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Abstract—The contribution focuses on the identification of
short term room temperature prediction models using k-step
ahead prediction error minimization (PEM). In the first part
of the paper we describe the general identification problem
and summarize the k-step PEM-algorithm for discrete time
Hammerstein systems. In the second part the k-step ahead
approach is applied to measured data of a conference room and
compared to the standard 1-step PEM approach. The results
indicate, that k-step ahead approach can indeed lead to better
prediction performance in this particular practical application.

Index Terms—system identification, building, hammerstein,
model predictive control

I. INTRODUCTION
In the recent years model predictive control (MPC) has

gained a lot of interest in the building automation sector
[1]–[5]. Especially predictive control of the integrated room
automation (IRA) has been of constant interest [6], [7], which
requires an accurate dynamic model for the short-term tem-
perature prediction of the considered room.

A purely physically motivated modeling approach using
energy balance equations is often problematic due to the
unavailability of accurate parameters, such as heat transfer
coefficients and air exchange rates. In contrast system identi-
fication has proven to be an adequate technique for estimating
accurate dynamic models from actual process data [8]–[10].

Identification of dynamic systems for the purpose of control
design has a long history in the field of control theory. In
the past a variety of different identification methods such
as subspace identification, instrumental variable methods, or
prediction error minimization (PEM) had been developed. Due
to the availability of appropriate algorithms and especially
because of its favorable statistical properties, PEM is one of
the most frequently applied identification methods for linear
time-invariant (LTI) systems.

In most PEM applications the parameter estimation is per-
formed by minimization of the mean square of 1-step ahead
prediction errors. It has been shown that 1-step PEM is an
efficient estimator and thus in theoretical analysis leads to

best 1-step and k-step prediction performance [11]. However
in many practical situations this will not hold true, since the
efficiency statement relies on the assumptions of gaussian
distributed innovations and further it is assumed that the
description of the actual process is within considered model
set [12]. From a practical standpoint these assumptions can be
more or less restrictive, thus PEM identification using a k-step
or a multi-step criterion can be desirable in practice.

In this contribution we summarize PEM identification using
k-step criterion for general Hammerstein systems (see e. g.
[13], [14], and [15] for other identification methods). We apply
this method to actual data gathered from a conference room
and show that k-step PEM can indeed be beneficial in terms
of prediction accuracy. Further we demonstrate the importance
of the initialization problem (see [16], [17]) of the optimal
predictor in our particular application. The article is organized
as follows: In Sections 2 and 3 we outline the modeling
assumptions and illustrate the algorithm for estimating the
system parameters on the basis of a k-step mean square error
(MSE) criterion. In the following section the algorithm is
applied to data gathered from a conference room. Further the
results are compared to a standard 1-step PEM approach, while
in the last section a summary of our results and the focus of
next research topics are given.

II. MODELING ASSUMPTIONS

We assume a general single-input single-output (SISO) Ham-
merstein system

A(q, θ)y[t] = q−d
B(q, θ)

F (q, θ)
g(u[t], η) +

C(q, θ)

D(q, θ)
e[t], (1)

where t = 1, 2, ..., N denotes the discrete time and g(u[t], η) is
a continuously differentiable static nonlinearity parameterized
by an unknown parameter vector η. Furthermore q denotes the
time shift operator, thus qy[t] = y[t+1] and q−1y[t] = y[t−1]



respectively, and the innovation e[t] is a sequence of uncorre-
lated random numbers with zero mean and unknown variance
σ2
e . The polynomials A(q, θ), C(q, θ), D(q, θ) and F (q, θ)

are assumed to be monic, whereas B(q, θ) is of no specific
structure. The corresponding polynomial degrees are denoted
by na, nb, nc, nd, and nf , where the parameters ai, bi, ci, di,
and fi are summarized in the parameter vector θ. Furthermore,
due to the stability of the optimal prediction (see Section III),
the polynomials C(q, θ) and F (q, θ) are allowed to have roots
inside the unit circle only (see Section III). The structure of
the considered system (1) is depicted in Figure 1.

