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Cooperative Localization of an UAV Fleet using Distributed MHE
with EKF Pre-estimation and Nonlinear Measurements

Matthieu Borelle, Sylvain Bertrand, Cristina Stoica, Teodoro Alamo, Eduardo F. Camacho

Abstract—This paper proposes a Distributed Moving Horizon
Estimation (DMHE) with an Extended Kalman Filter (EKF)-
based pre-estimation to solve the constrained cooperative local-
ization problem for a Multi-Agent System (MAS) using nonlinear
measurements. The proposed DMHE strategy uses a fused arrival
cost obtained by a consensus among neighbors to efficiently
spread the relevant estimation information across the commu-
nication network. The EKF pre-estimation enables to reduce the
number of optimization variables and, thus, the computation
time of the constrained nonlinear optimization problem over the
horizon length, while preserving the accuracy of the estimation.
A simulation case study of cooperative localization of a fleet of
Unmanned Aerial Vehicles (UAVs) is proposed. Comparison with
existing distributed estimation methods is carried out to confirm
the effectiveness of the proposed DMHE algorithm in terms of
estimation accuracy, computation time, and constraints handling.

I. INTRODUCTION

Distributed State Estimation (DSE) is a fundamental prob-
lem in numerous engineering applications on multi-robot
systems communicating via a wireless Sensor Network. In
the context of civil or military applications for multi-vehicle
localization [1] or tracking [2], the state of a dynamic Multi-
Agent System (MAS) is observed by a network of sensors (ex-
ternal or embedded on the vehicles), each with limited sensing
and communication capabilities. The goal of distributed state
estimation is to estimate the state (e.g., position, velocity) of
the MAS accurately and efficiently, despite the limitations of
individual sensors and communication constraints.

Compared to a centralized state estimation scheme where a
central unit processes data and shares its state estimation with
the entire MAS, DSE has numerous benefits, in particular in
the context of multi-vehicle localization. Indeed, it provides
increased autonomy, fault-tolerance, scalability, computational
efficiency, while it needs a smaller communication range
(i.e. using only local information from neighbors) with re-
spect to centralized approaches. The main challenge is to
design distributed estimation algorithms that preserve as much
as possible the stability and performance characteristics of
their centralized equivalent. Several strategies such as dis-
tributed/decentralized Kalman filters and Extended Kalman
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Filter (EKF) techniques [3], [4], have been studied for DSE
applied to multi-robot localization [5]. These approaches rely
on probabilistic assumptions on disturbances and noises to
minimize the error variance of the state estimate. In addition,
a consensus step (e.g., consensus on information [6], on
measurements [7], [8]) is usually considered to efficiently fuse
the sensors information from different sensors1.

However, methods based on (Extended) Kalman Filter can
become suboptimal in presence of strong nonlinearities or even
unstable in case of large initial estimation error. Moreover,
they cannot deal with constraints (e.g., minimum and max-
imum altitude of drone, maximum speed of a robot). This
encourages the development of Moving Horizon Estimation
(MHE) approaches for linear [9] and nonlinear systems [10],
as this method can account for constraints and nonlinearities
in its formulation. Previous work already proposed distributed
moving horizon observers using neighborhood measurements,
with consensus steps on the a priori state at the beginning of
the horizon [11] and on the arrival cost [12], [13]. In [12], the
authors proposed a Distributed Moving Horizon Estimation
(DMHE) algorithm with multiple-step consensus to ensure
stability of the estimation error dynamics in all the nodes of the
Sensor Network, under the assumptions of network connectiv-
ity and collective observability. The consensus steps enable to
spread the information through the network in order to provide
each agent the necessary information to estimate parts of the
MAS state (which could be locally or even regionally non
observable) from other agents [14]. To reduce the computation
time and, thus, to empower a real-time implementation on
low-cost processors, the work in [15] proposed a DMHE with
a ”pre-estimation” strategy based on a Luenberger observer.
However, this estimation method has only been designed for
systems with linear dynamics and linear measurements. The
increasingly recurrent use of low-cost embedded sensors (e.g.,
lidar, ultra-wideband mounted on mobile robots) that provide
nonlinear measurements (e.g., angle and/or distance) justifies
the interest of developing DMHE algorithms which can handle
nonlinear measurements.

