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Abstract—This paper presents the analysis of
a third-order linear time-invariant delay differ-
ential equation representing the regulation of a
muscle-tendon system. The Central Nervous Sys-
tem action is modeled as a delayed proportional-
derivative controller exploiting the multiplicity-
induced-dominancy property. The stability analy-
sis is illustrated via the software P3δ.

Index Terms—Time-delay systems, stability
and stabilization, multiplicity-induced-dominancy,
muscle-tendon dynamics, P3δ software.

I. Introduction

The control of human motricity is one of the
paramount tasks of our Central Nervous System
(CNS).To understand the human body movement, one
needs not only to establish a good model of the mus-
cle dynamics but also to analyse the control circuit
including the structural form of the CNS instruction
that controls the dynamic of muscle forces [1]. For
instance, abnormal movements caused by neuromus-
cular diseases, such as Parkinson’s disease or sclero-
sis, result from abnormal muscle tone. Furthermore,
maintaining the balance is a vital ability for humans:
falls are leading causes of accidental death and mor-
bidity in the elderly, a fact which provides a strong
motivation to understand the functioning of the CNS,
[2]. Actually, the CNS generates neural commands
to activate the muscles. The intern muscles’ force
combined with inertia and external forces, generate
observable movements. The position and velocity of
the musculoskeletal system are measured and trans-
mitted to CNS to close the loop with the required
information to take appropriate control decisions [3].
However, there is a substantial time-delay caused by
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the finite speed of signal and the performance of
motor tasks is affected by the presence of time-delayed
sensory feedback [4], [5]. Moreover, the intrinsic CNS
functioning is complex itself, being inherently gener-
ator of high-dimensional and nonlinear dynamics. As
such, a substantial time delay of signal propagation
in the nervous system has to be considered in the
input signals. One intuitive and simple way to model
such a CNS response is to identify it as a system of
propagation which is justified by the necessary lag-
time for an information to get through the neuronal
axon. We refer the reader to [6] for a summary of the
different kinds of delays occurring in neural systems.

The mathematical models that take into account
the delay effects in the nervous system are delay
functional differential equations which are of infinite
dimension and may exhibit a complex dynamical be-
haviour due to the delay effect. It has been recently
shown (see, e.g., [7]–[12]) that, for some quasipolyno-
mials occurring in systems with time-delays, multiple
real roots are often dominant, a property usually re-
ferred to as multiplicity-induced-dominancy (MID for
short). If, in addition, this multiple dominant root is
negative, exponential stability is guaranteed. Namely,
a control-oriented MID approach was first proposed in
[10] for second-order delay equations then extended in
[13] for general nth-order linear time-invariant dynam-
ical systems with a single delay. Indeed, it was shown
that under appropriate conditions, the MID property
may assess the critical delay established in previous
works [9], [14], [15]. In this paper, we consider that
the CNS acts as a delayed PD-controller to regulate
the muscle dynamics by exploiting the MID property.

Several mathematical models have been proposed
to represent muscle dynamics, which are usually clas-
sified into three groups [16]. The first one is based
on black box approximation where the inputs are
either the neural signal or the external load, and
the output corresponds to either the joint position



or torque. Hence, the muscle-tendon mechanism may
be regarded as a second order system [1]. The second
group are Huxley-based distributed-parameter mod-
els that seek to explain faithfully the mechanism of
contraction with great accuracy, however, its use is
not recommended in movement studies because the
mathematical complexity of this type of models is
paramount and involves ever-increasing numbers of
rate functions to describe the chemical and mechanical
processes at play in the muscle contraction. Finally,
Hill-type lumped-parameter models [17] are the most
commonly used to study human movement and pos-
tural stability [18], [19], [20]. As a matter of fact,
these models describe the mechanical behaviour of
the muscle tissue by means of the parallel between
the elastic element (PEE), accounting for the pas-
sive elastic properties of the muscle fibers, and the
contractile element (CE) responsible of the active
force generated in the muscle. The elastic properties
of the tendon are represented by a spring attached
in series with the Hill-type muscle model [21], [22].
Extensive and detailed accounts of Hill-based muscle
models are accessible in [16] and [23]. Fig. 1 gives a
schematic representation of the muscle-tendon unit
using the Hill-type muscle model. In the literature,
various linear approximations of Hill models are devel-
oped. In particular, the Kelvin-Voight (KV) muscle-
tendon model interprets the mechanical network by
the parallel between a single stiffness and a damp-
ing element, and the system dynamic is viewed as
a second-order equation. It was observed that KV
models present some limits and are particularly not
adapted to represent tendon and muscle contractile
elements independently [24]. Therefore, a third-order
system is proposed in the form of a Poynting-Thomson
(PT) model. In this model, a supplementary elastic el-
ement is placed in series with a KV model to represent
the tendon, bringing them closer to the physiological
muscle-tendon system. However, the presence of the
tendon element can produce an oscillatory behavior
that needs to be compensated by the CNS controller.
For the reasons stated above, we shall use a third-
order PT model to investigate the stability of a
muscle-tendon system acting in an arm through the
wrist joint.

