
Providing Real-time Assistance for Repairing
Runtime Exceptions using Stack Overflow Posts

Sonal Mahajan
Fujitsu Research of America, Inc.

smahajan@fujitsu.com

Mukul R. Prasad
Fujitsu Research of America, Inc.

mukul@fujitsu.com

Abstract—Runtime Exceptions (REs) are an important class of
bugs that occur frequently during code development. Traditional
Automatic Program Repair (APR) tools are of limited use in this
“in-development” use case, since they require a test-suite to be
available as a patching oracle. Thus, developers typically tend to
manually resolve their in-development REs, often by referring
to technical forums, such as Stack Overflow (SO). To automate
this manual process we extend our previous work, MAESTRO,
to provide real-time assistance to developers for repairing Java
REs by recommending a relevant patch-suggesting SO post and
synthesizing a repair patch from this post to fix the RE in
the developer’s code. MAESTRO exploits a library of Runtime
Exception Patterns (REPs) semi-automatically mined from SO
posts, through a relatively inexpensive, one-time, incremental
process. An REP is an abstracted sequence of statements that
triggers a given RE. REPs are used to index SO posts, retrieve a
post most relevant to the RE instance exhibited by a developer’s
code and then mediate the process of extracting a concrete
repair from the SO post, abstracting out post-specific details,
and concretizing the repair to the developer’s buggy code. We
evaluate MAESTRO on a published RE benchmark comprised of
78 instances. MAESTRO is able to generate a correct repair patch
at the top position in 27% of the cases, within the top-3 in 40%
of the cases and overall return a useful artifact in 81% of the
cases. Further, the use of REPs proves instrumental to all aspects
of MAESTRO’s performance, from ranking and searching of SO
posts to synthesizing patches from a given post. In particular,
45% of correct patches generated by MAESTRO could not be
produced by a baseline technique not using REPs, even when
provided with MAESTRO’s SO-post ranking. MAESTRO is also
fast, needing around 1 second, on average, to generate its output.
Overall, these results indicate that MAESTRO can provide effective
real-time assistance to developers in repairing REs.

Index Terms—program repair, exceptions, Stack Overflow

I. INTRODUCTION

Code search and re-use has long been recognized as a very
natural part of software development [1], [2]. Technical discus-
sion forums such as Stack Overflow (SO), a rich resource of
succinct code artifacts embedded in explanatory text, provide
an attractive option to developers for such code search and
reuse. In fact, software developers frequently visit SO to re-
solve issues arising during software development, in particular
those related to software debugging and patching [3], [4], [5].

Motivated by the above observation, in this work we pro-
pose a technique to provide real-time automated support for a
developer to resolve a bug in her code by finding and adapting
a suitable patch suggested in an SO post. In particular, we
focus on resolving Java Runtime Exceptions (REs), a common

and important class of errors that have attracted significant
research in the area of automated debugging and patching [6],
[7], [8], [9], [10], [11], [12], [13], [14], [15], [16], and
are also well represented in SO discussions [17]. Broadly,
our technique shares the patch-generation goal of Automatic
Program Repair (APR) techniques [18], [19], [20], [21], [22],
[23]. However, traditional APR techniques, which operate on
a patch synthesis paradigm and typically rely on a test suite
as a patching oracle, involve long running times of tens of
minutes or even hours. Hence they are not a good fit for our
use case. Developers seeking to resolve an RE, encountered
during development, on SO, are typically looking for real-time
assistance, and may not have a test suite available.

SO-driven repair & Challenges. We posit that one solution
lies in mimicking human developers’ approach – first finding
an SO post discussing a bug similar to theirs and adapting the
proposed patching solution to their code (in contrast to the
patch synthesis paradigm of current APR techniques). Such
a find-and-adapt repair approach would necessarily need to
solve three principal challenges highlighted in a recent study
by Wu et al. [24], namely (C1) the mixed quality of SO code
artifacts, (C2) the difficulty of comprehending code snippets,
and (C3) the effort required to modify a chosen snippet to work
in their code context. QACrashFix [25] proposes one such
approach, for generating patches for Android-related crashes
from SO posts. However, QACrashFix relies on descriptive
platform-specific information from Android crashes. As we
show in Section IV, QACrashFix’s approach does not work
well for general REs.

Insight. The guiding insight of our proposed approach is that
bug scenarios (exception-triggering scenarios here) showcased
in SO post questions, also the root causes for the developers’
(exception) bugs, can form the basis for all key steps of
a find-and-adapt repair approach – indexing SO posts and
retrieving a post best matching the bug in a given developer’s
code (C1), extracting a generalized patch from question and
answers in the post (C2), and adapting this patch to the
developer’s code context (C3). Note that by contrast, current
APR techniques are organized around the mining and exploita-
tion of repair patterns rather than bug patterns. Our previous
work [17], automatically extracts approximate bug patterns,
termed Exception Scenario Patterns (ESPs), by applying a pre-
determined set of abstractions to program statements appearing

1

ar
X

iv
:2

20
2.

04
76

2v
1

 [
cs

.S
E

]
 9

 F
eb

 2
02

2

in both question and answer code snippets of a post. These
ESPs are then used as a basis for matching a given RE-
generating developer code to a relevant SO post, to be then
manually exploited by the developer. However, while such
approximate bug patterns are adequate for searching relevant
posts, as shown in Section IV, they are not accurate enough
to support automatic patch generation, which is the focus of
this work.

Approach. We extend our prior work, MAESTRO (Mine and
AnalyzE STackoverflow to fix Runtime exceptiOns) [17], to
provide real-time patch-generation support to fix (Java) REs
in developers’ code. Our patching technique is built on top
of a library of specifications called Runtime Exception Pat-
terns (REPs), semi-automatically mined from Stack Overflow
(SO), through a relatively inexpensive, one-time, incremental
process. Each REP represents an abstract exception-triggering
pattern for a specific RE, discussed in one or more SO posts.

Given a developer’s code, crashing with an RE, MAESTRO
first finds a REP from the library best describing the devel-
oper’s error and using it finds the best SO post mirroring
that error pattern. Then MAESTRO uses the identified REP to
mediate the creation of a complete patch for the developer’s
buggy code by appropriately re-purposing an answer code
snippet in the identified best SO post. To amplify the efficacy
and scope of its patch generation MAESTRO also uses the REP
library to rank the corpus of SO posts and a novel rule-based
re-writing technique to make unparsable SO snippets parsable.
We evaluate MAESTRO on an existing benchmark of 78 RE
instances spanning 19 prominent REs. Our evaluation shows
that MAESTRO is able to generate a correct repair patch at the
top position in 27% of the cases, within the top-3 in 40% of the
cases, and overall return a useful artifact (a correct patch, an
almost correct patch, or simply a relevant post) in 81% of the
cases. Further, MAESTRO only required 1 second, on average,
per subject, validating its suitability for providing real-time
assistance to developers in repairing REs. The evaluation
also shows that the use of REPs is key to all aspects of
MAESTRO’s performance from ranking and searching of SO
posts to synthesizing patches from a given post. In particular,
45% of correct patches generated by MAESTRO could not be
produced by a baseline technique not using REPs, even when
provided with MAESTRO’s SO-post ranking.

This paper makes the following contributions:

• REP Library. A library of 158 REPs spanning
19 prominent RE types, systematically mined from
Stack Overflow (SO), that can be used to characterize
the exception-triggering patterns in SO posts, and hence
to index, search and analyze those posts.

• Patching Technique. An automated technique and tool
MAESTRO, that employs this REPs library to find an SO
post mirroring the error pattern of the RE in a developer’s
code and then automatically creates a patch, derived from
the post and instantiated for the developer’s code, to
resolve the developer’s error.

• Evaluation. An evaluation of MAESTRO on an existing

benchmark of 78 RE instances, and against 4 baselines.
• Artifacts. The public release of our complete dataset,

including the REPs library and all the patches synthesized
and posts found by MAESTRO and each of the four
baselines. https://doi.org/10.6084/m9.figshare.14518407

II. ILLUSTRATIVE EXAMPLE

We illustrate our technique using the example shown in Fig-
ure 1. The example is extracted from the JD-GUI project [26],
which is a popular interface for viewing Java “.class” files.
The buggy code shown in Figure 1e throws the common
RE, ClassCastException, at line 40 because the toArray()

method returns an Object[] which cannot be cast to a URL[].
To find a repair for fixing this RE, the developer may

refer to SO, to find a post discussing the same exception
in the same scenario, and then adapt the fix suggested in
the answer of the post to their own buggy code. To find
such a relevant post, MAESTRO first searches for a REP best
describing the developer’s exception scenario (Figure 1c) from
our systematically compiled library of REPs. Then, this REP
is used to find the best SO post instantiating it (Figure 1a).