In this context, the main contribution of the paper consists
of extending the estimation technique of [15] in order to
handle nonlinear measurements. Therefore, the Luenberger
observer used in [15] for linear prediction over the estimation
window is replaced here by a nonlinear counterpart using an
Extended Kalman Filter. Furthermore, an observability rank-
based technique (see [16]) permitting to efficiently fuse the
information from neighboring nodes is also extended to the

1Heterogeneous sensors (e.g., camera, radar, lidar) can be considered.



nonlinear case in order to define the weights used in the
consensus step. Another contribution of this paper consists of
applying the developed DMHE technique on the constrained
cooperative localization problem of a fleet of Unmanned
Aerial Vehicles (UAVs). Nonlinear measurements including
the relative distance between the UAVs neighbors are further
considered.

II. DISTRIBUTED STATE ESTIMATION FOR COOPERATIVE
LOCALIZATION

This section describes the problem of Distributed State Esti-
mation (DSE) of a Multi-Agent System (MAS) for cooperative
localization.

A. Problem description

The main problem addressed in this paper is the constrained
cooperative distributed self-localization of a fleet of na drones.
Thus, each drone performs the following operations: 1. Com-
municates its own measurements (provided by its own em-
bedded sensors) to its neighbors; 2. Receives information
sent through communication links2 by its one-step neighbors
(measurements from embedded sensors of each neighbor and
prior estimation of the state of the fleet sent by each neighbor);
3. Computes an estimate of the entire MAS state.

B. Considered model

The dynamics of each UAV i of the MAS are described by
the discrete-time Linear Time-Invariant (LTI) model:

xi
t+1 = Aixi

t +Biui
t +Biwi

t, i ∈ {1, . . . , na} (1)

with the state vector xi, the input vector ui, the input pertur-
bation vector wi, the evolution matrix Ai and the input matrix
Bi of corresponding dimensions.

Then the dynamics of the global MAS can be defined by:

xt+1 = Axt +But +Bwt ∈ Rnx (2)

with the collective (global) state x = col(x1, x2, . . . , xna) =
[(x1)⊤, (x2)⊤, . . . , (xna)⊤]⊤, the collective input
u = col(u1, . . . , una), the collective perturbation
w = col(w1, . . . , wna), and the collective block-
diagonal matrices A = diag(A1, . . . , Ana ) and
B = diag(B1, . . . , Bna ).

Remark 1: Each agent i is assumed to have access to a
noisy measurement of its own input vector only ui

t+wi
t (e.g.,

acceleration measurement from its IMU for the drone case).
Inputs of other agents j ̸= i are assumed to be unavailable
to agent i. Notice that they could be transmitted by neigh-
bouring agents, but this would require exchanging much more
information (that could to be difficult, e.g., considering high
frequency data such as measured accelerations). Therefore, it
has been chosen to consider the inputs of other agents as
unknown inputs by agent i and to denote by:

ûi = col(0, . . . , ui + wi, . . . , 0) ∈ Rnu (3)

2The communication range is supposed to be limited, and thus only one-
step (also known as ”one-hop”) neighbors communication is allowed.

the knowledge of agent i on the collective input of the MAS.
Measurements are locally performed by each agent i:

yit = hi (xt) + νit , i ∈ {1, . . . , na} (4)

with the output vector yi and the measurement perturbation
νi ∈ Vi. A nonlinear dependence on the MAS system state is
considered via hi. The nonlinear time-invariant measurement
function hi can be different for each agent i ∈ {1, . . . , na},
depending on the type of onboard sensors or on the proximity
with other agents (enabling proximity distance measurements).