The paper is organized as follows. Section 2 is
dedicated to the modeling of the muscle-tendon inter-
action as well as to the description of the delayed CNS
action. In Section 3, we present the main result where
the stability of the muscle response is analysed. Also,
the oscillation-inducing critical delay is characterized.
Section 4 illustrates the main result by using the
recently established P3δ software. Section 5 concludes
the contribution.

Figure 1. Nomenclature used in the Hill-type muscle model.
Each musculotendon actuator is represented by muscle elements
in series with an elastic tendon (SEE). The mechanical behavior
of muscle is described by a Hill-type contractile element (CE)
that models the muscle’s force-length-velocity property, and a
parallel-elastic element (PEE) that models the muscle’s stiff-
ness. (Inspired from [23])

Figure 2. PT model of muscle-tendon system. The mechanical
behavior of muscle is described by the parallel between km

and bm that represent the stiffness and viscosity of muscle
fibers. The stiffness of the tendon is represented by kt. The
diagram depicts the different force fields of the D’Alembert
equation.(Inspired from [25])

II. Muscle-tendon Models:

The Poynting-Thomson (PT) model depicted in
Fig. 2 is a linear, time-invariant and third-order
system. This mechanical network is an extension of
the Kelvin-Voigt model and includes tendon elasticity
(Hill-type passive model). The PT model includes
two separate elastic elements, the stiffness kt of the
tendon in series with the muscle fibers and the paral-
lel between km and bm represents the stiffness and
viscosity of the muscle fibers (bm is a contractile
element accounting for muscle damping). Most identi-
fication techniques proposed in the literature assume
the damping and stiffness to be time-invariant. One
can show that the interaction of the muscle-tendon
model with an inertial system (e.g., the mass of bones
and connective tissues) yields a third-order system
[24].

Consider x(t) as a vector of generalized varia-
tions of position coordinates (angles, Cartesian co-



ordinates,...) describing the motion of a mechanical
system and define Dnx as the set representing the
position coordinates’ variations and their derivatives
with respect to time up to the n-th order so that

Dnx =
(
dnx
dtn , ...,

d2x

dt2 ,
dx
dt , x

)
with n ∈ N.

Owing to the Lagrange-D’Alembert principle, the
mechanical system may be written as follows

M(x, t) d2

dt2 (x(t)) +B(D2x, t) = U(D2x, t) (1)

where M(x, t) is the inertial matrix of the system in
the chosen coordinate frame, B(D2x, t) is the internal
force field generated by the mechanical network, and
U(D2x, t) is the external force field, (see [24], [25] for
more details).

Assuming the system is stationary, classical Laplace
transform techniques can be used to recast equation
(1) as:

M s2 X(s) +B(s) = U(s) (2)

According to the PT model represented in Fig. 2,
the transfer function of the internal force generated
by the mechanical network is the transfer function of
the series of tendon and muscle fibers, namely

B(s)
X(s) = − kt Zm(s)

kt + Zm(s) (3)

where Zm(s) is the transfer function of the muscle
fibers composed by the parallel between the stiffness
and viscosity of the muscle fibers, which is given by

Zm = bm s+ km. (4)

Substituting equation (4) in (3) yields the following
transfer function

B(s)
X(s) = − kt(bm s+ km)

kt + km + bm s
(5)

which we rewrite in the following fashion

B(s) = − kt bm s

kt + km
X(s)− ktkm

kt + km
X(s)− bm

kt + km
s B(s).
(6)

Combining equations (2) and (5), we infer(
M s2 − kt(bm s+ km)

kt + km + bm s

)
X(s) = U(s) (7)

