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Abstract—This research paper presents AMaizeD: An End
to End Pipeline for Automatic Maize Disease Detection, an
automated framework for early detection of diseases in maize
crops using multispectral imagery obtained from drones. We also
develop a custom hand-collected dataset focusing specifically on
maize crops was meticulously gathered by expert researchers and
agronomists. The dataset encompasses a diverse range of maize
varieties, cultivation practices, and environmental conditions,
capturing various stages of maize growth and disease progression.
By leveraging multispectral imagery, the framework benefits
from improved spectral resolution and increased sensitivity to
subtle changes in plant health. The proposed framework employs
a combination of convolutional neural networks (CNNs) as fea-
ture extractors and segmentation techniques to identify both the
maize plants and their associated diseases. Experimental results
demonstrate the effectiveness of the framework in detecting a
range of maize diseases, including common rust, grey leaf spot
and leaf blight. The framework achieves state-of-the-art perfor-
mance on the custom hand-collected dataset and contributes to
the field of automated disease detection in agriculture, offering a
practical solution for early identification of diseases in maize
crops using advanced machine learning techniques and deep
learning architectures.

Index Terms—Machine Learning, Precision Agriculture

I. INTRODUCTION

Maize holds significant agricultural value in India. With a
production of approximately 28 million metric tons in the
2020-2021 period, this crop is among the most extensively
cultivated in India [1]. Maize holds significant importance in
the agricultural landscape of India, serving as a source of
sustenance, animal fodder, and revenue for cultivators, thereby
bolstering the nation’s economy. The production quantities of
these maize crops are affected by the presence of pests and
diseases. This paper uses a custom maize dataset, and only
the diseases included in this dataset are used. These include
Blight, Common Rust and Gray Leaf Spot. Healthy images
included in the dataset have also been used in this work.

In order to mitigate the impact of diseases and pests on
crops, the agricultural industry has to employ expensive tech-
niques and a range of pesticides [2]. The unsolicited utilization
of chemical methods on a large scale has detrimental effects
on both plant and human health, in addition to causing adverse
impacts on the environment. Additionally, these methods result
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in an escalation of production expenses. Image processing,
however, is a method that can be employed in precision
agriculture to identify the areas of infestation and minimize
the use of pesticides [3].Deep learning, a subfield of machine
learning, has emerged as a powerful technique for automated
image analysis and pattern recognition tasks. Convolutional
Neural Networks (CNNs) have shown remarkable success in
various computer vision applications, including object detec-
tion and classification. In the context of maize disease detec-
tion, CNNs have the potential to learn discriminative features
directly from raw images, enabling accurate and automated
disease identification. By leveraging the hierarchical structure
of CNNs [4], lower-level features such as edges and textures
can be learned in the initial layers, while higher-level features
related to specific disease symptoms can be learned in the
deeper layers. This hierarchical feature extraction allows the
network to capture both local and global patterns, facilitating
robust disease detection even in the presence of variations in
illumination, scale, and orientation. Moreover, deep learning
models can be trained on large-scale datasets, enabling them
to generalize well and handle diverse maize disease classes.
In this paper, we propose a deep learning-based framework
for maize disease detection, leveraging the power of CNNs
to automatically learn and extract meaningful representations
from maize images, thereby providing an efficient and accurate
solution for disease diagnosis and management in maize crops.

II. LITERATURE SURVEY

Plant classification and disease detection have been active
research areas in computer vision and machine learning. The
classification of plants and detection of plant diseases have
significant implications for agriculture, food security, and
environmental sustainability. In recent years, deep learning
has emerged as a powerful tool for plant classification and
disease detection, with numerous studies demonstrating its
effectiveness.

