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Abstract—This work introduces a stochastic model predictive
control scheme for dynamic chance constraints. We consider
linear discrete-time systems affected by unbounded additive
stochastic disturbance. To synthesize an optimal controller, we
solve two subsequent stochastic optimization problems. The first
problem concerns finding the maximal feasible probabilities of
the dynamic chance constraints. After obtaining the probabilities,
the second problem concerns finding an optimal controller using
stochastic model predictive control. We solve both stochastic opti-
mization problems by reformulating them into deterministic ones
using probabilistic reachable tubes and constraint tightening. We
prove that the developed algorithm is recursively feasible and
yields closed-loop satisfaction of the dynamic chance constraints.
In addition, we will introduce a novel implementation using
zonotopes to describe the tightening analytically. Finally, we will
end with an example illustrating the method’s benefits.

Keywords—stochastic model predictive control, dynamic
chance constraints, probabilistic reachable tubes, constraint
tightening, zonotopes

I. INTRODUCTION

Stochastic model predictive control (SMPC) represents an
effective control technique for the reliable handling of (chance)
constraints in the presence of (unbounded) stochastic distur-
bances [14]. It has found applications in many areas, including
vehicle path planning, building climate control, and power
generation and distribution [14]. Typically stochastic model
predictive control can be divided into two classes: randomized
methods and analytic approximation methods [5]. The former
relies on generating sufficient disturbance realizations, while
the latter reformulates the stochastic optimization problem into
a deterministic optimization problem.

Regarding analytic approximation methods, existing tech-
niques often consider static chance constraints, e.g. [8], [12],
[13]. A disadvantage of these static chance constraints is that
infeasibility at initialization often needs to be resolved by
lowering the probability of the chance constraints over the
entire horizon. To improve upon this, our paper will focus
on dynamic chance constraints. Moreover, we consider an
optimization scheme that allows for relaxing the probability
at specific instances to ensure feasibility at initialization.
This allows for targeted chance constraint relaxation without
requiring a worst-case relaxation over the entire horizon.

This work is supported by the Dutch NWO Veni project CODEC (project
number 18244).

Ensuring feasibility at initialization gives rise to several the-
oretical problems that must be addressed. First and foremost,
contrary to existing work [7], [8], [10], [12], [15], we will have
to solve two subsequent stochastic optimization problems.
The first optimization problem concerns finding the maximal
feasible probabilities on the dynamic chance constraints. After
obtaining the probabilities, the second optimization problem
concerns finding the optimal controller by solving an SMPC
optimization problem. Hereby, we must develop a suitable
terminal set that ensures recursive feasibility and closed-loop
chance constraint satisfaction.

To solve both stochastic optimization problems, we are
specifically interested in utilizing probabilistic reachable sets
(PRS), i.e., sets that satisfy the invariance property up to
a given probability. Existing work regarding PRS includes
the work done by [7], [8], [10], [15]. These papers utilize
sequences of static PRS to reformulate static chance con-
straints on the system dynamics offline into static deterministic
constraints on the nominal dynamics. These deterministic
constraints are obtained by tightening the chance constraints
utilizing PRS obtained from the probabilities on the chance
constraints and the error dynamics. Similarly, in this paper,
we will utilize sequences of dynamic PRS, called probabilistic
reachable tubes (PRT), to obtain deterministic reformulations
of both stochastic optimization problems, the former becoming
a linear program and the latter becoming a tube-based MPC
optimization problem. This will be our second contribution.

As a final contribution, to compute the tightened constraints
online, we will also develop a method based on properties
of Minkowski set algebra to formulate tightened constraints
analytically. Moreover, we provide a solution that circum-
vents using an ellipsoidal representation of the PRS, as these
ellipsoidal representations are not tractable for Minkowski
set difference operations. More specifically, we will over-
approximate the ellipsoidal reachable sets using zonotopes,
simplifying much of the tightening procedure at the cost of
introducing some conservatism. Nevertheless, conservatism
can be reduced by increasing the complexity of the zonotopes.