In the absence of external force, it was demon-
strated that the PT model with a parameters range
in the normal physiological scales often exhibits an
oscillatory free response [25]. That is why, the central
nervous system (CNS) forces controller is required to
cope with such a bio-mechanical constraint by way
of a delayed feedback regulation. Hence, we propose
that the external force field consists of the CNS action

Parameters value
kt 50.1 Nm/rad
km 18.9 Nm/rad
bm 0.5 Nms/rad
M 0.002 kg/m2

Table I
Numerical setting for muscle-tendon model

UCNS(s, τ) and an external impulsive perturbation
UEX , i.e.

U(s) = UCNS(s, τ) + UEX(s) (8)

Neural feedback control mechanisms for muscle are
time-delayed. In other words, there is a significant
time interval between the measurement of the vari-
ables the application of the forces. Consequently, the
CNS input applied to the muscle-tendon system can
be represented by

UCNS(s, τ) = (α + β s) e−τsX(s) (9)

Then, simple calculations lead to the closed-loop
transfer function

F (s) = X(s)
UEX(s) = kt + km + bms

P̃ (s) + Q̃(s)e−τs
, (10)

where
P̃ (s) =M bm s

3 +M(kt + km) s2 − kt bm s− ktkm,
Q̃(s) =− β bm s2 − (α bm + β (kt + km)) s

− (kt + km)α.
(11)

Numerical setting :

We use bio-mechanical properties of muscles and
tendon in the arm as reported in the literature (see
[5], [25], [26], ). In [25], authors give a good estimation
of stiffness parameters for 5 main muscles across both
the wrist and elbow. Under the assumption that each
muscle contributes to the rotational stiffness of the
joint on which it acts, they infer the equivalent joint
stiffness at the wrist. Moreover, the arm’s moment is
calculated where both the wrist and the elbow are
completely extended (the joint angle θ = 0). The
numerical parameters of PT muscle-tendon model in
the wrist joint are presented in Table 1.

III. Main results

We investigate the stabilizing delayed-controller
modeling the CNS action, as well as the range of the
delay up to the limit of stability, which corresponds
to the so-called delay margin. In closed-loop, the cor-
responding normalized characteristic function reads:

∆(s, τ) = P (s) +Q(s) e−τ s (12)

where P is a unitary polynomial, i.e, P = P̃ /(M bm)
and Q = Q̃/(M bm)



The main idea of the delayed design based on the
MID property is to force the quasipolynomial (12)
to have a root of a prescribed multiplicity, bounded
by the quasipolynomial degree1 allowing to tune the
controller gains according to a prescribed exponen-
tial decay of the closed-loop system solutions. More
precisely, the control-oriented MID suggests a root
of multiplicity equal to the order of the polynomial
associated to the delay plus one. In our case, the CNS
acts as a delayed PD-controller.

As a matter of fact, this multiplicity constraint
defines a manifold in the parameter space enabling
the tuning of the gains α and β when the delay
τ is left-free and guaranteeing the exponential sta-
bility of the closed-loop system solution. Hereafter,
the next theorem, which is based on the MID prop-
erty, states the explicit conditions on the parameters’
values guaranteeing the targeted multiplicity. Recall
that the multiplicity of a given root of the generic
quasipolynomial (12) is bounded by its degree, so
that is 6 is the bound of multiplicity in our case.
Introducing the parameters’ settings as in Table 1,
the quasipolynomial function (12) becomes:
∆(s) = s3 + 138 s2 − 25050 s− 946890

+
(
−500β s2 − (69000β + 500α) s− 69000 )e−τ s

(13)

Proposition 1. The following assertions hold:

i) The multiplicity of a given root of (13) is bounded
by 4.

ii) The only admissible quadruple roots for (13) are
in the set s ∈ {−407.6856536, −22.86735033};

iii) The real number s0 = −22.86735033 is
a quadruple root of (13) if, and only if,
τ0 = 0.01059835599, α0 = −13.75341181, β0 =
−0.4143339847;

iv) If s0 = −22.86735033 is a quadruple root of (13)
then s0 is also the corresponding spectral abscissa;

v) For a positive delay perturbation τ = τ0 + ε
with ε > 0, the first crossing frequency ω =
11.91836147 occurs for ε = 0.0002807867460.

