tuples

in the schema (SCHEMA TUPLES). This is presented in
Equation 1.

SCHEMA COV =
COVERED TUPLES
SCHEMA TUPLES

(1)

A schema coverage of 0% means that the test suite of
a project does not invoke any queries that cover a tuple in
the schema. On the other hand, a schema coverage of 100%
would imply that all the tuples in the schema are covered
by the test suite. For example, the query in Listing 2 covers
4 tuples, {Query, teasers}, {Teaser, title}, {Teaser, subTitle},
and {Teaser, url}, of the 13 tuples of the schema in Listing 1.
The schema coverage of the corresponding test in Listing 6 is
therefore 30.8%.

Metrics: We collect and report the following metrics for
Frontapp and Saleor, based on their schema, logged production
queries, test generation, and test execution:

1 TYPES is the number of types defined in the schema.
2 ENTRY POINTS is the number of entry-points defined

in the Query type of the schema.
3 UNIQUE QUERIES is the number of unique combina-

tions of queries and arguments logged during the exper-
iment, and consequently, the number of tests generated.

4 ASSERTIONS EVALUATED is the total number of as-
sertions evaluated on executing the generated tests.

5 PASSING is the number of generated tests that pass.
6 FAILING is the number of generated tests that do not

pass.
7 SCHEMA FAULTS is the number of bugs found by the

generated tests.
8 SCHEMA TUPLES is the number of tuples obtained

from the schema.
9 COVERED TUPLES is the number of tuples of the

schema reached by the generated tests.
10 SCHEMA COV GENERATED is the schema coverage

achieved with the test suite generated by AutoGraphQL,
per Equation 1.

All metrics are integer quantities, except for
SCHEMA COV GENERATED which is expressed as a
percentage.

V. EVALUATION RESULTS

This section presents the results obtained during our exper-
iments with the two case studies. We summarize the results
for all metrics introduced in subsubsection IV-B3 in Table III.

A. Case Study 1: Saleor

As presented in Table III, the GraphQL schema of Sa-
leor defines 460 TYPES and 69 query ENTRY POINTS.
Based on the production workload defined in subsubsec-
tion IV-B2, AutoGraphQL logs 334 UNIQUE QUERIES,
and generates one test for each of them. We successfully
execute all of these tests. The generated test suite triggers
43 of the 69 query entry-points in the schema. These tests
cover 506 tuples (COVERED TUPLES) out of the 1884

TABLE III: Results from the evaluation of AutoGraphQL on
the two case studies

Metric Saleor Frontapp

1 TYPES 460 92

2 ENTRY POINTS 69 23

3 UNIQUE QUERIES 334 24,049

4 ASSERTIONS EVALUATED 88,668 8,727,519

5 PASSING 334 23,892

6 FAILING 0 157

7 SCHEMA FAULTS 0 8

8 SCHEMA TUPLES 1884 875

9 COVERED TUPLES 506 426

10 SCHEMA COV GENERATED 26.9% 48.7%

SCHEMA TUPLES in Saleor. This results in a value of 26.9%
for SCHEMA COV GENERATED.

The execution of the 334 test cases triggers the evaluation of
88, 668 assertions (ASSERTIONS EVALUATED). The differ-
ence between the number of tests and the number of assertions
evaluated within the tests is because some assertions are made
inside loops to verify the properties of elements that are lists,
as illustrated on line 39 of Listing 6. Each of the 88, 668
assertions verifies one expected property about the returned
data, per the GraphQL schema. None of the 88, 668 assertion
evaluations fail, meaning that the generated test cases based
on our selected production workload, do not reveal a schema
fault in version 2.11 of Saleor’s GraphQL resolvers. This is
to be expected given the popularity and maturity of Saleor.

Saleor has a solid test suite written by the developers. Now
we want to assess the complementarity of the original tests
and the test cases generated by AutoGraphQL. In particular,
we consider two metrics: SCHEMA COV ORIGINAL is the
schema coverage achieved with the GraphQL requests trig-
gered by the original test suite. DISTINCT TUPLES is the
number of schema tuples not covered by the original test
suite but covered by the test suite generated by AutoGraphQL.
A non-zero value for DISTINCT TUPLES would imply that
AutoGraphQL is able to generate valuable new tests.