In Section II, we first introduce the problem setup of
the paper. Next, in Section III, we will define probabilistic
reachable tubes, reformulate both stochastic optimization prob-
lems, show recursive feasibility and prove chance constraint
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satisfaction. Afterwards, in Section IV, we will discuss how
to perform the tightening analytically utilizing zonotopes. In
Section V, we will consider an example to illustrate the
benefits of our method.
Notation: The probability of x ∈ A, the expected value of
random variable x and the variance of random variable x
are written as P(x ∈ A),E(x) and var(x), respectively. The
weighted 2-norm of a vector x ∈ Rn is denoted by ||x||2P =
xTPx for strictly positive definite matrices P ∈ Rn×n. The
Pontryagin/Minkowski set difference of A,B ⊆ Rn is given
by A⊖B := {a | a+ b ∈ A ∀b ∈ B}.

II. PROBLEM SETUP

Stochastic Linear Systems. We consider a linear time-
invariant (LTI) system with additive noise, given by

x(k + 1) = Ax(k) +Bu(k) + w(k), (1)

where x ∈ X ⊆ Rn is the state, x(0) ∈ X is the initial
state, u ∈ U ⊆ Rm is the input and w ∈ Rn is an
independent, identically distributed noise disturbance with
distribution w(k) ∼ Qw, which can have infinite support.
We will assume that the disturbance w(k) ∼ Qw has at least
known mean and variance and that the disturbance is central
convex unimodal1. We say that a controller f is a sequence of
policies f := {f0, f1, . . . }, such that fk maps states to inputs
fk : X → U for which the chosen control inputs for system
(1) are given by u(k) = f(x(k)) = fk(x(k)).
Safety & Performance. In this paper, we consider synthesis
of a controller f for system (1) with safety and performance
specifications. We will consider safety and performance spec-
ifications based on the probability that both state and input of
(1) will remain within a specific safety set at each time step.
Additionally, we will consider dynamic probabilities, which
will result in dynamic chance constraints. The dynamic chance
constraints are represented by

P(x(k) ∈ X |x(0)) ≥ min(p̄x, px(k)), (2a)
P(u(k) ∈ U|x(0)) ≥ min(p̄u, pu(k)), (2b)

where X and U are convex sets containing the origin in their
interior. Here p̄x and p̄u represent the target lower bounds,
i.e., the probability targets, and px(k) and pu(k) represent the
relaxed lower bounds at time k. The relaxed lower bounds
are defined as minimal or least costly relaxations of the target
lower bounds, necessary for the existence of a controller f .
Finally, the constraints are defined with respect to the initial
state, i.e., conditioned based on the initial state x(0).

To measure safety, we will consider a cost function that
penalizes deviations of the relaxed lower bounds away from
the target lower bounds, given by

Jp(px,pu) =
∑∞

k=0 (|p̄x − px(k)|+ |p̄u − pu(k)|) . (3)

where px = {px(0), px(1), ...} and pu = {pu(0), pu(1), ...}.
To measure the performance of a controller, we will penalize

1Qw is in the closed convex hull of all uniform distributions on symmetric
compact convex bodies in Rn (c.f. [4, Def. 3.1]).

the distance between the state and the input with regard to
the origin. Since system (1) is stochastic, similar to [12], we
consider the following cost function

Jf (x,u) =
∑∞

k=0 E0

(
||x(k)||2Q + ||u(k)||2R − lss

)
, (4)

where x = {x(0), x(1), . . . } and u = {u(0), u(1), . . . } are
sequences, Q and R are strictly positive definite matrices, E0 is
the expected value conditioned on x(0), and lss is the expected
infinite steady-state cost subtracted at each stage to ensure that
the sum is finite.
Problem Formulation. In this paper, we consider the problem
of synthesizing a controller f that maximizes both safety
and performance, i.e., given system (1) and constraints (2),
minimize cost functions (3) and (4). We will reformulate this
problem statement into two subsequent optimization problems,
see also Figure 1. The safety step optimizes the safety alloca-
tion by means of optimization problem minf ,px,pu Jp(px,pu)
such that

x(k + 1) = Ax(k) +Bu(k) + w(k), (5a)
u(k) = fk(x(k)), w(k) ∼ Qw, (5b)