Consider the REP shown in Figure 1c. It represents an ab-
stract exception-triggering pattern describing the toArray()

failure scenario of ClassCastException. toArray() is an
API defined for the Collections framework, hence the REP
abstracts out the concrete data type of variable $v1, allowing
it to match with any of the Collection classes (e.g.,ArrayList
and Set) specified on line 1. Similarly, the specific data type
of $v2 and the casting array is immaterial with reference to the
RE. Therefore, the REP represents both these data types with
the same “wildcard” notation encoding an inherent mapping
between them. The wildcard can be instantiated with any data
type, such as URL[] or String[]. This REP is identified
by MAESTRO as the best match (Pbest) as it is perfectly
instantiated by the developer’s buggy code.

MAESTRO recommends the SO post in Figure 1a, as it
perfectly matches Pbest. Question code snippets from SO
posts typically include several lines that make the snippets
functionally or syntactically complete, but otherwise irrelevant
to the exception scenario (shown by . . . in Figure 1a). This
“noise” may lead to inaccuracies in the patch being extracted
from the post, and consequently to an incorrect patch syn-
thesized for the developer’s code. To address this problem,
MAESTRO prunes the question code snippet to the relevant
lines implicated by Pbest. MAESTRO then captures the fix
suggested by the answer code snippet in a concrete edit script,
S (Figure 1b), by comparing this pruned Q and A code snippets
represented by their Abstract Program Graphs (APGs) – a
simplified and abstracted derivative of the Abstract Syntax
Tree (AST) (see Section III-A). The edit script S is comprised
of a series of three non-trivial changes to the faulty line: (1)
deleting class cast (String[]), (2) adding a new argument
of array instantiation new String[. . .] to toArray(), and
(3) adding memory allocation to the newly instantiated array
as image urls.size().

2

1 ...
2 listofurls = (String[]) image urls.toArray();
3 ... Q

1 listofurls = image urls.toArray(new String[image urls.size()]); A

(a) SO post #15264182 question and answer

DELETE class cast “(String[])” on line 3
ADD argument “new String[...]” to “toArray()” on line 3
ADD argument “image urls.size()” to “new String[...]” on line 3

(b) Concrete edit script S to fix Q using A

1 @Abstract(name=” ABSTRACT 1”, val=”ArrayList, Set, ...”)
2 public void pattern() {
3 ABSTRACT 1 $v1;
4 WILDCARD 1[] $v2 = (WILDCARD 1[]) $v1.toArray();
5 }

(c) REP for ClassCastException

String[] ⇐⇒ WILDCARD 1[], image urls ⇐⇒ $v1, line 3 ⇐⇒ line 4

DELETE class cast “(WILDCARD 1[])” on line 4
ADD argument “new WILDCARD 1[...]” to “toArray()” on line 4
ADD argument “$v1.size()” to “new WILDCARD 1[...]” on line 4

(d) Generalized edit script S′

34 ...
35 ArrayList<URL> urls;
... ...

40 - URL[] array = (URL[]) urls.toArray(); ← RE thrown here
40 + URL[] array = urls.toArray(new URL[urls.size()]);
... ...

(e) Buggy code and developer’s patch (ExtensionService.java)

WILDCARD 1[] ⇐⇒ URL[], $v1 ⇐⇒ urls, line 4 ⇐⇒ line 40

DELETE class cast “(URL[])” on line 40
ADD argument “new URL[...]” to ‘‘toArray()” on line 40
ADD argument “urls.size()” to “new URL[...]” on line 40

(f) Concretized edit script S′′ to developer’s buggy code

Fig. 1: Example from JD-GUI (https://github.com/java-decompiler/jd-gui) throwing ClassCastException

classCast (String[] ,)

method (image_urls, toArray, {})

root
L3

L3

n1

n3

(a) QAPG: APG of Figure 1a

classCast (_WILDCARD_1[] ,)

method ($v1, toArray, {})

root
L4

L4

n2

n4

(b) PAPG: APG of Figure 1c

Fig. 2: REPs of SO question code snippet and REP

The next step of MAESTRO is to abstract out post-specific
details from the concrete edit script S to get a generalized
edit script S′. It is challenging to directly generalize the edit
script, since points of abstraction vary with different RE types,
as well as with different exception patterns in a specific RE
type. Encoding rules for such abstractions is a cumbersome
task. MAESTRO addresses this challenge by leveraging the
abstractions specified in the REP. To establish correspondence,
Q and Pbest are structurally aligned using their APG represen-
tations as shown in Figure 2. The aligned nodes are shown
with yellow and green color coding. Further, a fine-grained
correspondence between the components of each matched pair
of nodes is also established. For example, String[] from the
classCast node in Figure 2a maps to WILDCARD 1[] from
Figure 2b. Similarly, image urls is matched with $v1. This
set of mappings as also shown in the gray box of Figure 1d
are used to adapt S suitably to produce S′.

Lastly, MAESTRO concretizes the generalized edit script S′
to the developer’s buggy code to get S′′ as shown in Figure 1f
following the same correspondence and adaptation procedure
as described above. As a final step, MAESTRO applies S′′ to
developer’s buggy code to synthesize a repair patch, which is
identical to the developer’s patch shown in Figure 1e.

The mediation of REPs is key to the success of MAESTRO
in generating the correct patch. Without the REP, it would

be challenging to determine that the String data type in
the SO post needs to be migrated to the URL data type in
the developer’s code, leading to a incorrect patch. The entire
process of finding the right post and generating the correct
patch is performed completely automatically by MAESTRO,
using our pre-compiled library of REPs.

III. APPROACH

MAESTRO’s repair strategy is novel and fundamentally
different than traditional APR techniques in several ways.
First, MAESTRO uses bug patterns (REPs) to facilitate the
generation of repairs, while other APR tools (e.g., PAR [19]
and Getafix [11]) use a small set of predefined fix patterns.
Second, indexing SO with REPs allows MAESTRO to leverage
the diverse, but reasonably small space of exemplary con-
crete repair strategies from SO posts, while other APR tools
are required to navigate the huge search space of scenario-
agnostic concrete repairs. Lastly, a heavily pruned search space
means that MAESTRO does not require a strong oracle (e.g.,
test cases) to validate patches, allowing MAESTRO to avoid
overfitting and, moreover, achieve a real-time performance.

Our approach is designed around a library of REPs (bug
patterns), semi-automatically mined from SO posts. Specif-
ically, a REP is an abstracted sequence of Java statements
representing an exception-triggering scenario. The REPs play a
central role in mediating all aspects of MAESTRO’s operation,
from ranking and searching of SO posts, to synthesizing
patches from a given post to fixing an RE in a developer’s
code. Compiling the REP library is a low-cost, incremental,
one-time effort. Low-cost because only basic Java knowledge
is required to read a post and write its REP. One-time because
once the REPs are written, their benefit can be harvested
thereafter without any extra cost. Incremental because new
REPs can be gradually added to the library for new SO posts.

3

Prepare
SO Pool

Mine
REPs

Index
posts

i

✘
Find

relevant
posts

Synthesize
edit script

Generate
patch

Offline

SO posts Library of REPs Ranked posts Dev. code,
RE info

Real-time

Post

Patch

Fig. 3: Overview of the approach

Figure 3 shows an overview of MAESTRO’s repair approach,
consisting of four main stages: preparing the SO pool for
analysis, mining REPs from SO posts, indexing of SO posts,
and fixing REs in a developer’s buggy code. The preparing,
mining, and indexing stages are performed offline, while the
fixing stage is performed in real-time.

A. Abstract Program Graph (APG)

We use the APG representation proposed in our prior
work [17] for analyzing code snippets. Briefly, the APG is
a simplified and abstracted derivative of the AST. It cap-
tures the structural relationships between program statements,
while normalizing low-level syntactic details to facilitate a
meaningful comparison between code snippets with signifi-
cant differences in variable names, data types, and program
constructs (e.g., while vs. for loop). For example, Figure 2a
shows the APG for the code snippet in Figure 1a. The
similarity score between two APGs is computed by aligning
them using the APTED tree edit distance algorithm [27], [28],
and cumulatively counting the normalized number of matching
components in a pair of corresponding nodes. For example,
in Figure 2, the similarity score is 1.0 as the component
String[] matches with the wildcard in 〈n1, n2〉. Similarly,
the components, type of method caller (ArrayList) and
method name (toArray), in 〈n3, n4〉 match perfectly.

B. Stage 1: Preparing the Stack Overflow (SO) pool

In this stage, MAESTRO selects RE-related posts and groups
them by RE type. An SO post is selected if it has: (1) RE type
in the title, (2) “java” or “android” tags, (3) at least one answer,
and (4) at least one parsable question code snippet.

A snippet is considered parsable if it is syntactically well-
formed and can be parsed using any off-the-shelf Java parser
(e.g., Eclipse JDT [29]). However, a large number of code
snippets in SO are found to be malformed with missing
or extraneous syntactic characters (e.g., parentheses) and/or
undefined tokens (e.g., an ellipsis (...) in place of actual code),
rendering them unusable by our approach [30], [31].