The original test suite of Saleor includes 5405 test cases,
which trigger 2340 requests, of which 1227 are queries
and 1113 are mutations. Table IV shows the number of
tuples involved in those tests. This original test suite covers
1429 of the 1884 tuples, resulting in a value of 75.8% for
SCHEMA COV ORIGINAL. The AutoGraphQL test suite
covers 506 tuples, including 483 tuples covered by the original
as well as the generated test suite. Most importantly, the tests
generated by AutoGraphQL using production queries cover
23 DISTINCT TUPLES in the Saleor schema that are never
covered by the original test suite, including one query entry-
point. This confirms the findings of Wang et al. [17] and

TABLE IV: Coverage of Saleor schema tuples with original
and generated tests

COVERED TUPLES

Original test suite 1429 / 1884
AutoGraphQL-generated test suite 506 / 1884
Intersection of AutoGraphQL and original test
suites

483 / 1884

Tuples only covered by AutoGraphQL tests
(DISTINCT TUPLES)

23 / 1884

Tiwari et al. [16] that in-house tests can miss behavior that is
exercised in production. These unique tuples covered by the
generated tests complement the existing test cases, and the
generated tests would contribute to the prevention of regression
bugs in the resolvers that handle these tuples. We also note
that 432 of the 1884 tuples in the schema are covered neither
by the original tests, nor by the generated tests, showing that
comprehensive schema testing is hard. We will discuss the
possible reasons why parts of the schema are not covered by
the generated tests in more detail in section VI.

Highlight from the Saleor experiment

With the 334 GraphQL queries harvested during our exper-
iments with Saleor, AutoGraphQL generates 334 test cases.
These tests cover 26.9% of the schema, including 23 tuples
in the schema that have not been covered by the developers
in the original test suite. This reveals that the AutoGraphQL
tests complement the original test suite with respect to the
capability of detecting schema faults in GraphQL resolvers.

B. Case Study 2: Frontapp

From Table III, we see that the schema of Frontapp defines
92 TYPES and 23 query ENTRY POINTS. The Frontapp
schema does not define Mutation operations. The produc-
tion workload of Frontapp, described in subsubsection IV-B2,
observed over a monitoring period of 33 days, results in Auto-
GraphQL harvesting and storing 24, 049 UNIQUE QUERIES.
The query most frequently invoked during this period was
executed 301, 016 times and is presented in Listing 5. Us-
ing the logged queries, AutoGraphQL generates 24, 049 PH-
PUnit tests, all of which are successfully executed. Frontapp
has 875 SCHEMA TUPLES of which 426 are covered by
the generated tests (COVERED TUPLES), resulting in a
SCHEMA COV GENERATED of 48.7%. The generated tests
trigger 19 of the 23 entry-points in the schema. The number
of ASSERTIONS EVALUATED on the execution of the gen-
erated tests is 8, 727, 519.

Of the 24, 049 generated tests, 157 fail. The developers at
Redeye confirmed that these failures are caused by 8 distinct
SCHEMA FAULTS in Frontapp. The difference between the
number of failures and the number of schema faults is the
result of some test cases triggering the same query entry-
points, and therefore, the same bugs. These schema faults are
caused due to incorrect assumptions about the properties of

1 @@ -0 +3 @@
2 + if (is_array($source[’authorIds’]) &&
3 + count($source[’authorIds’]) > 0) {
4 if (id::isValid($source[’authorIds’][0])) {
5 $firstAuthor = $this->personRepository->findById(
6 id::fromString($source[’authorIds’][0])
7);
8 if ($firstAuthor && $firstAuthor->getTitle()) {
9 $authorTitle = $firstAuthor->getTitle();

10 }
11 }
12 + }

Listing 7: A schema fault discovered in Frontapp, and its
resolution

objects, causing them to contradict the properties defined in
the schema. For example, a nullable variable was sent to a
resolver that could not handle a null input, or an element was
collected in a non-nullable array without being checked for
null first, or a resolver returned a different type than was stated
in the schema.

Let us now look at an example of a schema fault found by a
generated test. Listing 7 shows a bug located within a resolver
defined in Frontapp. This bug was caused because the field
authorIds, defined as non-nullable in the Frontapp schema,
actually had the value of null, causing an exception to be
raised (line 4). It was discovered due to a failing assertion in
a test generated by AutoGraphQL, specifically the assertion
that checks if the response has an errors field. The bug
was consequently fixed by Frontapp developers by adding the
highlighted check (lines 1 and 2) to ensure that authorIds
is indeed not null before performing further computations on
it.