C. Communication network topology

In the considered Distributed State Estimation scheme, only
nearby agents can share data among each other. Hence, the
communication network can be described by an undirected
connected graph G = (Na, E), where Na = {1, 2, . . . , na} is
the set of all nodes (agents) and E ⊆ Na×Na is the set of all
edges (communication links between agents). Therefore, the
pair (i, j) ∈ E exists if and only if the agent j can receive
information from the agent i.

Remark 2: This paper assumes a time-invariant communi-
cation network and no communication failure.

The notions of local, regional and global information are
further described. Indeed, local information refers only to the
local agent i (e.g., xi indicates its local state vector), the
regional information refers to the one step neighborhood of
agent i denoted by N i

a (e.g., ȳi indicates the regional mea-
surement of agent i), while the global information considers
the entire MAS (e.g., x as defined in (2)).

D. Distributed state estimation approach

At each sample time t, each agent i ∈ Na gets measure-
ments from its neighbors (nodes in N i

a) and from its own
sensors, then it exchanges information with its neighbors to
conduct a consensus on a priori state, and finally, it locally
solves a constrained optimization problem to determine a local
estimate x̂i

t of the real global state xt of the MAS.
Notice that the UAVs do not communicate their input vector

with each other, as indicated in Remark 1.

III. DMHE FOR COOPERATIVE LOCALIZATION

This section formulates the Distributed Moving Horizon Es-
timation approach with EKF pre-estimation and observability
rank-based weights to address the cooperative localization of
a MAS with nonlinear measurements.

A. Local optimization problem

At each sample time t, given an estimation horizon length
N ⩾ 1, each agent i ∈ Na determines (based on the
information received from its neighbors in N i

a) its estimate



x̂i
t−N |t of the global state xt−N of the MAS by solving the

following constrained optimization problem:

x̂i
t−N |t = arg min

x̂i
t−N

J i
N (·) (5)

s.t. x̂i
k+1 = x̂i

k+1|k + Ki
k

(
ȳik+1 − h̄i(x̂i

k+1|k)
)
,

(6)

x̂i
k+1|k = A x̂i

k +B ûi
k (7)

x̂i
k ∈ X , ȳik+1 − h̄i(x̂i

k+1|k) ∈ V̄i, (8)

∀k = t−N, . . . , t− 1.

where the matrix gain Ki
k is computed as the Kalman gain of

an EKF, as detailed in Section III-C.
The A and B matrices in (6) refer to the global Multi-

Agent System dynamics (2). The sequence of state estimates
x̂i
t−N+1|t, . . . , x̂

i
t|t is obtained from the optimal solution

x̂i
t−N |t, using the propagation by the dynamical equation (6).
Compared to the classical DMHE of [11], [12], the proposed

DMHE with EKF pre-estimation (5) decreases the number of
decision variables leading to a reduced computation time [17].
Note that the state and measurement noise constraints (8) are
incorporated within the optimization problem.

The objective function in (5) is defined as:

J i
N (·) =

t∑
k=t−N

∥∥ȳik − h̄i(x̂i
k)
∥∥2
(R̄i)−1 + Γi

t(·). (9)

In (9), the first term represents the sum over the horizon
length N of a weighted square norm of the error between the
regional measurements ȳik and the regional predicted mea-
surements h̄i(x̂i

k), obtained from the sequence of estimated
state. The definite positive matrix R̄i gathers the weights that
can be related to regional measurement noises covariances, if
available.