Plant disease detection has also been a popular research
area in recent years. Deep learning-based methods have been
shown to be effective in identifying plant diseases, even in
complex scenarios. For example, Fuentes et al. (2017) [5]
proposed a deep CNN model for the detection of citrus
diseases. Their model achieved a classification accuracy of
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97.33%, outperforming traditional machine learning methods.
In a similar study, Sladojevic et al. (2016) [6] proposed a
deep CNN model for the detection of grapevine diseases.
Their model achieved an accuracy of 97.9%, demonstrating
the effectiveness of deep learning for plant disease detection.

There have also been several studies that have combined
plant classification and disease detection. For example, Noh
et al. (2019) [7] proposed a deep CNN model for the classi-
fication of rice diseases and pests. Their model achieved an
accuracy of 94.58% and was able to classify both the plant
species and the disease or pest affecting the plant. Similarly,
Singh et al. (2020) [8] proposed a deep CNN model for
the identification of maize diseases. Their model achieved an
accuracy of 99.12% and was able to accurately detect multiple
diseases affecting maize plants. In conclusion, deep learning-
based methods, particularly CNN architectures, have shown
great promise in plant classification and disease detection
tasks. The use of deep learning algorithms can significantly
improve accuracy and outperform traditional machine learning
methods. This research paper compares the efficiency of four
CNN architectures, AlexNet [9], GoogLeNet [10], EfficientNet
[11]and Resnet [12] and vision transformer [13] to determine
the best methodology for disease detection. The findings of
this study can contribute to the development of effective
techniques for disease detection in maize crops and aid in
reducing the reliance on expensive and harmful chemical
methods.

A. Contributions

In this paper, our contributions are the following:
• We introduce a novel end to end pipeline for disease de-

tection for maize crops with minimal human intervention.
• We collect and inference on a custom hand collected

dataset that captures different phases of infected and non
infected maize crops and leverage proper combination of
data augmentation techniques to preserve features.

• We provide comparative study of different feature extrac-
tor architectures and conclude the GoogleNet as the most
appropriate network for our task.

• Our pipeline achieves state of the art results on both
PlantVillage Dataset and manually collected datasets with
minimum human intervention.

III. METHODOLOGY USED

A convolutional neural network (CNN) is commonly used
for image and video processing. The key feature of a CNN is
the convolution operation, which enables the network to learn
spatial features from the input image. In convolutional neural
networks (CNNs), the input image is passed through a series
of convolutional layers, where each layer consists of filters
that progressively learn more intricate features. Subsequently,
the output is passed through pooling layers that decrease the
spatial dimensionality of the output. This makes them excellent
for extraction of features from the data.

The convolution operation involves sliding a small window
called a filter or kernel over the input image, which performs

a dot product between the filter and the input pixels contained
within the window, resulting in the generation of a single
output value. The filter is then shifted to the next position
in the input image, and the process is repeated, generating a
2D output map. The training process involves the collection
of filter parameters through backpropagation, which serves to
optimize the filter values in order to minimize the discrepancy
between the predicted output and the ground truth labels.

The activation function plays an essential role in introducing
nonlinearity to the network, allowing it to learn complex
patterns in the input data. CNN’s convolutional layers extract
features from the input data by performing a linear transfor-
mation, where each neuron in the output is a weighted sum
of the input pixels. Without nonlinearity, the network could
only learn linear transformations of the input data, which is
frequently insufficient for image and video processing tasks.
The activation function is applied element-wise to the output
of each neuron in the convolutional layer. Rectified Linear
Unit (ReLU) is the most frequently used activation function
in CNNs as it is found to be quicker to train. The three
architectures used in this work are as follows:

A. AlexNet

In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey
Hinton proposed the architecture of AlexNet, which is a
convolutional neural network (CNN). The model emerged as
the champion of the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC), surpassing the performance of the pre-
vious state-of-the-art models by a significant margin. AlexNet
architecture (Fig. 1) consists of 5 convolutional layers, 3
max-pooling layers, 2 normalization layers, 2 fully connected
layers, and 1 softmax layer. Each convolutional layer consists
of convolutional filters and the nonlinear activation function
ReLU.