Fig. 1. Structure of considered Hammerstein system with G(q, θ) =
q−dB(q,θ)
A(q,θ)F (q,θ)

and H(q, θ) =
C(q,θ)

A(q,θ)D(q,θ)

III. IDENTIFICATION

A. Optimal k-step prediction

As common in PEM the parameters θ and η of (1) will be
estimated by minimization of the mean squared error of the
optimal k-step ahead prediction ŷ[t|t− k, θ, η]1

(θ̂, η̂) = arg min
θ,η

1

N − ts + 1

N∑
t=ts

ε2[t|t− k, θ, η], (2)

where the prediction error sequence is defined by

ε[t|t− k, θ, η] = y[t]− ŷ[t|t− k, θ, η] (3)

and ts > 1 is an appropriately selected integer value (see
Section III-C). To derive an expression for the (MSE)-optimal
k-step prediction ŷ, it is useful to rewrite the stochastic part
of (1) such that2

y[t] =
q−dB(q)

A(q)F (q)
g(u[t]) +

C(q)

A(q)D(q)
e[t]

=
q−dB(q)

A(q)F (q)
g(u[t]) + q−k

R(q)

A(q)D(q)
e[t]

+ S(q)e[t], (4)

where

S(q) = 1 + s1q
−1 + . . .+ sk−1q

−k+1 (5)

1The term ŷ[t|t− k] denotes the prediction of the system output at time t
given the output measurements up to time t−k. This means that the prediction
ŷ[t|t − k] at time t is allowed to depend on measured output values up to
t− k only, whereas all values of the input u up to the current time t can be
used.

2The parameter vectors θ and η will be suppressed for clarity.

contains the first k elements of the series expansion of
C(q)/A(q)D(q) in q−1 and q−kR(q)/A(q)D(q) is the re-
mainder (see [11], [12], [18]). The polynomial R can be
expressed as

R(q) = r0 + r1q
−1 + . . .+ rnr

q−nr , (6)

where nr = max(na + nd − 1, nd − k). From (1) we can
substitute

e[t− k] =
A(q)D(q)

C(q)

(
y[t− k]− q−dB(q)

A(q)F (q)
g
(
u[t− k]

))
(7)

into (4), which yields

y[t] =
q−dB(q)

A(q)F (q)
g(u[t]) +

R(q)

C(q)

(
y[t− k]

− q−dB(q)

A(q)F (q)
g
(
u[t− k]

))
+ S(q)e[t]

=
q−dB(q)D(q)S(q)

C(q)F (q)
g(u[t]) +

R(q)

C(q)
y[t− k]

+ S(q)e[t], (8)

where the relation C(q)−q−kR(q) = A(q)D(q)S(q) has been
used (cf. (4)). The term S(q)e[t] depends only on the values
of e from t to t− k+ 1 (cf. (5)) and is the only unpredictable
part in Equation (8) at time t− k. We thus conclude that

ŷ[t|t− k] =
q−dB(q)D(q)S(q)

C(q)F (q)
g(u[t]) +

R(q)

C(q)
y[t− k] (9)

is the expression for the optimal k-step ahead prediction3 at
time t− k. Putting (9) into (3) we obtain

C(q)F (q)ε[t|t− k, θ, η] = A(q)D(q)F (q)S(q)y[t] (10)

− q−dB(q)D(q)S(q)g(u[t]),

which is the filter that needs to be implemented in order to
estimate the k-step ahead prediction error sequence in (2).

Note that in case of k = 1, i. e. S(q) = 1, we obtain
standard 1-step PEM. We can thus regard k-step PEM as 1-
step PEM by filtering y[t] and g(u[t]) through the MA-prefilter
S(q). Of course, from the estimation point of view, prefiltering
of the data is not possible, since S(q) depends on the unknown
coefficients of C(q), D(q) and A(q).