The second term Γi
t(·) is called the initial penalty function

(related to the arrival cost3). Its update is crucial to ensure the
stability of the estimation error dynamics. The initial penalty
function defined by:

Γi
t(.) = ∥x̂i

t−N − x̄i
t−N∥2

(Π̃i
t−N )−1 (10)

involves two weighted consensus terms (arrival-cost consensus
as in [12]) detailed in Section III-B: Π̃i

t−N (definite posi-
tive weight matrix) and x̄i

t−N (initial state of the receding
horizon window, averaged over the neighborhood). To obtain
the weighted average state estimate x̄i

t−N , a consensus on
information is set up in section III-B. To make this consensus
state more relevant in the case of regional non observability,
the information must be broadcast among the MAS in a
broader way. For this purpose and considering communication
range limits, the possibility to carry out L loops of this
consensus among neighborhood is retained, corresponding to
the L-step consensus approach in [12]. At the next instant t+1,
for the formulation of the new optimization problem, x̂i

t−N+1

is assigned from the previously computed solution x̂i
t−N+1|t.

3The non negative term Γi
t(.) is used to summarize the effect of the past

measurements, before time t−N .

B. L-step information consensus

This subsection details the process of the L-step information
consensus [12]. First, the information matrix P i

t−N and the
information vector ξit−N are initialized at the beginning of the
receding horizon window (i.e., at time t−N ):

P i
t−N,0 = (Πi

t−N )−1 (11)

ξit−N,0 = P i
t−N,0x̄

i
t−N (12)

with Πi
t−N the covariance of the estimation error of the

initial state of the receding horizon (see [11]). Each step
l ∈ {0, . . . , L − 1} of the information consensus consists in
computing:

P i
t−N,l+1 = ki,iP

i
t−N,l +

∑
j∈N i

a

ki,jP
j
t−N,l (13)

ξit−N,l+1 = ki,iξ
i
t−N,l +

∑
j∈N i

a

ki,jξ
j
t−N,l (14)

with the consensus weights ki,j defined in Section III-D.
After L-steps of consensus, the following quantities:

Π̃i
t−N = (P i

t−N,L)
−1 (15)

x̄i
t−N = (P i

t−N,L)
−1ξit−N,L (16)

are finally used to define the arrival cost (10).
Remark 3: Notice that Π̃i

t−N corresponds to the weight
matrix Πi

t−N after proceeding L-step information consensus.
The consensus phase is necessary to guarantee convergence

of the state estimates to the state of the observed system even
in lack of regional observability [11].

The positive definite matrix Πi
t−N+1 is then obtained from

the matrix Π̃i
t−N using the discrete-time Riccati equation

associated to an Extended Kalman filter (as in [10] for the
centralized case):

Πi
t−N+1|t−N = AΠ̃i

t−NA⊤ +BQiB⊤ (17)

Πi
t−N+1 = Πi

t−N+1|t−N −Πi
t−N+1|t−N (C̄i

t−N+1)
⊤·(

C̄i
t−N+1Π

i
t−N+1|t−N (C̄i

t−N+1)
⊤ + R̄i

)−1

·

C̄i
t−N+1Π

i
t−N+1|t−N (18)

with Qi = diag(Q1, . . . , Qna) and Qi the covariance of
the input noise vector wi of agent i ∈ {1, . . . , na}. The
term C̄i

t−N+1 is obtained via the linearization of the regional
measurement function around x̂i

t−N+1:

C̄i
t−N+1 =

∂ h̄i

∂x

∣∣∣∣
x̂i

t−N+1

(19)

C. EKF pre-estimation observer

For k ∈ {t − N, . . . , t}, the matrix gain Ki
k is com-

puted using an EKF observer update. The step t − N con-
sists of initializing the pre-estimation error covariance matrix
Πi

pre,t−N |t−N = Π̃i
t−N . Then, for k ∈ {t−N +1, . . . , t}, the

prediction of the covariance evolution is performed as follows:

Πi
pre,k|k−1 = AΠi

pre,k−1|k−1A
⊤ +BQiB⊤ (20)



avec Πi
pre,k|k−1 the a priori estimation matrix of covariance

of the estimation error at time k.
The optimal Kalman gain (6) is computed as follows:

Ki
k = Πi

pre,k|k−1(C̄
i
k)

⊤(Si
k)

−1 (21)

with the pre-estimation error covariance matrix:

Πi
pre,k|k = (Inx

−Ki
k C̄

i
k)Π

i
pre,k|k−1 (22)

and Si
k the innovation covariance:

Si
k = C̄i

kΠ
i
pre,k|k−1(C̄

i
k)

⊤ + R̄i (23)

D. Observability rank-based weights technique

The weights ki,j used in the consensus steps (14) and (13)
can be defined as the components of a stochastic matrix K
associated to the graph G. The weights tuning technique of
[1] and [17] is extended here to the nonlinear cas by making
use of the linearization (19). This method relies only on
regional information available by each agent to compute its
own component ki,j of K. Thus, it is suitable for a distributed
scheme. The interest of this approach is that it enhances the
accuracy of the estimates by means of exploiting observability
properties of the neighborhoods.

Consider an agent i. Its regional observability matrix over
the discrete-time window [t−N, t] given by:

Ōi
N,t =

[
(C̄i

t−N )⊤ (C̄i
t−N+1A)⊤ · · · (C̄i

tA
N )⊤

]⊤
(24)

is of full rank if and only if the pair (A, C̄i
k) is completely

observable for any k ∈ {t−N, . . . , t}, i.e. rank(Ōi
N,t) = nx.

For the sake of simplicity, the following notion is further used:

ρiO = rank(Ōi
N,t). (25)

This information could be used as the reliability of sensor
i when choosing the weights ki,j , which must be averaged
among the neighbors j ∈ N i

a:

ki,j =
ρjO∑

j∈N i
a
ρjO

. (26)

E. Proposed DMHE with EKF pre-estimation algorithm

The procedure of the proposed DMHE scheme with EKF
pre-estimation is described in Algorithm 1.

In steps 6, new local measurements, together with the
knowledge on the collective input are collected (e.g., acceler-
ation measurements). Then, in step 7, the local measurements
yit are shared with neighbors j ∈ N i

a. Steps 8 to 11 are related
to the implementation of the receding horizon strategy. As the
regional measurement matrix C̄i

t and thus the observability
properties can change over time, it is necessary to update the
observability-rank based weight ki,j accordingly (steps 12 to
14). At step 15, the L-step information consensus is conducted.
At step 16, the local DMHE with pre-estimation optimization
problem is solved. From step 18 to 20, the horizon window
is still increasing in size thus not sliding, so the a priori state
x̄i
0 is set to the newest state estimated at time t = 0 and the

weight matrix Πi
0 is set to the L-step consensus weight matrix

Algorithm 1 DMHE with pre-estimation procedure

1: Initialization: ∀i ∈ Na, at the first time step t = 0
2: initialize Πi

0, x̂i
0

3: collect a first local measurement yi0 and the knowledge
on the initial collective input ûi

0

4: receive from the neighborhood j ∈ N i
a their measure-

ments yj0
5: Online: ∀i ∈ Na, ∀t > 0
6: collect the local measurement yit and the knowledge

on the collective input ûi
t using (4) and (3)

7: receive from the neighbors j ∈ N i
a the collected

measurements in the step 6, form and store ȳit
8: if 1 ⩽ t ⩽ N then
9: set the horizon length Nw = t

10: else
11: set the horizon length Nw = N

12: compute Oi
Nw,t and ρiO according to (24) and (25)

13: exchange ρjO with j ∈ N i
a

14: compute the kij components according to (26)
15: perform L steps of the consensus algorithms (14)-(13)

with the initialization (11)-(12) to get Π̃i
t−Nw

and x̄i
t−Nw

(15)-(16)
16: solve the local optimization problem of DMHE with

EKF pre-estimation, minimizing J i
Nw

as in (9) and (10)
subject to the constraints (6)-(8)

17: store the solution x̂i
t−Nw|t, x̂

i
t−Nw+1|t and the corre-

sponding estimate x̂i
t|t

18: if 1 ⩽ t ⩽ N then
19: set x̄i

0|t+1 = x̂i
0|t

20: set Πi
0|t+1 = Π̃i

0|t
21: else
22: compute Πi

t+1−N according to (17)-(18)
23: compute prediction x̄i

t+1−N = x̂i
t+1−N |t

Π̃i
0 determined at step 15. From step 21 to 23, to take into

account the receding horizon window at time t+1, the weight
matrix Πi

t+1−N and the a priori state x̄i
t+1−N are adequately

updated.