Fig. 1. AlexNet Architecture

The input to the network is a 227x227 RGB image, which
is first preprocessed by subtracting the mean RGB value of the
training set, and the final output is a probability distribution
over the 1000 different image categories. In addition, the
architecture employs several regularization techniques, includ-
ing dropout and data augmentation, to prevent overfitting and
enhance generalization performance.

B. GoogleNet

GoogleNet, also known as Inception v1, is a deep con-
volutional neural network architecture developed in 2014 by



Google researchers for large-scale image recognition tasks.
The GoogleNet architecture (Fig. 2) consists of 22 layers
with a unique design that incorporates multiple branches of
convolutional layers of varying sizes, enabling the network
to capture features at multiple scales. The most innovative
aspect of the GoogleNet architecture is the inception module,
9 of which are used, which reduces the number of network
parameters while increasing its depth. The inception module
combines 1x1, 3x3, and 5x5 filter sizes in parallel, allowing the
network to capture both local and global features. Each filter’s
output is concatenated along the depth dimension, resulting in
an output with a greater depth. An important aspect of this
architecture is the use of a global average pooling layer rather
than entirely connected layers at the network’s endpoints. This
significantly reduces the number of network parameters and
increases its robustness to input size variations.

Fig. 2. GoogleNet Architecture

C. EfficientNet

EfficientNet is an architecture and scaling method for con-
volutional neural networks that scales all dimensions of height,
width, and depth uniformly using a compound coefficient.
Instead of scaling width, depth, or resolution arbitrarily, com-
pound scaling scales all three using a fixed set of scaling
coefficients, as shown in Fig. 4. This distinguishes it from the
other models examined. EfficientNet is based on the baseline
network created through the neural architecture search utiliz-
ing the AutoML MNAS framework. The network is optimized
for maximum precision but is penalized if it is computationally
intensive. It is also penalized for slow inference time when the
network takes a lot of time to make predictions.

Fig. 3. EfficientNet Architecture

The total number of layers in EfficientNet-B0 is 237 which
are divided into 5 modules. These modules further combine
to form sub-blocks, which then combine to form blocks.

D. ResNet

ResNet is a convolutional neural network (CNN) that uses
”skip connections” to solve the vanishing gradient problem,

Fig. 4. EfficientNet Architecture

enabling the creation of much larger neural network models.
The process of backpropagation is used to train neural net-
works. This method employs gradient descent, shifting the loss
function downward and determining its minimum weights. If
multiple layers are employed, repeated multiplications reduce
the gradient until it ”disappears,” and performance reaches a
plateau or degrades with each additional layer. This is the
problem of vanishing gradients. ResNet stacks multiple iden-
tity mappings (convolutional layers that initially do nothing),
bypasses these layers, and reuses the activations from the
previous layer. Skipping accelerates initial training by reducing
the number of network layers. Then, when the network is
retrained, all layers are expanded, and the residual parts of the
network are permitted to explore a larger portion of the input
image’s feature space. Most ResNet models skip two or three
layers at a time, with batch normalization and nonlinearity in
between.

Fig. 5. EfficientNet Architecture

E. Vision Transformer

Vision Transformer is a deep learning architecture for image
classification introduced by Dosovitskiy et al. in a 2020 paper.
It is based on the Transformer architecture, which was origi-
nally created for tasks involving natural language processing.
Each transformer block in the Vision Transformer architecture
includes a multi-head self-attention mechanism and a position-
wise completely connected feedforward network. Patches ex-
tracted from the input image are flattened and projected into a
lower-dimensional embedding space using a linear projection
layer as input to the Vision Transformer. The self-attention
mechanism of the Transformer block enables the network to
model global dependencies between different regions, enabling
it to capture spatial relationships between various image
components. The position-wise feedforward network is used
to introduce nonlinearity into the network and transform the



features between layers. An important innovation of the Vision
Transformer architecture is the inclusion of a ”class token”
to the input embedding to represent the overall class of the
input image. This permits the network to perform classification
duties without the need for additional fully connected layers
at the network’s endpoint.