B. Gradient

In general the optimization problem (2) defines a nonlinear
least squares (NLS) problem4. In order to solve the problem
efficiently, analytic expressions for the gradients of the resid-
uals ε[t|t− k, θ, η] in (10) w. r. t. the parameter vectors θ and
η are needed.

Since the derivatives of ε[t|t − k] will depend on the
coefficients of the filter S(q), it is necessary to derive explicit

3The formal proof is conceptually similar to the proof for ARMA Models
given in [18].

4Precisely speaking Eq. (2) is a NLS problem with nonlinear inequality
constraints, since the roots of C(q) and F (q) are allowed to have roots inside
the unit circle only. In case of nc ≤ 2 and nf ≤ 2 these restrictions can be
expressed as a set of linear inequality constraints.



expressions for the coefficients sj (j = 0, . . . , k − 1), which
leads to a system of nonlinear equations that can be solved
iteratively:

sj = cj −
min(j,n)∑
i=1

pisj−i j = 1, . . . , k − 1; s0 = 1 (11)

The partial derivatives of sj w. r. t. the coefficients of A(q),
C(q) and D(q) can then be written as

∂sj
∂al

= −
min(j,n)∑
i=1

∂pi
∂al

sj−i +
∂sj−i
∂al

pi

∂sj
∂dl

= −
min(j,n)∑
i=1

∂pi
∂dl

sj−i +
∂sj−i
∂dl

pi (12)

∂sj
∂cl

= 1︸︷︷︸
if j=l,

0 otherwise

−
min(j,n)∑
i=1

∂sj−i
∂cl

pi.

Here pi are the coefficients of P (q) = A(q)D(q) and thus
∂pi
∂al

= di−l and ∂pi
∂dl

= ai−l if 0 ≤ i− l ≤ n and 0 otherwise.
Next we define the derivatives of S(q) w. r. t. its parameters

∂S(q)

∂ai
=
∂s1

∂ai
q−1 + . . .+

∂sk−1

∂ai
q−k+1, (13)

where ∂S(q)/∂ci and ∂S(q)/∂di are defined similarly.
Finally we can derive expressions for the gradients ∂ε/∂θ

and ∂ε/∂η of the sequence ε[t]

CF
∂ε[t]

∂ai
=
(
ADF

∂S

∂ai
+ q−iDFS

)
y[t]

− q−dBD ∂S

∂ai
g(u[t])

CF
∂ε[t]

∂bi
= −q−d−iDSg(u[t])

CF
∂ε[t]

∂ci
= ADF

∂S

∂ci
y[t]− q−dBD∂S

∂ci
g(u[t])

− Fε[t− i] (14)

CF
∂ε[t]

∂di
=
(
ADF

∂S

∂di
+Aq−iFS

)
y[t]

− q−dB
(
D
∂S

∂di
+ q−iS

)
g(u[t])

CF
∂ε[t]

∂fi
= ADSy[t− i]− Cε[t− i]

CF
∂ε[t]

∂ηi
= −q−dBDS∂g(u[t])

∂ηi
,

where the arguments θ, η and q have been discarded for clarity.

C. Initial conditions

While implementing the filters (10) and (14) the question of
choice of suitable initial conditions arises. If the initial values
are not chosen carefully, the prediction error sequence ε[t] in
(10) can have large transients, which can lead to a significant
bias and/or a decrease of accuracy of the parameter estimates
θ̂ and η̂ [16], [17].

Denoting the sequence on the right hand side of Equation
(10) by w[t] we can express (10) by

C(q)F (q)︸ ︷︷ ︸
L(q)

ε[t] = w[t], (15)

where nl = nc + nf . Because the sequence w[t] is obtained
by MA-filtering of y[t] and g(u[t]) it is easy to verify that
na+nd+nf+k−1 and d+nb+nd+k−1 initial conditions will
be needed to compute w[t]. Since the indexing of y and u starts
at 1 by definition, it is advisable to evaluate the cost function
(2) starting from time ts = max(na+nd+nf , d+nb+nd)+k.