P(x(k) ∈ X |x(0)) ≥ px(k), (5c)
P(u(k) ∈ U|x(0)) ≥ pu(k), (5d)
px(k) ∈ [0, p̄x], pu(k) ∈ [0, p̄u]. (5e)

Hereby, the safety step maximizes safety while ensuring a
controller f exists. Given p∗

x and p∗
u, the optimal solutions

to the safety step, the performance step then finds the best
performing controller f by means of optimization problem
minf Jf (x,u) such that (5) holds true, ignoring (5e).

Fig. 1. Illustration of the two subsequent stochastic optimization problems.

Approach. To solve both stochastic optimization problems in
a tractable way, we will build upon existing methods, such as
the effective framework based on stochastic model predictive
control (SMPC) with constraint tightening from [7], [8], [15].
Therein, it was explained how to synthesize a stochastic model
predictive controller f for the performance step, assuming that
possible relaxation of the target lower bounds is ignored, i.e.,
by assuming that px(k) = p̄x and pu(k) = p̄u. This was
accomplished using static probabilistic reachable sets to obtain
a deterministic tube-based MPC reformulation of the SMPC
optimization problem.

In this work, we will expand upon this by considering
dynamic probabilistic reachable sets, that is, probabilistic
reachable sets that differ in time, called probabilistic reachable
tubes. To obtain the initial tubes over an infinite horizon,
we first solve for the safety step by reformulating the safety
step as a deterministic linear program. Utilizing the initialized
tubes, we solve for the performance step by reformulating
the performance step as a deterministic tube-based MPC



optimization problem. During the performance step, we will
update the tubes at each prediction step as part of a receding
horizon. The main advantage of our method is that it allows
for optimal safety and feasibility due to the tubes’ dynamic
nature while also having the ability to optimize performance.

III. PROBABILISTIC REACHABLE TUBES &
DETERMINISTIC TUBE-BASED MPC REFORMULATION

First, let us define probabilistic reachable tubes together
with their ellipsoidal explicit representation to afterwards
explain how deterministic reformations for both the safety
and performance steps can be obtained similar to [7], [8],
[15]. At the end of this section, we will prove that the
closed-loop system satisfies chance constraints (2) and that the
deterministic reformulations together are recursively feasible.

A. Probabilistic Reachable Tubes
Consider an autonomous stochastic linear system given by

x(k + 1) = AKx(k) + w(k), (6)

where x ∈ Rn is the state, AK = A + BK, w(k) ∼ Qw

is the disturbance, and K is a feedback controller meant to
stabilize the system, i.e., AK has eigenvalues strictly inside the
unit circle. According to [8], the definition of the probabilistic
reachable set for a static probability level is given as follows.
Definition 1 (Probabilistic reachable sets). A set R is said
to be a probabilistic reachable set (PRS) of probability level
p ∈ [0, 1] for system (6) if

x(0) = 0 =⇒ P(x(k) ∈ R) ≥ p, ∀k ≥ 0. (7)

Assume that we have dynamic probability levels. We will
define the probabilistic reachable tubes as follows.
Definition 2 (Probabilistic reachable tubes). A probabilistic
reachable tube (PRT) of dynamic probability levels p =
{p(0), p(1), . . . } for system (6), denoted by Rp, is a sequence
of PRS, where the kth element is a PRS of probability level
p(k) for system (6).