Fig. 6. Transformer Architecture

We compare these networks for feature extraction and em-
ploy an ensemble [14] approach for the final output. Ensemble
learning combines the predictions of multiple models to make
a collective decision, often resulting in improved accuracy and
robustness. We use Gradient Boosted Model called XGBoost
[15] that iteratively trains weak models, typically decision
trees, in a sequential manner, with each subsequent model
attempting to correct the mistakes of the previous model. The
final prediction is made by aggregating the predictions of all
the weak models.. We further use triple loss [16] as a metric
learning technique that aims to enhance the discriminative
power of the learned feature representations. By incorporating
triple loss into our ensemble, we enable the models to learn
more effective feature embeddings that capture the underly-
ing structure of the data and facilitate better discrimination
between classes.

The triple loss is defined by the anchor, positive, and neg-
ative samples, with the objective of minimizing the distance
between the anchor and positive samples, while maximizing
the distance between the anchor and negative samples. This
encourages the models to pull together samples from the same
class and push apart samples from different classes, effectively
enhancing inter-class separability. By utilizing triple loss in the
ensemble learning process, we aim to enhance the ensemble’s
capability to distinguish between different classes and improve
the overall classification accuracy.

IV. THE DATASET

The dataset (Fig. 7) used for this work is a custom maize
dataset. It has 4,251 images divided into 4 categories, 3 of
which are types of diseases (blight, common rust, and gray leaf
spot), and one category containing images of healthy leaves.
To create the custom collected maize dataset, high-resolution
images of maize plants were acquired using a digital camera
with a resolution of 12 megapixels. The imaging process

was performed under controlled environmental conditions,
with considerations made for lighting and weather conditions.
Images of maize plants were captured at different growth
stages, from seedlings to mature plants, and were collected
from different locations in different regions. Additionally, the
dataset was created to include multiple varieties of maize
plants, each with varying levels of resistance to common
diseases. We acquire these images through drones carrying
multispectral sensors that with the use of vegetation indices
detect distressed regions on the field, cutting down the manual
effort from sampling from every tree to a minimum percentage
of them. We then use instance segmentation techniques to
identify what parts of the field we wish to collect leaf samples
from and acquire images from those parts of field.

The acquired images were labeled manually by domain
experts using a standard labeling protocol of identifying and
marking images of maize plants affected by various diseases,
including leaf blight, gray leaf spot, and common rust. Each
image was labeled with the corresponding disease, and the
labeling process was repeated multiple times by different
experts to ensure the accuracy of the labels. We finally acquire
1276 images of commun rust, 634 images of Gray Leaf Spot,
1126 images of Blight and 1215 Healthy images.

Image classification models, particularly in the domain of
disease detection in plants, greatly benefit from the application
of data augmentation [17] techniques. These techniques play a
vital role in enhancing the performance and robustness of the
models by introducing variations and expanding the diversity
of the training dataset. Previous studies in this field often
overlooked the incorporation of data augmentation, limiting
the models’ ability to generalize to real-world scenarios.

Traditional approaches to disease detection in plants relied
on small and homogeneous datasets, resulting in models that
struggled to capture the full complexity and variations present
in plant diseases. However, in our study, we recognize the
importance of data augmentation techniques as a means to
address this limitation. By employing a comprehensive set of
augmentation strategies, including rotation, flipping, zooming,
scaling, cropping, translation, noise injection, color jittering,
elastic transformation, occlusion, and channel shifting, we
ensure that our model learns from a diverse range of images,
capturing the inherent variability of plant diseases.