Addressing this concern, we propose an error-driven iter-
ative approach to automatically repair unparsable snippets to
make them parsable. For a given code snippet, our approach
picks a parsing error e ∈ E, applies a fix for e, and continues
this process as long as the number of parsing errors are
reducing (|E| < |Eprev|) or the snippet is now parsable
(E = ∅). We use Eclipse JDT for populating E. For an error
e, defined by the problematic element T at location L, our
approach applies a fix based on the rules shown in Table I.
For example, for the invalid token "..." in snippet List

Error Fixing rule
Invalid token T at L L ∈ Expression −→ replace T with Tvalid at L

L = Statement −→ delete T at L
Missing T at L T ∈ Symbol −→ insert T at L

T ∈ Grammar Rule −→ insert instantiation of T at L
Extra token T at L delete T at L

TABLE I: Rules for fixing parsing errors in code snippets

〈pattern〉 ::= (〈Java statement〉)+
〈identifier〉 ::= 〈Java identifier〉

| ’ ABSTRACT ’[1-9]+ | ’ WILDCARD ’[1-9]+
〈annotation〉 ::= ’@Abstract (name= ABSTRACT ’ [1-9]+ ’,’ ’val=’

{set of permissible values} ’)’

Fig. 4: Extensions to Java grammar for writing REP

x = ...;, our approach corrects it with the fixing rule of
applying a suitable initialization expression: List x = new

ArrayList<>(). Similarly, other examples include inserting
a missing semi-colon (;) at the end of a statement, inserting a
missing catch block after a try, or removing an extra brace
(}) from the end of a method declaration.

C. Representation for Runtime Exception Patterns (REPs)

Our REP conforms to Java grammar rules, with a couple of
straightforward extensions to support generalization, shown in
Figure 4. We define two types of generalizations in represent-
ing identifiers, such as method names and data types. The
first is wildcard, to represent zero or more program elements.
For example, the data type of the casting array in Figure 1c is
specified with a wildcard since it could be instantiated with any
of the Java or user-defined types, such as String[] or URL[].
The second generalization is called abstract semantics, which
allows specifying a set of permissible semantic equivalent
values using Java annotations. For example, the REP shown
in Figure 1c represents the data type of “$v1” as a semantic
abstraction, since it can only be instantiated with a Collection
class, such as List, ArrayList, or Set.

D. Stage 2: Mining Runtime Exception Patterns (REPs)

Our approach is predicated on precisely extracting the
exception-triggering bug patterns, i.e., REPs represented in
SO posts. Our previous work [17] highlighted the challenges
of doing so fully automatically, particularly because of the
poor quality of Q&A snippets. On the other hand manually
writing REPs for each of thousands of SO posts is impractical
and also redundant, since several SO posts exhibit the same
REP. Therefore, we adopt a semi-automated approach, shown
in Figure 5, that optimally combines human knowledge and
automation. Specifically, we iteratively ask the human to man-
ually author a REP based on a single representative SO post

4

SO posts

Suggest
SO post

Write
new REP

Cluster
posts

Terminate?

REP Library

Javadocs

yes

no

Initial
clustering

w/ old REPs

Add new
REPs to
library

Fig. 5: Overview of the REP mining process

and then automatically cluster all other posts instantiating the
same REP, removing them from the pool of human inspection.
Key features of our mining algorithm include inexpensive, one-
time effort of writing REPs, with support for incrementally
expanding the library of REPs for new SO posts.

1) MAESTRO suggests an SO post: In this step MAESTRO
identifies an unvisited SO post that exemplifies a commonly
occurring REP. To this end, MAESTRO picks the top post
after ordering unvisited SO posts (for an RE type) by user
votes, breaking ties using mean distance of the candidate post
from the current pool of REPs. The distance is the inverse of
similarity score (Section III-A) between a REP and a post’s
question code snippet.

2) Human writes a REP: This step involves reviewing two
specific sources, namely the suggested SO post and relevant
Javadocs, to write the REP. We expect that following the below
procedure a person reasonably experienced in Java, need not
be an expert, should be able to write the REPs. First, the
human studies the suggested SO post, particularly focusing on
the question text and code snippet, to extract the post-specific
exception scenario. To assist in this process, our approach
highlights the potential relevant lines in the question code
snippets that are referenced in the answer. To further generalize
the post-specific exception scenario, the human may refer to
the official Java documentation [32] of the RE as well as the
different classes or APIs used in the post code.

For example, consider the SO post shown in Figure 1a.
We now explain how the human can write the REP shown
in Figure 1c from this post. First, the human can capture
the post-specific scenario as shown in line 2. To abstract out
the post-specific details, the human could then refer to the
Javadocs shown in Figure 6. For instance, the human could
visit the definition of ClassCastException (Figure 6a) to know
that casting to String[] in our example is the problem. Then,
the human could explore the Javadocs of ArrayList, which
is the data type of the image urls variable, specifically
focusing on the toArray() API (Figure 6b). Upon studying
this documentation, the human can figure out two generaliza-
tions: (1) Object[] returned by the toArray() API when
cast to any other array type would cause the RE, thus, the
concrete casting type String[] could be safely generalized
to a wildcard, and (2) toArray() API is common for all
implementations of the Collection framework (highlighted
in Figure 6b), thus, the data type of the image urls variable
could be represented using abstract semantics. The set of
values for this could be extracted from the Javadoc of the

Collection framework (Figure 6c), which comprehensively
lists all concrete instantiations (e.g., List, Set, and ArrayList).
Finally, the human could normalize the REP by renaming the
variables to generic names (e.g., image urls to $v1) to get
the generalized REP shown in Figure 1c.

Alternatively, the human can simply mark the suggested
post as unviable if a unique or meaningful REP cannot be
extracted from the it. Another post is suggested in this case.

3) MAESTRO clusters posts by REP: The goal is to group
together SO posts that constitute instances of a newly authored
REP, i.e., question code snippets of posts having a perfect sim-
ilarity score (1.0) with the REP. (Similarity score is computed
as described in Section III-A.) Clustered posts are then marked
as visited. This smartly eliminates redundancies in the work
performed by the human. For incremental compilation of the
REP library, an initial clustering is performed to group new
SO posts instantiating existing REP library, so that the human
is suggested only truly “unseen” posts.

4) Termination condition: The mining process terminates
if all posts are exhausted or when U consecutive posts are
marked as unviable by the human. The latter indicates a point
of diminishing returns, conceivably because most distinct,
popular REPs have already been extracted.

E. Stage 3: Indexing of SO Posts

Analyzing an SO post to generate a repair patch is compu-
tationally expensive. Hence, effective indexing of SO posts
plays an important role in the success of our approach in
achieving the real-time use case. For each cluster of SO posts
from the mining step (Section III-D), our indexing ranks the
posts based on their relevance to the cluster’s representative
REP. Particularly, we compute the similarity score between
a REP and each answer code snippet in a post to up-rank
posts with answers that suggest a complete fix with regards to
the REP, while down-ranking posts with partial or irrelevant
answers. Thus, for our illustrative example (Figure 1), post
#1524182 gets a high rank since it matches closely to the REP.
Post #16656384 gets a lower rank since it gives only a partial
answer with missing assignment operation. Post #46201465
gets an even lower rank, since its answer is completely
irrelevant to the REP. For posts with multiple answers, the
highest scoring answer is used for the ranking.

F. Stage 4: Fixing RE in Developer’s Code

Algorithm 1 shows the overall algorithm. Three sets of input
are required. First is from the developer’s failure: buggy code,
B, and RE information, E. Second is from MAESTRO’s offline
analysis: the library of mined REPs, P , and the library of
indexed SO posts and their Q&A pairs, I. Third is a set of
configurable parameters: number of patches to generate, K,
and number of SO posts to analyze, Z . The output of the
approach is a list O of 〈r, s〉 pairs, where r is a repair patch
synthesized from an SO post s.

Step 1. Find Relevant SO Posts. The initial part of the
algorithm (lines 3 and 4) finds the REP, Pbest , best matching
the RE-throwing developer code, and fetches relevant SO posts

5

(a) Explanation of ClassCastException

. . .

(b) ArrayList Javadoc for toArray() API

. . .

. . .