As mentioned in subsection IV-A, we note that Frontapp
does not have automated tests. Thus, the developers at Redeye
proved to be interested in the AutoGraphQL test cases, which
complement their manual QA activities. Furthermore, it is a
possibility to push the AutoGraphQL tests in a repository with
continuous integration, and to run them regularly to identify
regressions or new schema faults as the application continues
to evolve.

Highlight from the Frontapp experiment

AutoGraphQL harvests 24, 049 GraphQL queries that are
triggered due to interactions of Frontapp end-users in pro-
duction, and generates as many tests. The generated test
suite achieves a schema coverage of 48.7% and discovers
8 schema faults. Those faults have subsequently been fixed
by the developers. This validates the capability of Auto-
GraphQL to automatically generate valuable tests that detect
faults, from GraphQL queries observed in production.

VI. DISCUSSION

We now reflect on some interesting aspects of Auto-
GraphQL.

Test Minimization and Prioritization: Test generation with
AutoGraphQL is systematic in that each unique query har-
vested from production is used as input for the generation of

one test. Thus, the number of harvested queries determines the
size of the generated test suite, and consequently its execution
time. For example, the 334 generated tests for Saleor are
executed in 34 seconds, while the 24, 049 tests generated for
Frontapp take 114 hours to execute. In situations where the
execution time is critical, such as in a continuous integration
pipeline, it would be useful to minimize the generated test
suite, as well as prioritize the execution of the tests [23],
[24]. As described in subsection III-C, the query interceptor of
AutoGraphQL aggregates meta-data about each query logged
during the monitoring phase, including the number of times it
was observed, as well as timestamps for when it was first and
last invoked. This information may be used by developers to
filter a subset of queries to use as inputs for test generation.
For example, a developer may generate tests using the queries
triggered at least 500 times within the last 3 days, and execute
these tests in a prioritized fashion, based on criteria such as
their schema coverage.

Mutation Requests: State of the art techniques for GraphQL,
including cost analysis [5], [25], formal analysis [26], and
GraphQL test generation [27] only support query requests,
with the exception of [15] which provides support for the
generation of mutation requests. Outside the academic lit-
erature, Schemathesis is an open-source tool that uses the
GraphQL schema to generate property-based tests, it also only
supports query requests11. However, we note that mutation
operations are an equally integral part of GraphQL APIs. For
example, the Saleor schema defines 222 mutation entry-points.
Thus, there is a clear need for research on mutation requests.
This is an interesting and challenging research endeavour
because mutation requests have side-effects on the application
database, which may result on breaking tests depending on
test ordering and breakage of various assumptions on the
application state.

GraphQL Schema Evolution and Test Generation: A
GraphQL schema and the implementation of the corresponding
resolvers may evolve at a different pace. Some parts of the
schema may correspond to functionality that is slated to be
deprecated, such as the field in a type that is to be replaced by
another field. The schema might also specify elements that are
yet to be implemented as part of a future release. For example,
the developers at Redeye confirm that the Frontapp schema
specifies more elements than those which can be handled by
the current resolvers. This is due to the fact that Redeye
began the process of migrating Frontapp from a REST API
to a GraphQL API in 2019 [8]. This impacts the schema
coverage achieved with the tests generated by AutoGraphQL,
since there are tuples in the schema that are unreachable by
design. For the same reason, the AutoGraphQL tests may
become outdated and even break when the schema evolves.
Therefore, an important direction for research in automated
test generation for GraphQL is to understand how the tests may
be evolved to address the schema evolution [28]. One approach
to evolve these tests could involve repairing the generated test

11https://schemathesis.readthedocs.io/en/stable/graphql.html

https://schemathesis.readthedocs.io/en/stable/graphql.html

suite [29].

VII. RELATED WORK

This section discusses closely related work in the areas of
test generation for web APIs, for data schemas, and based on
production.

A. Test Generation for Web APIs

Currently, only two studies propose automated test gener-
ation strategies for GraphQL APIs. Vargas et al. [27] mutate
GraphQL queries in existing tests in order to amplify them
[30]. Karlsson et al. [15] produce randomly-generated queries
and arguments based on the GraphQL schema, and use them
as inputs in property-based tests. AutoGraphQL differs from
these approaches because the inputs for test generation are not
existing test queries or randomly generated ones, but queries
that are harvested from production.