These data augmentation techniques serve to introduce
variations in the dataset, simulating real-world scenarios such
as changes in scale, orientation, viewpoint, lighting conditions,
and occlusions. Rotation and flipping enable the model to learn
from images with different orientations, while zooming and
scaling account for the varied sizes at which plant diseases
may occur. Translation introduces positional shifts, mimicking
different positions within the frame. Noise injection and color
jittering simulate real-world variations in image attributes.
Elastic transformation models small distortions that can occur
due to various factors, while occlusion provides the model
with exposure to partially occluded instances. Channel shifting
alters the color distribution, making the model more robust to
variations in color.



By augmenting the dataset using these techniques, our study
ensures that our model is exposed to a more diverse and
representative set of training examples. This diverse training
set allows the model to learn a more comprehensive set of
features and patterns, enabling it to better generalize and
accurately classify plant diseases. As a result, our study
demonstrates improved performance compared to earlier ap-
proaches, achieving higher accuracy and robustness in disease
detection tasks.

Fig. 7. Dataset Snapshot

A. Results

Alexnet
The model was trained for 30 epochs, saved, and then

run again for 15 epochs. The batch size used was 4, and
the learning rate was 1e-5. The final results obtained are as
follows:

Fig. 8. AlexNet Results

GoogleNet
The model was trained and tested by running it with 50

epochs on a batch size of 16. The learning rate was set at
0.001, and momentum was set at 0.9. To prevent overfitting,
the images were randomly rotated horizontally while loading
into the train loader. With each epoch, a train cycle and a test
cycle were run, resulting in the loss function and accuracy

of the model. The model was trained for 50 epochs. The
final accuracy of the testing set received was 99.90%, and the
best accuracy achieved was 100%, making it the most ideal
architecture in terms of accuracy.

Fig. 9. GoogleNet Results

Vision Transformer
The transformer was run for 5 epochs, which took 15 hours.

The batch size used was 32, and the learning rate was 2e-5.
The final accuracy on the testing set received was 99.23

Fig. 10. Vision Transformer Results

EfficientNet
The model was trained for 25 epochs. The final and best

accuracy on the testing set received was 99.95%. This value
stagnated for 5 epochs. The batch size was set at 32, the
learning rate at 3e-3, and the momentum at 0.9. The number
of classes was 4. The final and best accuracy on the testing
set received was 97.5%. This value stagnated for 3 epochs.

Fig. 11. EfficientNet Results

ResNet-50
The model was trained for 35 epochs. The batch size used

was 16, and the learning rate was 1e-3. The final validation
accuracy obtained was 97.66%.

V. CONCLUSIONS

AMaizeD: An End to End Pipeline for Automatic Maize
Disease Detection addresses the challenges faced by deep
learning models in automatic disease detection, particularly
when applied to real-world images. We have demonstrated



Fig. 12. Resnet Results

TABLE I
OVERALL COMPARISON OF MODEL PERFORMANCES

Model Name Test Accuracy (%) Model Loss
AlexNet 93.5 0.175
GoogleNet 99.8 0.0637
EfficientNet 97.50 0.0138
ResNet 97.66 0.0961
Vision Transformer 99.23 0.023

that the GoogleNet architecture serves as a powerful feature
extractor, exhibiting superior performance in classifying dis-
eases in agricultural crops. Moreover, to further enhance the
accuracy and robustness of our disease detection system, we
employed ensemble learning with XGBoost. This combination
not only achieved state-of-the-art results but also showcased
the potential for obtaining exceptional performance with min-
imal human intervention. The utilization of ensemble learning
techniques allowed us to leverage the collective decisions of
multiple models, providing a more comprehensive and accu-
rate classification outcome. Notably, while newer architectures
such as the Vision Transformer show promise in matching the
accuracies of conventional CNN models, their computationally
intensive nature and data requirements make them less prac-
tical for real-world applications. Overall, our study highlights
the efficacy of combining the GoogleNet feature extractor with
ensemble learning using XGBoost, yielding impressive results
and reducing the need for extensive human intervention in the
disease detection of maize crops process.
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