(c) Specification of Collection<E>

Fig. 6: JavaDocs helpful in writing the REP shown in Figure 1c from SO post shown in Figure 1a

Algorithm 1 Algorithm for Fixing RE in Developer’s Code
Input: B: Developer’s buggy code

E: Exception information (RE type and failing line number)
P ={p1, ..., pn}: Library of REPs
I ={s1, ..., sn}: Library of indexed SO posts and their Q&A pairs
K: Number of repair patches to generate
Z: Number of SO posts to evaluate

Output: O ={〈r1, s1〉, ..., 〈rk, sk〉}: List of k patch-post pairs
begin
1: O ← {}
2: /* Step 1. Find relevant SO posts */
3: Pbest ← findBestPattern(P , B, E)
4: S ← getRankedPosts(I, Pbest)
5: PAPG ← buildAPG(Pbest)
6: postCount ← 0
7: for each s ∈ S do
8: postCount ← postCount + 1
9: qaPairs ← getQAPairs(I, s)

10: for each 〈Q,A〉 ∈ qaPairs do
11: /* Step 2. Clean Q and A code snippets */
12: QAPG ← buildAPG(Q)
13: AAPG ← buildAPG(A)
14: T ← triangulate(QAPG, AAPG, PAPG)
15: QAPG ← pruneAPG(QAPG, T.quesRelevantLines)
16: AAPG ← pruneAPG(AAPG, T.ansRelevantLines)
17: /* Step 3. Synthesize Generalized Edit Script */
18: S ← getEditScript(QAPG, AAPG)
19: S′ ← adaptEditScript(S, QAPG, PAPG)
20: /* Step 4. Generate repair patch */
21: S′′ ← adaptEditScript(S′, PAPG, BAPG)
22: B′

APG ← applyChanges(BAPG, S′′)
23: if isValid(B′

APG) = true then
24: r ← convertAPGToJavaPatch(B′

APG)
25: if isParsable(r) = true then
26: O ← O ∪ 〈r, s〉
27: end if
28: end if
29: /* Step 5. Check termination criteria */
30: if |O| ≥ K or postCount ≥ Z then
31: if |O| = 0 then
32: O ← 〈null,S[1]〉
33: end if
34: return O
35: end if
36: end for
37: end for
38: return O
end

for Pbest from the indexed library. The algorithm then iterates
over each SO post and its Q&A pairs to perform steps 2–5.

Step 2. Clean Q and A code snippets. Q and A snippets
may include code to make the snippet functionally or syn-
tactically complete, but otherwise irrelevant to the exception
scenario and its repair. If used as such, the repair patch ex-
tracted from such snippets would likely be noisy and incorrect.
Therefore, the second step of the algorithm (lines 12–16) aims
to prune the snippets to relevant lines by triangulating Q, A,
and Pbest , and retaining any newly inserted fix lines (e.g., null
check for NullPointerException).

Step 3. Synthesize Generalized Edit Script. The goal
is to derive a script, S′, that is post-agnostic. We use the

Algorithm 2 Algorithm for Adapting Edit Script
Input: T : Edit script to be adapted

X: APG w.r.t. T (source APG)
Y : APG to be used for adaptation (target APG)

Output: T ′: Adapted edit script
begin
1: T ′ ← {}
2: N ← computeMatchedNodes(X , Y)
3: C ← computeCorrespondingComponents(N)
4: for each op ∈ T do
5: n′ ← getMatchedNode(N , op.n)
6: if op.type = add or op.type = update or op.type = replace then
7: m′ ← updateCorrespondingComponents(op.m, C)
8: end if
9: op′ ← buildEditOperation(op.type, n′, m′, op.pos)

10: if isValid(op′, Y) = true then
11: T ′ ← T ′ ∪ op′

12: end if
13: return T ′

14: end for
end

APTED [27], [28] tree-edit distance algorithm to first compute
the concrete edit script, S (line 18), which suggests edit
operations for fixing the RE in Q as prescribed by A. Each
entry in our edit script is comprised of one of the following
four edit operations:
• add(n,m,pos): Insert a new node m in the APG at

position pos (parent or child) with reference to node n
• delete(n): Delete node n from the APG
• update(n,m): Update value of n with the value of m
• replace(n,m): Replace the subtree rooted at node n

with the subtree given by new node m
For generalizing S (line 19), our insight is to adapt it in

the context of Pbest , since, by definition, REPs exemplify
an abstracted description of the exception-raising scenario.
We use the adaptation algorithm shown in Algorithm 2 (and
discussed below) to obtain the generalized edit script, S′.

Adapting edit script. Algorithm 2 takes as input the edit
script to be adapted, T , and the source and target APGs, X
and Y , to output the adapted edit script, T ′. The algorithm
begins by computing a function M : X 7→ Y that aligns
X and Y to get pairs of matching nodes (N) and pairs of
corresponding components (C) for N (lines 2 and 3). Then
for each edit operation, op ∈ T , the algorithm uses this
equivalence information to suitably adapt op (lines 5–8). First,
the anchor node n is updated with the matched node n′. Next,
components, such as variable names, types, and method names,
in node m are updated with corresponding values from Y to
get m′. The adapted edit operation, op′, is then checked for
correctness in the context of Y with two checks: (1) n′ is not
empty and (2) identifiers in m′ are from the namespace of
Y (line 10). If the operation op′ is found to pass these two

6

Rating scale for judging repair patches

Correct Patch is identical or semantically equivalent to developer patch

Almost correct Patch has one-token difference from correct patch

No patch Patch could not be synthesized by the tool

Incorrect Patch is incapable of fixing the RE

Rating scale for judging SO posts

Perfect Post suggests an accurate repair for the RE scenario

Helpful Post is informative, but no direct repair offered

No post Post was not recommended by the tool

Irrelevant Post is misleading for repairing the RE

TABLE II: Rating scales for patches and posts

checks, then it is added to the list of adapted script T ′.
Step 4. Generate Repair Patch. The goal of this step is

to concretize the generalized edit script to developer’s buggy
code and generate a repair patch (lines 21–28). First, the
same modular “adaptEditScript()” algorithm (Algorithm 2) is
used to obtain the concretized script, S′′. Then, the fixes (edit
operations) in S′′ are applied to developer’s buggy code APG
to get a modified version, B′APG. This APG is then validated
for well-formedness with checks, such as no cycles. The B′APG
is then translated to a Java repair patch r. The patch r is then
validated for parsability by running it through a Java parser,
such as Eclipse JDT (line 25). If parsable, r is then added to
the output list along with the SO post, s.

Step 5. Check Termination Criteria. The algorithm termi-
nates if: (1) K repair patches are generated or (2) Z SO posts
have been analyzed. Upon termination, output O is returned
with up to K patch-post pairs, or only the top-post if a patch
could not be generated (lines 30-35).

IV. EVALUATION

Our evaluation addresses the following research questions:
RQ1: How effective is MAESTRO in assisting fixing of REs?
RQ2: How does MAESTRO perform against other techniques?
RQ3: How effective are the key contributions in MAESTRO?
RQ4: What is the cost of maintaining the REP library?

A. Implementation
We implemented our approach in Java as a prototype tool

named MAESTRO (Mine and AnalyzE STackoverflow to fix
Runtime exceptiOns). We used Eclipse JDT [29] to verify
parsability of code snippets and build them into ASTs. We
used the APTED tree edit distance algorithm [27], [28],
[33] to compute the preliminary Q&A edit script, which we
augmented with the “update” and “replace” edit operations.
For the REP mining process, we empirically selected the
termination criteria value as U = 3 (Section III-D) to stop
the algorithm when it starts to repeatedly suggest low-quality
SO posts. For the fixing algorithm discussed in Section III-F,
we set the following values. The number of SO posts to be
evaluated is set as Z = 15. We chose this value with the real-
time use case in mind, since analyzing an SO post for repair is
an expensive operation. The value for the number of patches
to generate is set to K = 3 with the rationale that developers
often only inspect a few top patches from a ranked list [34].

B. Datasets

SO Pool. We used the SO data dump released in released
in March 2019 [35]. Based on the selection criteria discussed
in Section III-B, this gave us a pool of 24,343 usable SO
posts. The number of posts per RE type ranged from 3 to
13,415, with an average of 1281 posts and a median of 128
posts. Out of the total 115,009 code snippets evaluated, about
60% were found to be readily parsable. With our algorithm
of converting unparsable snippets to parsable, we were able
harvest a significant 16,799 more snippets, thereby improving
the overall number of parsable snippets to 75%.

Library of REPs. Our REP library is comprised of 158
REPs, clustering 10,143 posts. MAESTRO, on average, sug-
gested 17 SO posts per RE type to the human for processing,
REPs were written for roughly half and the other half were
marked as unviable. On average, 8 REPs per RE type resulted
in the clustering of 533 posts, implying that the human is
required to write only one REP per 67 SO posts. From the
perspective of SO pool, writing REPs for 0.75% of the SO
posts gives a coverage of over 50%, on average. This indicates
that a small amount of human effort can yield large number
of REPs.

Benchmark. For our experiments, we use our publicly
released benchmark [17], [36]. It is an RE-specific benchmark,
comprising 78 instances spanning 19 RE types collected from
the top-500 Java projects on GitHub.

Defects4J [37], [38] is a popular benchmark used by state of
the art APR techniques. However, it is not suitable for our use
case for two reasons. First, Defects4J is a dataset for general-
purpose bugs, with only a few instances (less than 10%) related
to RE failures. Furthermore, many of these instances also
require non-RE fixes to completely resolve the bug, which is
out of scope for our technique. Second, the usable instances
from Defects4J are limited in diversity, covering only a few
common RE types, such as NullPointerException.

C. Evaluation Methodology

We evaluate MAESTRO and its baselines in terms of the
number of useful artifacts that they produce, i.e., the ability
to recommend a relevant SO post and correctness of the
synthesized patch. We use manual examination for patch
validation, which is a recommended protocol in the APR
community [21], [39], [6], [20], [40], [41], [42], [43].