IV. SIMULATION RESULTS

A. Agents dynamics and measurements
Inspired from [18], a MAS composed of na UAVs is con-

sidered. The state vector of each UAV i ∈ {1, . . . , na} is com-
posed of its 3D position and velocity components in a common
inertial reference frame xi = col

(
pix, p

i
y, p

i
z, v

i
x, v

i
y, v

i
z

)
. The

translational dynamics of each UAV i is considered to be
modelled as in (1) with:

Ai =


1 0 0 ∆t 0 0
0 1 0 0 ∆t 0
0 0 1 0 0 ∆t
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , Bi =



∆t2

2
0 0

0 ∆t2

2
0

0 0 ∆t2

2
∆t 0 0
0 ∆t 0
0 0 ∆t


(27)



with the sampling period ∆t. The input vector corresponds to
the acceleration of the drone ui =

[
aix aiy aiz

]⊤
. Each UAV i

has access to the acceleration measurement ui + wi deduced
from raw data provided by its IMU4. Three different types
of measurements (linear and nonlinear) are considered. Each
UAV i has access to measurements of its own position and
speed norm as provided by a GPS:

[
piGPS

viGPS

]
=


pix
piy
piz√

(vix)2 + (viy)2 + (viz)2

+ νi
GPS . (28)

Finally, each UAV i has also access to measurements of the
distance to its close neighbors (e.g., deduced from the received
communication signal strength or UWB distance sensors):

diradio = col
(
di,j1 , . . . , djni

a

)
+ νi

radio (29)

with
{
j1, . . . , jni

a

}
∈ N i

a and the distances di,j = ∥pi−pj∥2
between the position vectors pi = [pix piy piz]

⊤ and pj =
[pjx pjy pjz]

⊤ of the UAVS i and j, respectively.
The local measurement vector in (4) corresponds to yi =

col
(
piGPS , v

i
GPS , d

i
radio

)
with the measurement noise vector:

νi = col
(
νi
GPS , ν

i
radio

)
(30)

Remark 4: Notice that in practice, measurements from dif-
ferent sensors are available at different frequencies. Although
not addressed here for simplicity reasons, this can be handled
by the algorithm by considering measurements available in y at
the appropriate time instants over the estimation horizon, and
performing EKF update steps accordingly at these instants.

B. Simulated scenarios

Simulation results for a fleet of na = 3 UAVs are further
described. The communication graph is represented in Fig. 1.
In this communication topology, UAVs 1 and 3 can exchange
information and get distance measurements only with UAV 2.
Thus, agents 1 and 3 dispose of regional measurements
which do not allow the regional observability5 property to be
respected.

The flight trajectory of each UAV is generated in simulation
and a Linear Quadratic Regulator (LQR) control6 stabilizes the
vehicle to a constant reference position. Each coordinate of the
acceleration input ui is imposed to be inside [−2, 2] m/s2.

The measurement noises (e.g., on the acceleration) are
considered uniformly distributed and centred on zero. At each
time instant, the acceleration measurement noise wi has been
generated by drawing a 3-dimensional vector from a uniform
distribution in [−0.1, 0.1]3. For the measurement noise vector
νi in (30), the GPS noise νiGPS follows a uniform distribution
in [−0.15, 0.15]3×[−0.08, 0.08], and νiradio follows a uniform

4Raw measurements provided by the accelerometers are transformed from
the body frame of the UAV to the inertial reference frame, and corrected from
gravity.