Due to the fact that (15) is an AR-filter with input sequence
w[t], nl = nc + nf initial conditions of ε[t] for t = ts −
nl, . . . , ts − 1, need to be chosen. For 1-step PEM there have
been proposed different methods for the initialization, which
can be used for k-step PEM as well:

1) All initial values of ε[t] are set to 0 for t < ts.
2) Compute the initial conditions such that the first nc+nf

samples of the predictor ŷ[t] match the measured data
y[t].

3) Include initial values into the parameter vector and
estimate them together with θ and η.

4) Estimate initial conditions using backforecasting proce-
dure described in [16], [17].

5) Compute the initial conditions during the evaluation of
the cost function using least squares (LS) approach.

The first and the second method are conceptually simple to
implement, but can lead to bad results if the predictor filter
(9) has poles close to the unit circle. In practice this problem
often appears for output error models or if a k-step criterion
is used in order to estimate the model. From the theoretical
point of view the third procedure is preferable, because it
obviously should lead to the lowest value of the cost function
(2). However it can increase the dimension of the parameter
vector significantly, especially if multiple datasets are used for
the estimation, since for each set independent initial conditions
need to be defined. Thus, in practice, the methods 4 and 5
are preferable. The backforecasting procedure is discussed in
[16], [17] can be used similarly for a k-step criterion as well,
whereas the last method will be discussed below.

In order to estimate the initial conditions using LS method,
it is helpful to transform (15) to state space form. Defining
the state vector to x[t] =

(
ε[t− 1], . . . , ε[t− nl]

)>
we

can express (15) as

x[t+ 1] =


−l1 −l2 · · · −lnl

1 0 · · · 0
...

. . .
...

...
0 · · · 1 0


︸ ︷︷ ︸

A

x[t] +


1
0
...
0


︸ ︷︷ ︸
B

w[t]

ε[t] =
(
1 0 · · · 0

)︸ ︷︷ ︸
C

x[t] + 1︸︷︷︸
D

w[t]. (16)

Propagating (16) forward in time yields a system of linear
equations

ε = Ψε0 + Ωw, (17)



where ε = (ε[ts], . . . , ε[N ])>, ε0 = (ε[ts−1], . . . , ε[ts−nl])>,
w = (w[ts], . . . , w[N ])> and

Ψ =


CA
CA2

...
CAÑ

 Ω =


D 0 · · · 0
CB D · · · 0

...
...

. . . 0

CAÑ−2B · · · CB D

 . (18)

Here Ψ is called the (extended) observability matrix, Ω is the
Toeplitz matrix containing the Markov parameters CB, CAB,
CA2B, . . . of the system [19] and Ñ = N − ts + 1.

Since ε[t] is assumed to be a white noise sequence with
zero mean the LS-estimate

ε0 = −
(
ΨΨ>

)−1
Ψ>
(
Ωw
)

(19)

is an efficient estimator of the initial conditions ε0.
In order to obtain the initial conditions ∂ε[t]/∂θ and

∂ε[t]/∂η (t = ts−nl, . . . , ts−1), it is necessary to differentiate
(15), which leads to

L(q)
∂ε[t]

∂θi
=
∂w[t]

∂θi
− ∂L(q)

∂θi
ε[t], (20)

where ∂w[t]/∂θi denotes the derivative of w[t] w. r. t. an
element of the parameter vector θ. Similarly, by transformation
to state space form, one can obtain the vector of initial
conditions

∂ε0

∂θi
= −

(
ΨΨ>

)−1
Ψ>
(
Ω
∂w

∂θi

)
, (21)

where ∂ε0/∂θi = (∂ε[ts − 1]/∂θi, . . . , ∂ε[ts − nl]/∂θi)>.

IV. APPLICATION

In this section we apply the k-step PEM to actual data gathered
from a conference room. First a brief setup description is
given (see [10] for a thorough description), whereas in the
subsequent part the actual identification results are presented
and compared to the standard 1-step PEM approach.