Participants and Protocol. To avoid any bias in the
evaluation, we recruited two external participants to judge
the artifacts. Our participants are software professionals with
over 10 years of Java experience. For each of the five tools
(MAESTRO and 4 baselines), the participants were presented
with up to 3 patch-post pairs for each instance and asked to
provide a rating for the best pair based on the metrics discussed
below. To reduce bias in the experiment, we presented the
results in randomized order with the tool names anonymized.
The participants rated all of the 390 results (78 instances
× 5 tools) independently. We then measured the inter-rater
reliability using Cohen’s Kappa [44]. The Kappa coefficient
was κ = 0.813, indicating an almost perfect agreement between

7

RE type #inst CP AP IP IP
RP RP RP IP

Top-1 Top-3 Top-1 Top-3

ClassCastException 8 5 6 0 0 2 0
ConcurrentModificationException 8 0 0 6 6 2 0
IllegalArgumentException 8 1 1 0 0 2 5
IllegalStateException 8 2 2 0 0 0 6
IndexOutOfBoundsException 8 1 5 0 1 2 0
NullPointerException 8 3 5 0 0 3 0

ArithmeticException 4 4 4 0 0 0 0
NoSuchElementException 4 1 2 0 0 0 2
RejectedExecutionException 4 0 0 0 0 4 0
SecurityException 4 0 0 0 0 3 1
UnsupportedOperationException 4 1 1 0 0 2 1

EmptyStackException 2 1 2 0 0 0 0
NegativeArraySizeException 2 2 2 0 0 0 0

ArrayStoreException 1 0 0 0 0 1 0
BufferOverflowException 1 0 0 0 0 1 0
BufferUnderflowException 1 0 0 0 0 1 0
CMMException 1 0 0 0 0 1 0
IllegalMonitorStateException 1 0 1 0 0 0 0
MissingResourceException 1 0 0 0 0 1 0

Total 78 21 31 6 7 25 15

CP : Correct patch, AP : Almost Correct patch, IP : No/Incorrect patch
RP: Perfect/Helpful post, IP: No/Irrelevant post, #inst: no. of instances
Average runtime per instance = 1 second (median = 0.6 sec)

TABLE III: Effectiveness Results of MAESTRO

the participants (ref. [45]: κ > 0.81). In cases of disagree-
ment, the participants discussed the results with each other to
reconcile the differences with one of the authors mediating the
process [2], [46].

Metrics. We define two rating scales to evaluate the patch
and the post, as shown in Table II. Our rating scales are largely
inspired from the approach of Zimmermann et al. [47], [48],
and follow the advice of Kitchenham et al. [49] to define a
balanced scale and to exclude a “Don’t Know” category if the
participants are experts in the field.

The patch and post ratings implicate four possible outcomes
of MAESTRO and its baselines: (1) a correct patch derived
from a perfect post, (2) an almost correct patch from a relevant
(perfect/helpful) post, (3) no/incorrect patch but a relevant
post, and (4) no/incorrect patch and no/irrelevant post. The
first three constitute a useful artifact in assisting developers
for fixing REs, with (1) being the most desirable output.

D. RQ1: Effectiveness of MAESTRO

Table III shows the results of RQ1. Column “#inst” shows
the number of instances per RE type. The remaining columns
show details of the four possible outcomes of MAESTRO as

1 for (String str : new ArrayList<String>(listOfStr)) { 4
2 listOfStr.remove(/* object reference or index */); 8
3 }

(a) Stack Overflow post answer #11201224

1 - for (Order order : orders) {
2 + for (Order order : new ArrayList<Order>orders) { 4
3 - orders.remove(order);
4 + orders.remove(); 8

(b) MAESTRO patch for swagger-api/swagger-core

Fig. 7: Almost Correct Patch for ConcurrentModification

discussed in Section IV-C. For example, CP , RP, implies the
first outcome: correct patch derived from a relevant post.

MAESTRO returned a correct repair patch at top-1 position
in 27% of the cases, within the top-3 in 40% of the cases,
and produced an overall useful artifact in 81% instances.
MAESTRO was fast, requiring an average of 1 second (median
= 0.6 sec) end-to-end on a 6-core MacOS laptop. Thus,
MAESTRO can be effective in providing real-time assistance
to developers for fixing REs.

In a diverse 14 out of 19 RE types, MAESTRO returned
at least one useful artifact for every instance. MAESTRO
was successful on REs, such as ClassCastException and
IndexOutOfBoundsException, that comprised of commonly
occurring exception scenarios and SO posts that recommended
an accurate repair. REs, such as IllegalArgumentException
and IllegalStateException, proved problematic since they are
comprised of numerous scenarios that are not a part of our REP
library, or scenarios that are very rare or application specific,
and hence do not have representation on SO.

We investigated the results to understand why MAESTRO
was not able to successfully generate a correct repair patch
in all useful artifact cases. The first reason is that MAESTRO
produced almost correct patches if the fix suggested SO posts
was inadvertently malformed. An example of such a case
is shown in Figure 7 for ConcurrentModificationException
which is thrown when a Collection object (e.g., List) is
structurally modified (e.g., remove()) during iteration. The
SO post suggests a fix of creating a temporary copy of the
list and using this new list for iteration (line 1 of Figure 7a).
However on line 2, the SO answer inadvertently omits the
argument of remove(). Therefore, when this fix is translated
to the developer’s buggy code (Figure 7b), it produces a patch
that is one token away from the correct patch (i.e., missing
argument order in remove()).

The second reason is when the fix in SO posts is insuffi-
cient in capturing all of the necessary changes to repair the
developer’s RE. For example, consider a NullPointerException
thrown at line v.m1().m2(). The correct fix is to guard the
failing line with two chained null checks: if(v != null

&& v.m1() != null) {...}. However, the SO post only
suggests the first null check since its question code snippet
discusses the failure of the kind t.foo(). Such incomplete
patches are judged incorrect in our rating, since they are more
than one token edit from the complete patch.

RQ1: MAESTRO demonstrates strong potential for pro-
viding real-time assistance in RE repair – it generates a
correct repair patch at the top in 27% instances, within the
top-3 in 40% of the cases, and some useful artifact in 81%
of the cases, in only 1 second, on average.

E. RQ2: Comparison with State of the Art

A direct comparison with the current state-of-the-art tech-
nique, QACrashFix [25], for generating repair patches using
Stack Overflow is unfortunately not possible as QACrashFix is
designed to generate patches for Android-related crashes using

8

27%
19%

9%

24% 21%

40%

22%
17%

32% 32%

81%

65%
55%

69% 67%

MAESTRO No-REP
MAESTRO ranking

Auto-REP No unparsable-
to-parsable

Simple
ranking

Correct patch (top-1) Correct patch (top-3) Useful artifact

Fig. 8: MAESTRO vs. its baselines

1 - URL[] array = (URL[])urls.toArray();
2 + URL[] array = urls.toArray(new String[urls.size()]);

Fig. 9: Wrong patch by NO-REP-MAESTRO-RANKING for
example in Figure 1 (Yellow shows problem in the patch)

Android-specific information, while our use case is of general-
purpose REs. Instead, we implemented the core algorithm of
QACrashFix in our use case, which is to find relevant posts
using failure description and transform an SO fix directly to
developer’s code without the mediation of a REP.

We made the following changes to MAESTRO to create this
version: (1) removed the mediation of REP from our fixing
algorithm, (2) modified the function to find relevant SO posts
to query a web search engine (e.g., Google) comprising of
the RE type and failing line from developer’s buggy code,
since general REs do not give a Android-like description of
the crash. However, in our experiments we found that this
search for relevant posts performed rather poorly, ultimately
generating a correct repair patch in only 5 instances. Hence, to
give this baseline a starting advantage, we provided it with the
ranked list of relevant SO posts from MAESTRO’s indexing.
We call this baseline “NO-REP-MAESTRO-RANKING”.

Figure 8 shows the results for RQ2. NO-REP-MAESTRO-
RANKING returns a correct patch at top-1 position in 19%
of the cases, within top-3 in 22% cases, and an overall
useful artifact in 65% cases. Thus, it falls significantly short
of MAESTRO on all metrics, producing 45% fewer correct
patches in the top-3 than MAESTRO. The primary reason for
the performance deficit of NO-REP-MAESTRO-RANKING is
that, even with the benefit of MAESTRO’s post ranking, with-
out the mediation of the REP, it is challenging to precisely map
program elements from SO post’s question code snippet to the
developer’s buggy code. For example, consider the patch gen-
erated by NO-REP-MAESTRO-RANKING shown in Figure 9
for our illustrative example (Section II). NO-REP-MAESTRO-
RANKING simply transfers new String[...] from the SO
post without any adaptation, leading to an imperfect patch.

RQ2: A baseline representing state-of-the-art SO-based
patch synthesis produces 45% fewer correct patches than
MAESTRO, even when provided with MAESTRO’s ranking.