Several studies propose black-box test generation ap-
proaches for REST APIs [12]. In addition to the HTTP
status code of the response, the oracles are often derived
from OpenAPI/Swagger specifications describing the API. The
parameters used as test inputs may be derived from the API
specification [14], or produced randomly [13], [31]. Recently,
deep learning models have been proposed to determine the
validity of these inputs [32]. The generated tests can assess
the robustness of the API through invalid requests [33],
detect regressions across API versions [34], verify the data
dependencies among sequences of requests [35], or verify the
constraints imposed on their parameters [36]. Metamorphic
relations among requests may also serve as the oracle [37].
EvoMaster [38] is a search-based, white-box approach to gen-
erate tests for RESTful web services. The technique is based
on an evolutionary algorithm which rewards code coverage
and fault-finding ability, the latter being determined by HTTP
status codes. AutoGraphQL is a black-box approach, that is
fundamentally different from these test generation techniques
because it is tailored to GraphQL APIs, and uses GraphQL
schemas and requests monitored in production.

B. Test Generation for Data Schemas

Traditional databases are also defined with a schema, as
is GraphQL. Several studies use database schemas in the
context of testing. For example, Khalek and Khurshid [39]
use SQL schemas to generate SQL queries, test data, and
oracles verifying the result of query execution, with the goal
of testing database engines. McMinn et al. [40] and Alsharif et
al. [10] propose search-based approaches that use the schema
to generate test data for covering database integrity constraints.
QAGen by Binnig et al. [41] generates meaningful test inputs
based on the schema. XML schemas have also been used to
produce XML instances automatically, which may be used
as inputs for testing web services [42]–[45]. AutoGraphQL
relates to this domain, but in a new technological context, that
of web APIs and GraphQL: it uses the GraphQL schema of
an application to produce oracles in the generated tests that
verify the format of the GraphQL responses.

C. Test Generation Based on Production

A few studies propose test generation strategies using
information obtained from production. For example, Oracle
Database Replay [46] and Snowtrail [47] capture production
queries made against databases, and replay them in order to
detect regressions. Marchetto et al. [48] use event logs to
generate Selenium tests for web applications. Hammoudi et al.
[29] incrementally repair tests for web applications generated
from record-replay tools. Tiwari et al. [16] monitor methods
of interest in production in order to generate differential
unit tests. Thummalapenta et al. [49] use execution traces to
generate parameterized unit tests. ReCrash by Artzi et al. [50]
reproduces failures through unit tests generated from runtime
observations. AutoGraphQL is the first tool that harvests
GraphQL queries from production to use as inputs for the
generation of test cases.

VIII. CONCLUSION

GraphQL is a new way to specify web APIs. Though it
continues to gain widespread adoption, few studies propose
automated test generation strategies that target GraphQL API
implementations. This paper introduces AutoGraphQL, the
first tool that leverages production GraphQL queries to auto-
matically generate test cases. The goal of the generated tests
is to detect schema faults through oracles that verify that the
response to a query conforms with the GraphQL schema.

We present the evaluation of AutoGraphQL on one open-
source and one industrial case study, called Saleor and
Frontapp: AutoGraphQL successfully generates tests for both
projects. The tests generated for Saleor exercise 26.9% of
the schema and cover regions in the GraphQL schema that
are not covered by its original test suite. The tests generated
for Frontapp exercise 48.7% of the schema and reveal 8
distinct schema faults. These experiments demonstrate that
AutoGraphQL is capable of generating tests for untested be-
havior, as well as detecting errors that occur in the production
environment.

An important future direction for AutoGraphQL is to an-
alyze how these tests may be incorporated into a continuous
integration pipeline. This would require the generated test suite
to be minimized, and for the tests to run in a prioritized
fashion. It would also be useful to understand how these tests
may be evolved as a result of changes made to the API.

REFERENCES

[1] R. T. Fielding and R. N. Taylor, Architectural Styles and the Design
of Network-Based Software Architectures. PhD thesis, University of
California, Irvine, 2000.

[2] A. Davis and D. Zhang, “A comparative study of soap and dcom,”
Journal of Systems and Software, vol. 76, no. 2, pp. 157–169, 2005.