A. Experimental Setup

The considered conference room is located in the ground floor
of Fraunhofer IIS/EAS in Dresden and is part of a massive
office building, which was constructed in the late 1950’s. A
scheme of the considered room is depicted in Figure 2.

In order to estimate a model for the room temperature
y[t] := ϑr[t] the following measured input signals were
available:

1) Heating power Q̇h[t] [kW] supplied by the radiator
heating

2) Cooling power Q̇c[t] [kW] supplied by the fancoils
3) Outside temperature ϑout[t] [◦C]
4) Solar radiation Q̇sol[t] [W/m2] on a horizontal plane,

azimuth angle αaz[t] [◦] and height αh[t] [◦] of the sun
Figure 3 illustrates an 18h long exemplary batch of data
recorded in November 2015. Observe that the room temper-
ature sensor shows significant quantization noise with a step
size of approx. 0.32K. Notice further that the measurements of
the heating power show erroneous peaks at the beginning of

Fig. 2. Schema of considered conference room
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Fig. 3. Recorded data from November 2015

each heating period (see Fig. 3), which have been ignored
throughout the paper and are caused by the measurement
principle. The reason for this behavior is, that the difference of
the supply and return temperature, which are measured before
and after the radiators, is comparably high at the beginning
of each heating period, because cool water is stored in the
radiators. Once they had been flowed completely with ”fresh”
heating medium, the measurement of the heating power drops
instantly and displays reliable values.

B. Model setup

Since a linear relation between the signals Q̇h, Q̇c, ϑout and
the room temperature can be assumed, (1) - (3) will be used
directly as inputs to the LTI block G(q, θ), whereas the signals



(4) are used to calculate the solar gain in the room5 (see [10]
for further discussion):

g4(u, η) =

{
Q̇sol[t]sgm(t, η) cos Θ[t]

sinαh[t] , for Θ ≤ π
2 , αh > 0

0, otherwise
(22)

Here Θ denotes the angle between the normal vector of the
window and the vector pointing into the center of the sun, that
can be calculated by

cos Θ(t, η) = cosαh[t] sinβw cos(αaz[t]− γw)
+ sin(αh[t]) cos γw

, (23)

where the known angles γw and βw specify orientation of
the window surfaces with respect to geographic north and the
surface of the earth. Further the sigmoid function

sgm(t, η) =
1

1 + e−δ(αh[t]−αh0)
(24)

is used to describe the shading of the sun by the buildings and
trees in front of the conference room (see Fig. 2), where δ and
αh0 are scaling/shifting parameters of the sigmoid function.

C. Identification

In order to estimate a model of the room recorded data
from the time period of September 2015 to September 2016
was considered. Due to obvious sensor faults (stuck sensor
values) it was necessary to sort out corrupted data. Further,
since the room has an binary occupancy sensor, we were
able to preselect data of the unoccupied room (see [10] for
accurate description of the room), resulting in 19176 samples
with sampling time Ts = 5min (≈ 66.6 days). The data
was distributed on 98 datasets with minimum length of 4h,
were 2/3 of the datasets were utilized for estimation of the
parameters θ and η, while the remaining data was used for
cross-validation. The solution of the optimization problem
(2) for the prediction horizon k = 12 (1h) was performed
with the LevenbergMarquardt algorithm, were the initial guess
for θ was computed by pseudo-linear regression algorithm
(ARX/ARMAX/BJ) and instrumental variable (OE) method,
respectively (see [11] and [20]).

Figure 4 illustrates the mean absolute error (MAE) of k-
step ahead prediction errors on the crossvalidation datasets
for k = 1 and k = 12 as a function of the model complexity
n for different parameterizations of G(q, θ) and H(q, θ). Here
n denotes the equal orders of the numerator and denominator
degrees of G(q) and H(q). Thus for the ARMAX structure
n = na = nb,i = nc and nf = nd = 0 were assumed (i =
1, . . . , 4). Notice that the Box-Jenkins (n = nb,i = nf =
nc = nd and na = 0) and the output error (n = nb,i = nf
and na = nc = nd = 0) structures were parametrized by equal
denominator polynomials F (q) for all 4 inputs of G(q, θ).