0

6207
7801

8823 9553 10143

4308

19 9 10 0 0

2014
(125)

2015
(140)

2016
(148)

2017
(158)

2018
(158)

2019
(158)

Year (Y), # REPs in parentheses “()”

 clustered SO posts w.r.t. old REPs (Y-1)
 clustered SO posts w.r.t. new REPs (Y)

Fig. 10: Overhead of maintaining REP library over 5 years

F. RQ3: Key Contributions of MAESTRO

We create three baselines of MAESTRO. The first baseline,
MAESTRO-NOUNPARSABLETOPARSABLE, measures the im-
pact of our unparsable-to-parsable algorithm (Section III-B)
by only using SO posts with readily available parsable code
snippets. The second baseline, MAESTRO-SIMPLERANKING,
assesses the importance of our REP-based indexing algorithm
(Section III-E) by replacing it with a naive user-votes based
ranking of SO posts and their answers. Finally, our third
baseline, MAESTRO-AUTOREP, evaluates the importance of
our hand-written REP-library by replacing it with the patterns
auto-extracted using Q&A localization in MAESTRO’s prior
version [17].

Figure 8 shows the results for RQ3. The three baselines
return a useful artifact in 55–69% of the cases (vs. 81%
for MAESTRO), with a correct patch reported in top-3 in
only 17–32% of the cases (vs. 40% for MAESTRO). Ef-
fectively, both the MAESTRO-NOUNPARSABLETOPARSABLE
and MAESTRO-SIMPLERANKING baselines produce 20%
fewer top-3 correct patches than MAESTRO, showing that
unparsable code snippets or low-voted posts may at times ex-
clusively contain the correct fixes. The MAESTRO-AUTOREP
baseline performs the worst. This is because these auto-
REPs are post-specific, and may even be sub-optimal if the
answer code snippets are lengthy and/or non-specific. Such
approximate patterns may be adequate for searching relevant
posts (the target of [17]), but not for patch generation.

RQ3: Each of the three components contributes meaning-
fully to boosting the overall performance of MAESTRO.

G. RQ4: Maintenance Cost for the REP Library

Figure 10 shows the potential cost of compiling and main-
taining a REP library over a span of 5 years. For estimating
this, we projected back from our REP library curated from the
2019 SO snapshot by tracking the chronology of the posts,
and assuming an average writing time of 5 minutes per REP,
calculated based on our 2019 effort. Based on this proposition,
compiling the library of 125 REPs for the first time in 2014 is
a seemingly inexpensive task, requiring roughly 10 person-
hours. In 2015, almost 2,000 posts could be automatically
clustered with the REPs from 2014, as they exhibited the same

9

exception-triggering patterns. This demonstrates that writing
the REPs is indeed a one-time investment, with no extra cost
thereafter. An incremental addition of 15 new REPs, clustering
19 SO posts, came at a significantly low overhead of only
1 person-hour. In subsequent years, the cost-effectiveness of
REPs is evident from the increased clustering of new posts
with old REPs, and significantly diminished human effort,
with no new REP added after 2017, conceivably because most
distinct, popular REPs had already been written.

RQ4: Compiling and maintaining the REP library is a low-
cost, incremental, and one-time undertaking.

H. Limitations

Repair scope. MAESTRO’s current implementation can only
generate fixes limited to intra-procedural exception scenarios.
This design choice is motivated by the observation that RE
scenarios generally tend to be concise and local in nature.
However, to expand the scope, we plan to extend MAESTRO
to handle inter-procedural analysis in the future.

Usefulness of artifacts. Judging repair patches and SO
posts is a subjective task that is performed manually, posing a
threat to construct validity. Manual judgement for correctness
of patches is an establishednorm in the APR community
(e.g., [6], [21], [43]). Nonetheless, to minimize this threat,
we clearly defined the criteria for our rating scales, consistent
with prior work [47], [48], [49], [17]. Further, to further
reduce bias, we recruited two external participants to evaluate
independently. We then used Cohen’s Kappa [44] to measure
inter-rater reliability, which showed almost perfect agreement
among the participants. Disagreements were reconciled via
discussion – consistent with previous work [46], [2], [17].

Mining REPs MAESTRO employs a semi-automated pro-
cess for extracting REPs from SO posts. As we show through
experiments in RQ3, automatically extracting REPs is chal-
lenged by the sub-optimal Q&A localization. To make the
mining process efficient, MAESTRO only suggests a small
number of SO posts to the human that are likely to represent
diverse REPs, and also aids the writing task by presenting an
auto-extracted approximate REP. Further, compiling a library
of REPs through our mining process is a one-time undertaking
that could be performed incrementally.

V. RELATED WORK

APR using SO. QACrashFix [25] is closely related to our
work. QACrashFix is a generate-and-validate APR technique
for fixing Android-related crash bugs. As shown in Section IV,
QACrashFix does not work well for our use case of fixing
general-purpose REs for two reasons. First, QACrashFix is
limited in finding relevant SO posts for general REs, since they
often do not have a crash description that QACrashFix uses to
do the search. Second, even when provided with MAESTRO’s
SO posts ranking, it fails to accurately generate a correct patch
in 45% of the cases. Different from our use case of generating
repairs from SO posts, another APR technique, SOFix [50],
manually extracts a set of repair templates from SO.

Assisting debugging of REs. FuzzyCatch [7] recommends
Android-related exception handling (try-catch blocks). Sev-
eral techniques provide tailored repair solutions for only the
common REs, such as NullPointerException (NPE). Sinha et
al. [8] use stack traces to locate and create a patch, NPEFix [9]
uses NPE-specific heuristics, VFix [10] uses data and control-
flow analysis to prune the NPE repair space, Getafix [11] and
Genesis [12] learn fix patterns from human-written patches,
and Droix [13] uses search-based algorithms. Another research
isolates and recovers from runtime errors [14], [15], yet
another focuses on the automatic generation of test oracles
for REs [16]. By contrast, our work presents a general-
purpose repair approach that applies to a diverse set of REs by
leveraging crowd intelligence encoded in forums (e.g., SO).

Automatic Program Repair (APR). We share the patch-
generation goal of traditional APR techniques. Generate-and-
validate APR techniques, such as SketchFix [51], Kali [40],
SPR [42], Elixir [6], Hercules [52], Angelix [20], and Gen-
Prog [53], explore a search space of manually crafted repair
transformations that are tried in succession until a plausi-
ble repair is found. Another group of techniques, such as
CoCoNut [21], Sequencer [54], and DLFix [55], use deep
learning to auto-learn the repair transformations. Yet other
techniques, such as Phoenix [39] and Refazer [56], use pro-
gramming by example to learn repair strategies. Unlike us,
such traditional APR techniques typically rely on a dynamic
patching oracle (e.g., test suite) and thereby involve long
running times, making them unfit for our use case of real-time
assistance when patching oracles may not even be available.

Mining developer forums (e.g., SO). The previous version
of MAESTRO [17], [57] recommends relevant SO posts for
manual fixing of REs, while Prompter [58], [59] and Li-
bra [60] suggest posts to assist during implementation. Exam-
pleStack [61] shows examples of SO adaptations. FaCoY [62]
performs code-to-code search. Nagy et al. [63] mine common
SQL error patterns. AnswerBot [64] and Crokage [65] summa-
rize SO answers. Chen et al. [3] use SO to fault localize code
and suggest posts. SEQUER [66] reformulates user queries
to find posts. CSnippEx [31] makes non-compilable SO code
snippets compilable. By contrast, such techniques are not
related to our use case of SO-based patching.

VI. CONCLUSION

We extend our prior work, MAESTRO, by adding real-time
patching support for fixing REs using SO posts. MAESTRO
exploits a library of REPs semi-automatically mined from
SO posts through a one-time, incremental process. A REP
represents an RE pattern and is used to mediate each of the key
steps: indexing SO posts, retrieving a relevant post matching
the RE scenario exhibited by the developer’s code, and finally
adapting the post-suggested answer to fix developer’s buggy
code. An evaluation on a published benchmark of 78 RE
instances showed that MAESTRO generated a correct repair
patch at top-1 in 27% of the cases, within the top-3 in 40%
cases, and an overall useful artifact in 81% cases. Further,
MAESTRO only required 1 second, on average, per instance.

10

REFERENCES

[1] C. Sadowski, K. T. Stolee, and S. Elbaum, “How developers search
for code: A case study,” in Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, ser. ESEC/FSE 2015.
New York, NY, USA: ACM, 2015, pp. 191–201. [Online]. Available:
http://doi.acm.org/10.1145/2786805.2786855

[2] S. Luan, D. Yang, C. Barnaby, K. Sen, and S. Chandra, “Aroma: Code
recommendation via structural code search,” Proc. ACM Program. Lang.,
vol. 3, no. OOPSLA, Oct. 2019.

[3] F. Chen and S. Kim, “Crowd debugging,” in Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering, ser.
ESEC/FSE 2015. Association for Computing Machinery, 2015, p.
320–332.

[4] R. Abdalkareem, E. Shihab, and J. Rilling, “What do developers use the
crowd for? a study using stack overflow,” IEEE Software, vol. 34, no. 2,
pp. 53–60, 2017.