[3] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weer-
awarana, “Unraveling the web services web: an introduction to soap,
wsdl, and uddi,” IEEE Internet Computing, vol. 6, no. 2, pp. 86–93,
2002.

[4] L. Byron, “GraphQL: A data query language.” https://engineering.
fb.com/2015/09/14/core-data/graphql-a-data-query-language/ (accessed
2021-07-01).

https://engineering.fb.com/2015/09/14/core-data/graphql-a-data-query-language/
https://engineering.fb.com/2015/09/14/core-data/graphql-a-data-query-language/

[5] A. Cha, E. Wittern, G. Baudart, J. C. Davis, L. Mandel, and J. A.
Laredo, “A principled approach to graphql query cost analysis,” in Proc.
of the Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, p. 257–268,
2020.

[6] M. Seabra, M. F. Nazário, and G. Pinto, “Rest or graphql? a performance
comparative study,” in Proceedings of the XIII Brazilian Symposium on
Software Components, Architectures, and Reuse, pp. 123–132, 2019.

[7] G. Brito and M. T. Valente, “Rest vs graphql: A controlled experiment,”
in 2020 IEEE International Conference on Software Architecture (ICSA),
pp. 81–91, 2020.

[8] G. Brito, T. Mombach, and M. T. Valente, “Migrating to graphql: A
practical assessment,” in 2019 IEEE 26th International Conference on
Software Analysis, Evolution and Reengineering (SANER), pp. 140–150,
IEEE, 2019.

[9] S. L. Vadlamani, B. Emdon, J. Arts, and O. Baysal, “Can graphql
replace rest? a study of their efficiency and viability,” in 2021 IEEE/ACM
8th International Workshop on Software Engineering Research and
Industrial Practice (SER&IP), pp. 10–17, IEEE, 2021.

[10] A. Alsharif, G. M. Kapfhammer, and P. McMinn, “Domino: Fast and
effective test data generation for relational database schemas,” in 2018
IEEE 11th International Conference on Software Testing, Verification
and Validation (ICST), pp. 12–22, IEEE, 2018.

[11] P. McMinn, C. J. Wright, C. Kinneer, C. J. McCurdy, M. Camara, and
G. M. Kapfhammer, “Schemaanalyst: Search-based test data generation
for relational database schemas,” in 2016 IEEE International Conference
on Software Maintenance and Evolution (ICSME), pp. 586–590, IEEE,
2016.

[12] D. Corradini, A. Zampieri, M. Pasqua, and M. Ceccato, “Empirical
comparison of black-box test case generation tools for restful apis,” in
21st IEEE International Working Conference on Source Code Analysis
and Manipulation (SCAM), IEEE, 2021.

[13] S. Karlsson, A. Čaušević, and D. Sundmark, “Quickrest: Property-
based test generation of openapi-described restful apis,” in 2020 IEEE
13th International Conference on Software Testing, Validation and
Verification (ICST), pp. 131–141, IEEE, 2020.

[14] H. Ed-douibi, J. L. Cánovas Izquierdo, and J. Cabot, “Automatic
generation of test cases for rest apis: A specification-based approach,” in
2018 IEEE 22nd International Enterprise Distributed Object Computing
Conference (EDOC), pp. 181–190, 2018.

[15] S. Karlsson, A. Čaušević, and D. Sundmark, “Automatic property-based
testing of graphql apis,” in 2021 IEEE/ACM International Conference
on Automation of Software Test (AST), pp. 1–10, 2021.

[16] D. Tiwari, L. Zhang, M. Monperrus, and B. Baudry, “Production
monitoring to improve test suites,” IEEE Transactions on Reliability,
pp. 1–17, 2021.

[17] Q. Wang, Y. Brun, and A. Orso, “Behavioral execution comparison:
Are tests representative of field behavior?,” in 2017 IEEE International
Conference on Software Testing, Verification and Validation (ICST),
pp. 321–332, 2017.

[18] P. Erlandsson and J. Remes, “Performance comparison: Between
graphql, rest & soap,” Master’s thesis, University of Skövde, 2020.

[19] E. Wittern, A. Cha, J. C. Davis, G. Baudart, and L. Mandel, “An
empirical study of graphql schemas,” in International Conference on
Service-Oriented Computing, pp. 3–19, Springer, 2019.