To obtain an explicit form for any PRS, multiple approaches
exist, see [7], [8]. In this paper, we will consider the popular
ellipsoidal explicit representation [8]. For simplicity, we will
make the following assumption.
Assumption 1. Disturbance Qw has zero mean and has strictly
positive definite variance.
The above assumption is not necessary to obtain an ellipsoidal
explicit representation but will simplify computation.

The ellipsoidal explicit representation is obtained from the
multivariable Chebyshev inequality, details are given in [8].
Under Assumption 1, the ellipsoidal explicit representation of
a PRS R of probability level p for system (6) is given by

R = {x ∈ Rn | xTΣ−1
∞ x ≤ p̃} = E(p̃Σ∞, 0), (8)

where E(E, ē) := {x ∈ Rn|(x − ē)TE−1(x − ē) ≤ 1}, with
E ∈ Rn×n being strictly positive definite and ē ∈ Rn being
the center of the ellipsoid; Σ∞ solves the Lyapunov equation

AKΣ∞AT
K − Σ∞ + var(Qw) = 0; (9)

and p̃ = n
1−p , or, in the case of Gaussian disturbance, p̃ =

χ2
n(p), the inverse cumulative distribution function of the chi-

squared distribution with n degrees of freedom. Hereby, the
latter p̃ will yield a less conservative PRS in case of a Gaussian
disturbance w.

Consider the state space transformation

xK(k) = Kx(k), (10)

where x(k) is the state vector in (6). Under Assumption 1,
we have that RK = E(p̃KΣ∞KT , 0) is a PRS of probability
level p for the trajectory given by (10), i.e., RK is such that

xK(0) = 0 =⇒ P(xK(k) ∈ RK) ≥ p, ∀k ≥ 0. (11)

Here, Σ∞ and p̃ are obtained from (8). Details can be found
in [7], [15]. We will make the following assumption.
Assumption 2. All PRS R and RK will be considered exclu-
sively in ellipsoidal explicit representation.
Remark 1. With the ellipsoidal explicit representation, any
probabilistic reachable tube will be a tube of ellipsoids centred
around the origin. Each element of the tube will be a prob-
abilistic reachable set of similar shape and orientation but of
different sizes. Any cross-section of the tube will give dynamic
bounds on the corresponding system dynamics obtained from
the dynamic probability levels. This is in contrast to methods
such as [7], [8], [15], which obtain tubes for which the cross-
section has static bounds on the system dynamics due to a
constant probability level.

B. Deterministic Tube-Based MPC Reformulation

Following the approach in [7], [8], [15], the deterministic
reformulations for both the safety and performance steps can
be obtained as follows. First, decompose the dynamics into a
nominal and an error part:

x(k) = z(k) + e(k), (12a)
z(k + 1) = Az(k) +Bv(k), (12b)
e(k + 1) = AKe(k) + w(k), (12c)

u(k) = v(k) +Ke(k) = v(k) + eu(k). (12d)

Here K is the auxiliary stabilizing feedback controller meant
to keep the error e small. Next, determine the PRS Rk

x of
probability level px(k) for error e. Using decomposition (12a),
the chance constraint (5c) can now be reformulated as

px(k) ≤ P(z(k) +Rk
x ⊆ X ∧ e(k) ∈ Rk

x) (13)
≤ P(z(k) + e(k) ∈ X ) = P(x(k) ∈ X ),

i.e., a deterministic constraint for the nominal state z together
with a PRS Rk

x of probability level px(k) for error e. Next,
determine the probabilistic reachable set Rk

u of probability
level pu(k) for input error eu. Similarly, this allows for a
reformulation of chance constraint (5d). Together this yields
the deterministic dynamic tightened constraints

z(k) ∈ Z(k) := X ⊖Rk
x, (14a)

v(k) ∈ V(k) := U ⊖Rk
u. (14b)