[5] S. Beyer, C. Macho, M. Di Penta, and M. Pinzger, “What kind of
questions do developers ask on stack overflow? a comparison of auto-
mated approaches to classify posts into question categories,” Empirical
Software Engineering, vol. 25, 05 2020.

[6] R. K. Saha, Y. Lyu, H. Yoshida, and M. R. Prasad, “Elixir: Effective
object oriented program repair,” in Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering, ser. ASE
2017. IEEE Press, 2017, p. 648–659.

[7] T. Nguyen, P. Vu, and T. Nguyen, “Code recommendation for exception
handling,” in Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ser. ESEC/FSE 2020. New York, NY, USA:
Association for Computing Machinery, 2020, p. 1027–1038. [Online].
Available: https://doi.org/10.1145/3368089.3409690

[8] S. Sinha, H. Shah, C. Görg, S. Jiang, M. Kim, and M. J. Harrold, “Fault
localization and repair for java runtime exceptions,” in Proceedings
of the Eighteenth International Symposium on Software Testing and
Analysis, ser. ISSTA ’09. New York, NY, USA: ACM, 2009, pp. 153–
164. [Online]. Available: http://doi.acm.org/10.1145/1572272.1572291

[9] B. Cornu, T. Durieux, L. Seinturier, and M. Monperrus, “Npefix:
Automatic runtime repair of null pointer exceptions in java,”
Arxiv, Tech. Rep. 1512.07423, 2015. [Online]. Available: https:
//arxiv.org/pdf/1512.07423.pdf

[10] X. Xu, Y. Sui, H. Yan, and J. Xue, “Vfix: Value-flow-guided precise
program repair for null pointer dereferences,” in Proceedings of the
41st International Conference on Software Engineering, ser. ICSE
’19. Piscataway, NJ, USA: IEEE Press, 2019, pp. 512–523. [Online].
Available: https://doi.org/10.1109/ICSE.2019.00063

[11] J. Bader, A. Scott, M. Pradel, and S. Chandra, “Getafix: Learning to fix
bugs automatically,” Proc. ACM Program. Lang., vol. 3, no. OOPSLA,
Oct. 2019. [Online]. Available: https://doi.org/10.1145/3360585

[12] F. Long, P. Amidon, and M. Rinard, “Automatic inference of code
transforms for patch generation,” in Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, ser. ESEC/FSE 2017.
New York, NY, USA: ACM, 2017, pp. 727–739. [Online]. Available:
http://doi.acm.org/10.1145/3106237.3106253

[13] S. H. Tan, Z. Dong, X. Gao, and A. Roychoudhury, “Repairing crashes
in android apps,” in Proceedings of the 40th International Conference
on Software Engineering, ser. ICSE ’18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 187–198. [Online].
Available: https://doi.org/10.1145/3180155.3180243

[14] F. Long, S. Sidiroglou-Douskos, and M. Rinard, “Automatic runtime
error repair and containment via recovery shepherding,” in Proceedings
of the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI ’14. New York, NY, USA:
ACM, 2014, pp. 227–238. [Online]. Available: http://doi.acm.org/10.
1145/2594291.2594337

[15] T. Gu, C. Sun, X. Ma, J. Lü, and Z. Su, “Automatic runtime recovery
via error handler synthesis,” in Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering, ser. ASE
2016. New York, NY, USA: ACM, 2016, pp. 684–695. [Online].
Available: http://doi.acm.org/10.1145/2970276.2970360

[16] A. Goffi, A. Gorla, M. D. Ernst, and M. Pezzè, “Automatic
generation of oracles for exceptional behaviors,” in Proceedings
of the 25th International Symposium on Software Testing and
Analysis, ser. ISSTA 2016. New York, NY, USA: Association
for Computing Machinery, 2016, p. 213–224. [Online]. Available:
https://doi.org/10.1145/2931037.2931061

[17] S. Mahajan, N. Abolhassani, and M. R. Prasad, “Recommending stack
overflow posts for fixing runtime exceptions using failure scenario
matching,” in Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ser. ESEC/FSE 2020. New York, NY, USA:
Association for Computing Machinery, 2020, p. 1052–1064. [Online].
Available: https://doi.org/10.1145/3368089.3409764

[18] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Automatically
finding patches using genetic programming,” 2009, pp. 364–374.

[19] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch generation
learned from human-written patches,” 2013, pp. 802–811.

[20] S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: Scalable multiline
program patch synthesis via symbolic analysis,” ser. ICSE ’16. New
York, NY, USA: Association for Computing Machinery, 2016, p.
691–701. [Online]. Available: https://doi.org/10.1145/2884781.2884807

[21] T. Lutellier, H. V. Pham, L. Pang, Y. Li, M. Wei, and L. Tan,
“Coconut: Combining context-aware neural translation models using
ensemble for program repair,” ser. ISSTA 2020. New York, NY, USA:
Association for Computing Machinery, 2020, p. 101–114. [Online].
Available: https://doi.org/10.1145/3395363.3397369

[22] C. L. Goues, M. Pradel, and A. Roychoudhury, “Automated program
repair,” Commun. ACM, vol. 62, no. 12, p. 56–65, Nov. 2019.

[23] L. Gazzola, D. Micucci, and L. Mariani, “Automatic software repair: A
survey,” IEEE Trans. Softw. Eng., vol. 45, no. 1, p. 34–67, Jan. 2019.

[24] Y. Wu, S. Wang, C.-P. Bezemer, and K. Inoue, “How do developers
utilize source code from stack overflow?” Empirical Software
Engineering, vol. 24, no. 2, pp. 637–673, Apr 2019. [Online].
Available: https://doi.org/10.1007/s10664-018-9634-5

[25] Q. Gao, H. Zhang, J. Wang, Y. Xiong, L. Zhang, and H. Mei, “Fixing
recurring crash bugs via analyzing q&a sites (t),” in Proceedings
of the 2015 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE), ser. ASE ’15. Washington, DC, USA:
IEEE Computer Society, 2015, pp. 307–318. [Online]. Available:
https://doi.org/10.1109/ASE.2015.81

[26] JD-GUI, “JD-GUI project at commit 0e504af,” 2021. [Online].
Available: https://github.com/java-decompiler/jd-gui

[27] M. Pawlik and N. Augsten, “Efficient computation of the tree edit
distance,” ACM Trans. Database Syst., vol. 40, no. 1, pp. 3:1–3:40,
Mar. 2015. [Online]. Available: http://doi.acm.org/10.1145/2699485

[28] ——, “Tree edit distance: Robust and memory-efficient,” Information
Systems, vol. 56, pp. 157 – 173, 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0306437915001611

[29] E. JDT, “Eclipse JDT,” 2021. [Online]. Available: https://www.eclipse.
org/jdt/

[30] D. Yang, A. Hussain, and C. V. Lopes, “From query to usable code: An
analysis of stack overflow code snippets,” in Proceedings of the 13th
International Conference on Mining Software Repositories, ser. MSR
’16. New York, NY, USA: Association for Computing Machinery,
2016, p. 391–402. [Online]. Available: https://doi.org/10.1145/2901739.
2901767

[31] V. Terragni, Y. Liu, and S.-C. Cheung, “Csnippex: Automated synthesis
of compilable code snippets from q&a sites,” in Proceedings of the 25th
International Symposium on Software Testing and Analysis, ser. ISSTA
2016. New York, NY, USA: ACM, 2016, pp. 118–129. [Online].
Available: http://doi.acm.org/10.1145/2931037.2931058

[32] Java, “JavaDocs.” [Online]. Available: https://docs.oracle.com/javase/8/
docs/api

[33] M. Pawlik and N. Augsten, “APTED algorithm for the Tree Edit
Distance Implemenataion.” [Online]. Available: https://github.com/
DatabaseGroup/apted

[34] C. Parnin and A. Orso, “Are Automated Debugging Techniques Actually
Helping Programmers?” in Proceedings of the International Symposium
on Software Testing and Analysis (ISSTA 2011), Toronto, Canada, July
2011, pp. 199–209.