[20] M. Cederlund, “Performance of frameworks for declarative data fetch-
ing: An evaluation of falcor and relay+ graphql,” Master’s thesis,
Kungliga Tekniska Högskolan, 2016.

[21] J. Imtiaz, M. Z. Iqbal, et al., “An automated model-based approach to
repair test suites of evolving web applications,” Journal of Systems and
Software, vol. 171, p. 110841, 2021.

[22] N. Burk, “Open Sourcing GraphQL Middleware - Library
to Simplify Your Resolvers.” https://www.prisma.io/blog/
graphql-middleware-zie3iphithxy (accessed 2021-07-13).

[23] J. Liang, S. Elbaum, and G. Rothermel, “Redefining prioritization:
continuous prioritization for continuous integration,” in Proceedings of
the 40th International Conference on Software Engineering, pp. 688–
698, 2018.

[24] J. A. P. Lima and S. R. Vergilio, “Test case prioritization in continuous
integration environments: A systematic mapping study,” Information and
Software Technology, vol. 121, p. 106268, 2020.

[25] G. Mavroudeas, G. Baudart, A. Cha, M. Hirzel, J. A. Laredo,
M. Magdon-Ismail, L. Mandel, and E. Wittern, “Learning graphql query
costs (extended version),” arXiv preprint arXiv:2108.11139, 2021.

[26] O. Hartig and J. Pérez, “Semantics and complexity of graphql,” in
Proceedings of the 2018 World Wide Web Conference, pp. 1155–1164,
2018.

[27] D. M. Vargas, A. F. Blanco, A. C. Vidaurre, J. P. S. Alcocer, M. M.
Torres, A. Bergel, and S. Ducasse, “Deviation testing: A test case
generation technique for graphql apis,” in 11th International Workshop
on Smalltalk Technologies (IWST), pp. 1–9, 2018.

[28] A. Zaidman, B. Van Rompaey, S. Demeyer, and A. Van Deursen,
“Mining software repositories to study co-evolution of production &
test code,” in 2008 1st international conference on software testing,
verification, and validation, pp. 220–229, IEEE, 2008.

[29] M. Hammoudi, G. Rothermel, and A. Stocco, “Waterfall: An incremental
approach for repairing record-replay tests of web applications,” in
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, pp. 751–762, 2016.

[30] B. Danglot, O. Vera-Perez, Z. Yu, A. Zaidman, M. Monperrus, and
B. Baudry, “A snowballing literature study on test amplification,” Jour-
nal of Systems and Software, vol. 157, p. 110398, 2019.

[31] V. Atlidakis, P. Godefroid, and M. Polishchuk, “Restler: Stateful rest api
fuzzing,” in ICSE 2019, November 2019.

[32] A. G. Mirabella, A. Martin-Lopez, S. Segura, L. Valencia-Cabrera, and
A. Ruiz-Cortés, “Deep learning-based prediction of test input validity
for restful apis,” in 2021 IEEE/ACM Third International Workshop on
Deep Learning for Testing and Testing for Deep Learning (DeepTest),
pp. 9–16, 2021.

[33] N. Laranjeiro, J. Agnelo, and J. Bernardino, “A black box tool for
robustness testing of rest services,” IEEE Access, vol. 9, pp. 24738–
24754, 2021.

[34] P. Godefroid, D. Lehmann, and M. Polishchuk, “Differential regression
testing for rest apis,” in Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis, pp. 312–
323, 2020.

[35] E. Viglianisi, M. Dallago, and M. Ceccato, “Resttestgen: automated
black-box testing of restful apis,” in 2020 IEEE 13th International
Conference on Software Testing, Validation and Verification (ICST),
pp. 142–152, IEEE, 2020.

[36] A. Martin-Lopez, S. Segura, and A. Ruiz-Cortés, “Restest: Black-box
constraint-based testing of restful web apis,” in International Conference
on Service-Oriented Computing, pp. 459–475, Springer, 2020.

[37] S. Segura, J. A. Parejo, J. Troya, and A. Ruiz-Cortés, “Metamorphic
testing of restful web apis,” IEEE Transactions on Software Engineering,
vol. 44, no. 11, pp. 1083–1099, 2017.