5The distinction of cases in Equation (22) is due to the fact, that for angles
Θ(t) > π/2 the sun is not visible from the windows of the room and
thus no direct radiation can enter through the windows. Notice furthermore
that in some references the global radiation is split up to direct and diffuse
radiation, which was ignored throughout the paper because of its small
expected influence.

Figure 4 clearly shows that ARX structure is only suitable
for long prediction horizons if the model order is chosen
high enough, but generally performs well for 1-step ahead
prediction. This is an expected behavior, since the ARX struc-
ture typically attenuates high frequencies [21]. Box-Jenkins
and ARMAX structures perform good for 1- and for 12-step
ahead predictions, where BJ structure has clear advantages for
n ≤ 4 (This is not surprising since BJ structures contain more
adjustable parameters for equal n). Notice that ARMAX and
BJ Models of degree ≥ 4 lead to a MAE of ≈ 0.136K for
an prediction horizon of 1h. Since the output error structure
has an constant frequency-weighting it shows almost similar
prediction performance for k = 1 and k = 12. Further we’d
like to mention, that OE and BJ structures often lead to nu-
merical problems during the optimization procedure, whereas
for ARX and ARMAX models the optimization procedure is
less problematic6.

1 2 3 4 5 6 7 8 9 10
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0.2
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0.35
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BJ

OE

Fig. 4. Mean absolute error (2) on the cross-validation datasets as a function
of order n of G(q, θ) and H(q, θ) for k = 1 (dashed) and k = 12 (solid).

Figure 5 illustrates the prediction performance on the cross-
validation datasets for 6 estimated ARMAX-models with n =
4. It is clearly visible that k-step ahead criterion can indeed
be beneficial in terms of prediction accuracy, especially if the
initial values of the residual filter (10) are chosen to be 0
(initialization method (1)). The plot further demonstrates the
high relevance of the initialization procedure of the residual
filter (10), which is due to the fact, that multiple relatively
short datasets (4 − 60h) had been used for identification. It
can also be seen, that comparing to the LS-initialization, the
backforcasting procedure leads to very similar results.

V. CONCLUSION

In this paper we demonstrated an approach for k-step iden-
tification of discrete-time Hammerstein models. Additionally
we applied the algorithm to actual measured data of an unoc-
cupied room and showed that the estimated models achieve a

6This statement basically corresponds to the reported behavior in [21] and
[22] for 1-step PEM.
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Fig. 5. MAE (2) on the cross-validation datasets as a function of prediction
horizon for 6 different ARMAX models with n = 4, identified with 1-step
and 12-step criterion, and different initialization methods of (10) (see Section
III-B).

reasonable prediction performance. We further compared the
k-step criterion to standard 1-step PEM and saw that a k-
step criterion can indeed be beneficial in terms of prediction
accuracy.

However, for actual MPC applications of the integrated
room automation, still important issues need to be solved.
First, due to the lack of heat meters, the heating and cooling
powers Q̇h[t] and Q̇c[t] are usually not directly measurable in
practical setups and can not be used as actual control variables
for the process. Instead the supply temperature of the heating
circuit and the valve positions of the thermostats should be
used, which technically leads to bilinear identification and
control problems.

Additionally in this contribution we only investigated the
prediction performance of the model in case of an unoccupied
room. The question how well the model performs in case of
occupancy, particularly depends on the size of the room and
the number of people, for which in practice usually no data
is available. From the identification point of view the room
occupancy represents an unknown input to the system, thus the
application of blind system identification techniques might be
investigated [23]. Furthermore CO2 and/or humidity sensors
could be used to estimate the number of occupants, which then
could be utilized as an additional input to the model.
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