Proof. The degree of the quasipolynomial function
defined in (13) is equal to 6 and the Pólya and Szegö
result from [27] asserts that 6 is the generic bound of
the multiplicity of any root of (13).

One first investigates the vanishing of the
quasipolynomial ∆. It yields the elimination of
the exponential term as a rational function in s:

e−τ s = −s3 − 138 s2 + 25050 s+ 946890
−500βs2 + (−69000β − 500α) s− 69000α.

(14)
1The degree of a given quasipolynomial is defined as the sum

of the degrees of the involved polynomials plus the number of
corresponding delays.

Next, to investigate potential roots with algebraic
multiplicity 4, one substitutes the obtained identity
(14) in the ideal I4 generated by the first three
derivatives of ∆, i.e., I4 =< ∂s∆, ∂2

s∆, ∂3
s∆ >,

which yields a manifold defined by three algebraic
equations in four unknowns (s, α, β, τ). Solving it and
substituting the obtained solution in (14) determines
the two admissible solutions given in ii). Furthermore,
one easily checks that both of them are not roots of
∂4
s∆ = 0, which concludes the proof of i).

Items ii-iii) follow directly from the proof of i).

Item iv) follows directly from [13]. Indeed, the main
result therein provides sufficient conditions for the
dominance of a multiple root, which is essentially
based on the real-rootedness of the delay-free poly-
nomial P . Namely, one easily proves this fact by
computing the discriminant of P the positivity of
which guarantees three real roots.

To show item v), the sensitivity analysis with re-
spect to the delay uncertainties is studied, which
brings one to investigate the quasipolynomial:

∆ε(s) =s3 + 138 s2 − 25050 s− 946890
+
(
207.1669924 s2 + 35465.75084 s

+948985.4149) e−(0.01059835599+ε)s

By substituting s = i ω in the above quasipolynomial,
one deduces the corresponding crossing frequencies.
Indeed, separating real and imaginary parts, the fol-
lowing system of trigonometric polynomials is satis-
fied:
−
(
207.1669924ω2 − 948985.4149

)
×

cos (0.01059835599ω + ω ε)
+ 35465.75084ω sin (0.01059835599ω + ω ε)
− 946890− 138ω2 = 0,
35465.75084ω cos (0.01059835599ω + ω ε)
+
(
207.1669924− 948985.4149ω2)×

sin (0.01059835599ω + ω ε)− ω3 − 25050ω = 0

Eliminating cos (0.01059835599ω + ω ε) from the first
trigonometric polynomial and feeding it into the
second, we obtain the frequency ωc = 11.9183614.
It is then substituted into the expression of
cos (0.01059835599ω + ω ε) to recover the value for
εc = 0.0002807867460, which concludes the proof of
v).

IV. Numerical simulations using P3δ
software

Based on recent results from [10], [13], [28] on the
multiplicity-induced-dominancy property for systems
with single time-delays, a Python toolbox for the
parametric design of stabilizing feedback laws with
time-delays, called Partial Pole Placement via De-
lay Action (P3δ for short), has been developed, see



Figure 3. The P3δ interface exhibiting (left) the spectrum
distribution of (13) and (right) the time-domain response of the
muscle dynamics in the closed-loop system, in the presence of a
quadruple spectral value for (13) at s = −22.86735033.

Figure 4. The Sensitivity of the multiple dominant spectral
value with respect to delay uncertainty which illustrates item
v) of Proposition 1.

[29]. The software is freely available for download
on https://cutt.ly/p3delta, where installation in-
structions, video demonstrations, and a user guide are
also available.

In this section, we illustrate the use of P3δ to
numerically investigate the problem we consider; the
design of the CNS action as well as the sensitivity of
its regulation with respect to the uncertain delay are
displayed.

V. Concluding remarks

A third-order muscle-tendon model is revisited tak-
ing into account the delay in the CNS action. The

Figure 5. (a) Spectrum distribution for τ = 0.01087914274
showing the crossing frequency ω = 11, 91836147 rad/sec.
(b) Muscle oscillating response occurring with frequency ω =
11, 91836147 rad/sec for the delay value τ = 0.01087914274.

MID property is exploited to model the CNS action
and identify the critical delay inducing oscillations.
The P3δ software is used to numerically illustrate the
qualitative behavior of the muscle dynamics.
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