[35] I. Stack Exchange, “Stack Overflow Dump,” 2019. [Online]. Available:
https://archive.org/details/stackexchange

[36] S. M. et al., “Maestro Evaluation Data.” [Online]. Available:
https://doi.org/10.6084/m9.figshare.11948619

[37] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing
faults to enable controlled testing studies for java programs,” in
Proceedings of the 2014 International Symposium on Software Testing
and Analysis, ser. ISSTA 2014. New York, NY, USA: Association
for Computing Machinery, 2014, p. 437–440. [Online]. Available:
https://doi.org/10.1145/2610384.2628055

11

[38] R. Just, “Defects4J – version 2.0.0.” [Online]. Available: https:
//github.com/rjust/defects4j

[39] R. Bavishi, H. Yoshida, and M. R. Prasad, “Phoenix: Automated
data-driven synthesis of repairs for static analysis violations,” in
Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ser. ESEC/FSE 2019. New York, NY, USA:
Association for Computing Machinery, 2019, p. 613–624. [Online].
Available: https://doi.org/10.1145/3338906.3338952

[40] Z. Qi, F. Long, S. Achour, and M. Rinard, “An analysis of patch
plausibility and correctness for generate-and-validate patch generation
systems,” in Proceedings of the 2015 International Symposium on
Software Testing and Analysis, ser. ISSTA 2015. New York, NY,
USA: Association for Computing Machinery, 2015, p. 24–36. [Online].
Available: https://doi.org/10.1145/2771783.2771791

[41] T. Durieux, M. Martinez, M. Monperrus, R. Sommerard, and J. Xuan,
“Automatic repair of real bugs: An experience report on the defects4j
dataset,” CoRR, vol. abs/1505.07002, 2015. [Online]. Available:
http://arxiv.org/abs/1505.07002

[42] F. Long and M. Rinard, “Staged program repair with condition
synthesis,” in Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, ser. ESEC/FSE 2015. New
York, NY, USA: Association for Computing Machinery, 2015, p.
166–178. [Online]. Available: https://doi.org/10.1145/2786805.2786811

[43] K. Liu, L. Li, A. Koyuncu, D. Kim, Z. Liu, J. Klein, and T. F.
Bissyandé, “A critical review on the evaluation of automated program
repair systems,” J. Syst. Softw., vol. 171, p. 110817, 2021. [Online].
Available: https://doi.org/10.1016/j.jss.2020.110817

[44] J. Cohen, “A Coefficient of Agreement for Nominal Scales,” Educational
and Psychological Measurement, vol. 20, no. 1, p. 37, 1960.

[45] J. R. Landis and G. G. Koch, “The measurement of observer agreement
for categorical data,” Biometrics, vol. 33, 1977.

[46] M. Martinez, T. Durieux, R. Sommerard, J. Xuan, and M. Monperrus,
“Automatic repair of real bugs in java: A large-scale experiment on the
defects4j dataset,” Empirical Software Engineering, vol. 22, no. 4, pp.
1936–1964, Aug. 2017.

[47] D. Lo, N. Nagappan, and T. Zimmermann, “How practitioners perceive
the relevance of software engineering research,” in Proceedings
of the 2015 10th Joint Meeting on Foundations of Software
Engineering, ser. ESEC/FSE 2015. New York, NY, USA: Association
for Computing Machinery, 2015, pp. 415–425. [Online]. Available:
https://doi.org/10.1145/2786805.2786809

[48] A. Begel and T. Zimmermann, “Analyze this! 145 questions for
data scientists in software engineering,” in Proceedings of the 36th
International Conference on Software Engineering, ser. ICSE 2014.
New York, NY, USA: Association for Computing Machinery, 2014, pp.
12–23. [Online]. Available: https://doi.org/10.1145/2568225.2568233

[49] B. A. Kitchenham and S. L. Pfleeger, “Personal opinion surveys,” in
Guide to Advanced Empirical Software Engineering, F. Shull, J. Singer,
and D. I. Sjøberg, Eds. Springer London, 2008, pp. 63–92.

[50] X. Liu and H. Zhong, “Mining stackoverflow for program repair,”
in 2018 IEEE 25th International Conference on Software Analysis,
Evolution and Reengineering (SANER), March 2018, pp. 118–129.

[51] J. Hua, M. Zhang, K. Wang, and S. Khurshid, “Sketchfix: A tool for
automated program repair approach using lazy candidate generation,”
in Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ser. ESEC/FSE 2018. New York, NY, USA:
Association for Computing Machinery, 2018, p. 888–891. [Online].
Available: https://doi.org/10.1145/3236024.3264600

[52] S. Saha, R. K. Saha, and M. R. Prasad, “Harnessing evolution for
multi-hunk program repair,” in Proceedings of the 41st International
Conference on Software Engineering, ser. ICSE ’19. IEEE Press, 2019,
p. 13–24. [Online]. Available: https://doi.org/10.1109/ICSE.2019.00020

[53] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A systematic
study of automated program repair: Fixing 55 out of 105 bugs for $8
each,” in Proceedings of the 34th International Conference on Software
Engineering, ser. ICSE ’12. IEEE Press, 2012, p. 3–13.

[54] Z. Chen, S. Kommrusch, M. Tufano, L.-N. Pouchet, D. Poshyvanyk,
and M. Monperrus, “Sequencer: Sequence-to-sequence learning for end-
to-end program repair,” IEEE Transactions on Software Engineering,
vol. PP, pp. 1–1, 09 2019.

[55] Y. Li, S. Wang, and T. N. Nguyen, “Dlfix: Context-based code
transformation learning for automated program repair,” in Proceedings
of the ACM/IEEE 42nd International Conference on Software
Engineering, ser. ICSE ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 602–614. [Online]. Available:
https://doi.org/10.1145/3377811.3380345

[56] R. Rolim, G. Soares, L. D’Antoni, O. Polozov, S. Gulwani,
R. Gheyi, R. Suzuki, and B. Hartmann, “Learning syntactic
program transformations from examples,” in Proceedings of the
39th International Conference on Software Engineering, ser. ICSE
’17. IEEE Press, 2017, p. 404–415. [Online]. Available: https:
//doi.org/10.1109/ICSE.2017.44

[57] Y. Kimura, T. Akazaki, S. Kikuchi, S. Mahajan, and M. R. Prasad, “Q&A
MAESTRO: Q&A Post Recommendation for Fixing Java Runtime
Exceptions,” in 2021 36th IEEE/ACM International Conference on
Automated Software Engineering (ASE), 2021, pp. 1227–1231.

[58] L. Ponzanelli, G. Bavota, M. Di Penta, R. Oliveto, and M. Lanza,
“Mining stackoverflow to turn the ide into a self-confident programming
prompter,” in Proceedings of the 11th Working Conference on Mining
Software Repositories, ser. MSR 2014. New York, NY, USA: ACM,
2014, pp. 102–111. [Online]. Available: http://doi.acm.org/10.1145/
2597073.2597077

[59] L. Ponzanelli, A. Bacchelli, and M. Lanza, “Leveraging crowd
knowledge for software comprehension and development,” in
Proceedings of the 2013 17th European Conference on Software
Maintenance and Reengineering, ser. CSMR ’13. Washington, DC,
USA: IEEE Computer Society, 2013, pp. 57–66. [Online]. Available:
http://dx.doi.org/10.1109/CSMR.2013.16

[60] L. Ponzanelli, S. Scalabrino, G. Bavota, A. Mocci, R. Oliveto,
M. Di Penta, and M. Lanza, “Supporting software developers with a
holistic recommender system,” in Proceedings of the 39th International
Conference on Software Engineering, ser. ICSE ’17. Piscataway,
NJ, USA: IEEE Press, 2017, pp. 94–105. [Online]. Available:
https://doi.org/10.1109/ICSE.2017.17

[61] T. Zhang, D. Yang, C. Lopes, and M. Kim, “Analyzing and supporting
adaptation of online code examples,” in Proceedings of the 41st
International Conference on Software Engineering, ser. ICSE ’19.
Piscataway, NJ, USA: IEEE Press, 2019, pp. 316–327. [Online].
Available: https://doi.org/10.1109/ICSE.2019.00046

[62] K. Kim, D. Kim, T. F. Bissyandé, E. Choi, L. Li, J. Klein, and Y. L.
Traon, “Facoy: A code-to-code search engine,” in Proceedings of the
40th International Conference on Software Engineering, ser. ICSE ’18.
New York, NY, USA: ACM, 2018, pp. 946–957. [Online]. Available:
http://doi.acm.org/10.1145/3180155.3180187

[63] C. Nagy and A. Cleve, “Mining stack overflow for discovering error
patterns in sql queries,” in Proceedings of the 2015 IEEE International
Conference on Software Maintenance and Evolution (ICSME), ser.
ICSME ’15. Washington, DC, USA: IEEE Computer Society, 2015,
pp. 516–520. [Online]. Available: http://dx.doi.org/10.1109/ICSM.2015.
7332505

[64] B. Xu, Z. Xing, X. Xia, and D. Lo, “Answerbot: Automated generation
of answer summary to developersundefined technical questions,” in Pro-
ceedings of the 32nd IEEE/ACM International Conference on Automated
Software Engineering, ser. ASE 2017. IEEE Press, 2017, p. 706–716.

[65] R. F. G. Silva, C. K. Roy, M. M. Rahman, K. A. Schneider, K. Paixao,
and M. de Almeida Maia, “Recommending comprehensive solutions
for programming tasks by mining crowd knowledge,” in Proceedings
of the 27th International Conference on Program Comprehension,
ser. ICPC ’19. IEEE Press, 2019, p. 358–368. [Online]. Available:
https://doi.org/10.1109/ICPC.2019.00054

[66] K. Cao, C. Chen, S. Baltes, C. Treude, and X. Chen, “Automated
query reformulation for efficient search based on query logs from stack
overflow,” 2021.

12