[38] A. Arcuri, “Restful api automated test case generation with evomaster,”
ACM Trans. Softw. Eng. Methodol., vol. 28, Jan. 2019.

[39] S. Abdul Khalek and S. Khurshid, “Automated sql query generation for
systematic testing of database engines,” in Proceedings of the IEEE/ACM
International Conference on Automated Software Engineering, ASE
’10, (New York, NY, USA), p. 329–332, Association for Computing
Machinery, 2010.

[40] P. McMinn, C. J. Wright, C. Kinneer, C. J. McCurdy, M. Camara, and
G. M. Kapfhammer, “Schemaanalyst: Search-based test data generation
for relational database schemas,” in 2016 IEEE International Conference
on Software Maintenance and Evolution (ICSME), pp. 586–590, 2016.

[41] C. Binnig, D. Kossmann, E. Lo, and M. T. Özsu, “Qagen: generating
query-aware test databases,” in Proceedings of the 2007 ACM SIGMOD
international conference on Management of data, pp. 341–352, 2007.

[42] A. Bertolino, J. Gao, E. Marchetti, and A. Polini, “Automatic test
data generation for xml schema-based partition testing,” in Second
International Workshop on Automation of Software Test (AST ’07),
pp. 4–4, 2007.

[43] J. M. Almendros-Jiménez and A. Becerra-Terón, “Xquery testing from
xml schema based random test cases,” in Database and expert systems
applications, pp. 268–282, Springer, 2015.

[44] D. Petrova-Antonova, K. Kuncheva, and S. Ilieva, “Automatic generation
of test data for xml schema-based testing of web services,” in 2015 10th
International Joint Conference on Software Technologies (ICSOFT),
vol. 1, pp. 1–8, IEEE, 2015.

[45] S. C. Lee and J. Offutt, “Generating test cases for xml-based web
component interactions using mutation analysis,” in Proceedings 12th
International Symposium on Software Reliability Engineering, pp. 200–
209, IEEE, 2001.

[46] Y. Wang, S. Buranawatanachoke, R. Colle, K. Dias, L. Galanis, S. Pa-
padomanolakis, and U. Shaft, “Real application testing with database

https://www.prisma.io/blog/graphql-middleware-zie3iphithxy
https://www.prisma.io/blog/graphql-middleware-zie3iphithxy

replay,” in Proceedings of the Second International Workshop on Testing
Database Systems, pp. 1–6, 2009.

[47] J. Yan, Q. Jin, S. Jain, S. D. Viglas, and A. Lee, “Snowtrail: Testing
with production queries on a cloud database,” in Proceedings of the
Workshop on Testing Database Systems, pp. 1–6, 2018.

[48] A. Marchetto, P. Tonella, and F. Ricca, “State-based testing of ajax web
applications,” in 2008 1st International Conference on Software Testing,
Verification, and Validation, pp. 121–130, IEEE, 2008.

[49] S. Thummalapenta, J. De Halleux, N. Tillmann, and S. Wadsworth, “Dy-
gen: Automatic generation of high-coverage tests via mining gigabytes
of dynamic traces,” in International Conference on Tests and Proofs,
pp. 77–93, Springer, 2010.

[50] S. Artzi, S. Kim, and M. D. Ernst, “Recrash: Making software failures
reproducible by preserving object states,” in European conference on
object-oriented programming, pp. 542–565, Springer, 2008.

	I Introduction
	II Background
	II-A GraphQL APIs
	II-B GraphQL Schemas
	II-C GraphQL Resolvers

	III AutoGraphQL
	III-A Schema Faults
	III-B Overview of AutoGraphQL
	III-C Monitoring in Production
	III-D Test Generation
	III-D1 Query Analyzer
	III-D2 Test Generator

	III-E Challenges
	III-F Implementation

	IV Evaluation Methodology
	IV-A Case Studies
	IV-A1 Saleor
	IV-A2 Frontapp

	IV-B Experiments
	IV-B1 Query Interceptor Configuration
	IV-B2 Production Workloads
	IV-B3 Metrics for Evaluation

	V Evaluation Results
	V-A Case Study 1: Saleor
	V-B Case Study 2: Frontapp

	VI Discussion
	VII Related Work
	VII-A Test Generation for Web APIs
	VII-B Test Generation for Data Schemas
	VII-C Test Generation Based on Production

	VIII Conclusion
	References