Notice that the sequence Rpx = {R0
x,R1

x, . . . } is a PRT
with ellipsoidal elements. More specifically, Assumption 2 and
Remark 1 imply that this is a sequence of ellipsoids centred
around the origin and whereby each element of the sequence
only differs in size. Accordingly, an alternative notation for
Rk

x is given by α(k)Rp̄
x, where α(k) ∈ [0, 1] and Rp̄

x is a
PRS of probability level p̄x for error e. To derive α(k), first
notice that

α(k)Rp̄
x = {x ∈ Rn | xTΣ−1

∞ x ≤ α(k)2p̃x},
Rk

x = {x ∈ Rn | xTΣ−1
∞ x ≤ p̃kx}

where p̃x is obtained from the ellipsoidal explicit representa-
tion of Rp̄

x, and p̃kx is obtained from the ellipsoidal explicit
representation of Rk

x. Since we want that Rk
x = α(k)Rp̄

x, we

derive that α =
√

p̃k
x

p̃x
. The same can be derived with regards

to sequence Rpu = {R0
u,R1

u, . . . }.
The result is that we can reformulate the deterministic

dynamic tightened constraints (14) as

Z(k) = X ⊖ (1− α(k))Rp̄
x, (15a)

V(k) = U ⊖ (1− β(k))Rp̄
u, (15b)

whereby α(k) = β(k) = 0 will give the fully tightened
constraints Z = X ⊖ Rp̄

x and V = U ⊖ Rp̄
u, respectively;

α(k) = β(k) = 1 will give the original constraints X and U ,
respectively; and 0 < α(k) < 1 and 0 < β(k) < 1 will give
Z ⊂ Z(k) ⊂ X and V ⊂ V(k) ⊂ U , respectively. All-in-
all, optimizing over α and β allows us to optimize over the
relaxed lower bounds, whereby minimizing over α and β will
maximize the relaxed lower bounds and thus maximize safety.
Remark 2. If α(k) and β(k) are given, the corresponding
PRS Rk

x and Rk
u can be determined and vice versa. Hence,

throughout this paper, we can consider dynamic tightenings
(14) and (15) as equivalent.

To ensure that the infinite horizon optimization problems for
the safety and performance steps can be solved numerically,
we introduce a finite horizon N and a terminal set ZF . We
assume that the terminal set ZF , with respect to input v(k) =
Kz(k), satisfies (A + BK)ZF ⊆ ZF ⊆ Z and KZF ⊆ V .
ZF can be obtained from [12, Theorem 2.3]. Notice that the
terminal set is obtained based on maximal tightening. This
will ensure that cost function (3) will be equal to the sum of
its first N terms. Additionally, as will be shown in the next
subsection, this choice of terminal set will ensure recursive
feasibility.

Fig. 2. Illustration of the safety step and the subsequent performance step.
The former is solved only once, while the latter is solved for each time k.

All of the above now culminates into deterministic reformu-
lations for both the safety and performance steps, see also Fig-
ure 2. Let v̄ = {v(0), . . . , v(N − 1)}, α = {α(0), . . . , α(N −

1)} and β = {β(0), . . . , β(N − 1)}. The safety step is
reformulated into a linear program given by

min
v̄,α,β

J̄p(α,β) (16a)

s.t. z(k + 1) = Az(k) +Bv(k), (16b)
z(k) ∈ X ⊖ (1− α(k))Rp̄

x, (16c)
v(k) ∈ U ⊖ (1− β(k))Rp̄

u, (16d)
z(N) ∈ ZF , z(0) = x(0), (16e)
α(k) ∈ [0, 1], β(k) ∈ [0, 1], (16f)
∀k ∈ {0, . . . , N − 1}. (16g)

Here, the cost function is given by

J̄p(α,β) =
∑N−1

k=0 [α(k) + β(k)] . (17)