5To guarantee regional observability, the rank of the regional observability
matrix Ōi

N,t has to be less than the dimension of the MAS state, i.e., nx.
6The tuning of this LQR control is beyond the scope of the paper and it is

omitted here.

1

2

3

Fig. 1: Communication graph and distance measurement ca-
pabilities between the three drones.

distribution in [−0.1, 0.1]. The covariance matrix Qi of the
acceleration measurement noise wi and the covariance matrix
Ri of the measurement noise vector νi derive directly from
the uniform distribution bounds.

The MHEs have been used with a horizon length N = 2,
consensus step size L = 1, and the estimators initial values
were set to x̂0 = 0 ∈ R18, Πi

0 = diag(Π1
0,local, . . . ,Π

3
0,local),

with Πi
0,local = diag(6, 6, 6, 0.01, 0.01, 0.01). The initial con-

dition of each agent xi
0 has been generated by sampling each

of its position components in [−15, 15] (m) and each of its
velocity components in [−2, 2] (m/s) independently, using
uniform distributions.

The optimization problem has been solved on Matlab using
the fmincon solver with the interior-point algorithm.

C. Results and analysis

The performance of the proposed DMHE approach with
EKF pre-estimation (denoted by DMHE-pre-EKF) is assessed
by comparing its estimation accuracy and computation time
with:

• a similar nonlinear extension of the DMHE algorithm of
[12] (without pre-estimation), denoted by DMHE-1;

• the consensus-based on information Distributed Extended
Kalman Filter (EKF) of [7] denoted by DEKF-CI.

The interest of the L-step information consensus (de-
scribed in Section III-B) is highlighted by implementing a
DMHE-pre-EKF observer with 2-step consensus (i.e., L = 2),
denoted by DMHE-pre-EKF-2-step.

A Monte Carlo simulation of 20 runs with different initial
conditions for the UAVs, measurements noise and input noise
realizations has been conducted. As comparison metrics, the
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Fig. 2: Averaged RMSE among all the agents and all the trials.



averaged RMSE among agents and samples, the averaged
RMSE over final values (denoted by RMSE final values) and
the average computation time τ among agents and samples are
exposed in Table I.

RMSE RMSE final values τ (s)
DEKF-CI 2.7651 0.7059 0.0004
DMHE-1 1.6371 0.6906 0.4946

DMHE-pre-EKF 1.7009 0.6104 0.0413
DMHE-pre-EKF-2-step 1.6709 0.5980 0.0433

TABLE I: Comparative results of several estimation techniques

The simulations were carried out by a PC Linux Ubuntu
20.04.1 equipped with an Intel Core i7-10875H CPU. Accord-
ing to Fig. 2, the RMSE is reduced faster using DMHE-1 and
DMHE-pre-EKF compared to DEKF-CI. However, starting
from the sample time t = 25, the DEKF-CI error estimation
is sensibly close to the one obtained using DMHE-1 and
DMHE-pre-EKF. According to Fig. 3 and Table I, compared
to the DMHE-1, the DMHE-pre-EKF allows to significantly
reduce the computation time, due to the reduction of the
number of optimization variables, while keeping an accurate
estimate. Moreover, as expected, the DMHE-pre-EKF-2-step
consensus results in a better RMSE reduction (see Table I).
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Fig. 3: Averaged computation time τ (s) among all the agents
and all the trials.

V. CONCLUSION AND PERSPECTIVES

This paper has proposed a DMHE algorithm with EKF-
based pre-estimation for constrained cooperative localization
of a Multi-Agent System. The algorithm accounts for nonlinear
measurements performed by the agents and exchanges of
information between them via a communication network. The
proposed solution is compared with several existing distributed
observers. The simulation results confirm the interest of
the proposed method in handling constraints, and keeping
a reduced computation load compared to standard DMHE
approaches while preserving a good estimation accuracy.

Current work focuses on the practical implementation of the
proposed estimation method on a fleet of several drones.
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