Let α∗ = {α∗(0), α∗(1), ...} and β∗ = {β∗(0), β∗(1), ...}
be infinite sequences for which the first N elements are given
as the optimal solution to optimization problem (16) and the
remaining elements are equal to zero. Let additionally, for
any vector or scalar of variables/signals s(k), si(k) denote
the corresponding predicted value of s(k + i) and s̄(k) :=
{s0(k), . . . , sN−1(k)}, all predicted based on measurements
available at time k. Utilizing α∗ and β∗, the performance
step can now be reformulated into a deterministic tube-based
MPC optimization problem given by

min
v̄(k),ξ(k)

J̄f (z̄(k), v̄(k)) + l(ξ(k)) (18a)

s.t. zi+1(k) = Azi(k) +Bvi(k), (18b)
zi(k) ∈ X ⊖ (1− α∗(k + i))Rp̄

x, (18c)
vi(k) ∈ U ⊖ (1− β∗(k + i))Rp̄

u, (18d)
∀i ∈ {0, . . . , N − 1}, (18e)

z0(k) = (1− ξ(k))x(k)− ξ(k)z1(k − 1), (18f)
zN (k) ∈ ZF , ξ(k) ∈ {0, 1}. (18g)

Here, the cost function is given by

J̄f (z̄(k), v̄(k)) =
∑N−1

i=0 ||vi(k)−Kzi(k)||2S , (19)

where S = R + BTPB, P is a stabilizing solution to the
discrete algebraic Riccati equation and K the stabilizing state-
feedback gain, see also [9], given by

K = −(R+BTPB)−1BTPA, (20a)

P = ATPA+ATPBK +Q. (20b)

To clarify, both optimization problems assume K to be
given by (20) and have the same terminal set ZF . Further,
(17) is obtained from (3) and the assumption that after N
steps, the relaxed lower bounds become equal to the target
lower bounds, i.e., maximal safety is assumed after N steps.
Next, (19) and (20) are obtained from substituting equations
(12a) and (12d) into equation (4) and applying [12, Corollary
6.1] after which constants are ignored within the cost function.
Our choice of initial state z0(k) comes from the effective idea
put forward in [8], and it is assumed that z1(−1) = x(0) and



l(ξ(k)) is either a linear or quadratic function that penalizes
high values of ξ(k).
Remark 3. In reformulation (18), the probabilistic reachable
tubes have dynamic cross-sections. For each time step k ≤ N ,
the cross-section of the probabilistic reachable tube might be
updated. This is in contrast to existing SMPC methods such
as [7], [8], [12], [15], for which the tube is time-invariant.

C. Recursive Feasibility & Chance Constraint Satisfaction

Consider the following theorem regarding recursive feasi-
bility of deterministic reformulations (16) and (18).
Theorem 3 (Recursive Feasibility). Given a feasible solution
of (16) exists, the tube-based MPC optimization problem in
(18) is recursively feasible.

Proof. First notice that any solution v̄ of (16) is also a solution
of (18) at time k = 0. We will show that if a solution of
(18) exist at time k this implies a solution exists at time
k + 1, thereby proving recursive feasibility by induction. Let
v̄(k) = {v0(k), ..., vN−1(k)} be any solution to (18) at time k
and let z̄(k) = {z0(k), ..., zN (k)} be the corresponding nom-
inal states. Take v̄(k + 1) = {v1(k), ..., vN−1(k),KzN (k)}
and ξ(k + 1) = 1. According to (18b) and (18f), we have
that z̄(k+1) = {z1(k), ..., zN (k), AKzN (k)}. Remember that
AKZF ⊆ ZF , hence zN (k + 1) = AKzN (k) ∈ ZF . All-in-
all, we have proven satisfaction of constraints (18b), (18e),
(18f) and (18g) at time k+1. Consider, next constraint (18c).
For i ∈ {0, . . . , N−2} satisfaction of constraint (18c) follows
trivially. For i = N−1, first remember that α∗(k+N) = 0 and
zN−1(k + 1) = zN (k) ∈ ZF ⊆ Z = X ⊖Rp̄

x. Satisfaction of
constraint (18c) now follows trivially. Consider last constraint
(18d). For i ∈ {0, . . . , N − 2} satisfaction of constraint
(18d) follows trivially. For i = N − 1, first remember that
β∗(k + N) = 0, KZF ⊆ V and vN−1(k + 1) = KzN (k) ∈
V = U ⊖ Rp̄

u. Satisfaction of constraint (18d) now follows
trivially. Hence, v̄(k+1) is a (non-optimal) solution of (18) at
time k + 1, implying also an optimal solution exists, thereby
finishing the proof.

To prove chance constraint satisfaction, first, consider the
following proposition obtained from [8, Theorem 3].
Proposition 4. Let Qw be central convex unimodal, and let
R be a PRS of probability level p for error e. For system (1)
under the control law (12d) resulting from (18) with tightening
(15), we have

P(e0(k) ∈ R) ≥ P(ek(0) ∈ R) (21)

for all k ≥ 0, conditioned on e(0) = e0(0) = 0.
The proof of the above proposition follows directly from

the proof of [8, Theorem 3] and Remark 2.
Consider now the following theorem regarding the sat-

isfaction of the chance constraints (5c) and (5d) via the
deterministic tube-based MPC reformulation (18).
Theorem 5 (Change Constraint Satisfaction). The system (1)
under the control law (12d) resulting from (18) with tightening
(15), will satisfy chance constraints (5c) and (5d).

Proof. First notice that z0(0) = x(0) implies that e(0) = 0.
Let Rk

x be a PRS of probability level px(k) for error e. Ac-
cording to Definition 1, we have that P(ei(0) ∈ Rk

x) ≥ px(k)
for all i, k ∈ {0, 1, . . . }. Utilizing Proposition 4, we have that
P(e0(k) ∈ Rk

x) ≥ px(k), where we took i = k. Next recall
from Theorem 3 that z(k) = z0(k) ∈ X ⊖ Rk

x. Satisfaction
of chance constraint (5c) now follows directly from (13).
Satisfaction of chance constraint (5d) can be proven in a
similar manner.

IV. IMPLEMENTATION

The main difficulty of implementing (16) and (18) is with
regards to (16c), (18c), (16d), and (18d). Hence, in this section,
we will explain how to obtain these analytically. We will
achieve this by first taking a zonotopic over-approximation
of the ellipsoidal explicit representation, to next rewrite the
zonotope into vertex representation, after which the Pontryagin
set difference can be described analytically. We will assume
the following with regard to constraints X and U in (2).
Assumption 3. X and U have known half-space representation
given by X = {x ∈ Rn | Axx ≤ bx} and U = {u ∈ Rm |
Auu ≤ bu}.

First, consider a PRS R given by the ellipsoidal explicit
representation E(p̃E, 0). A zonotopic over-approximation of
R can be obtained from [6, Theorem 4]. Next, we use [1,
Theorem 2] to rewrite the zonotope into a half-space represen-
tation {x ∈ Rn | Azx ≤ bz}, where Az ∈ Rq×n and bz ∈ Rq .
Finally, we can rewrite the zonotope into vertex representation
{x ∈ Rn | x =

∑r
i=1 aivi s.t. ∀i, ai ≥ 0,

∑r
i=1 ai = 1}

using the algorithm given by [2]. The vertex representation
with vertex set V = {v1, . . . , vr} then allows us to use [11,
Theorem 2.1(xiii)], to conclude that

X ⊖ αR =
⋂

v∈V X − αv,

where ∀v ∈ V we have that

X − αv : = {x− αv ∈ Rn | Axx ≤ bx}
= {y ∈ Rn | Axy ≤ bx − αAxv}.

The same can be concluded with regards to U . As a result, we
can rewrite (16c), (16d), (18c), and (18d) into a finite number
of linear inequalities.
Remark 4. By over-approximating ellipsoids by zonotopes,
conservatism will be introduced. Nevertheless, this can be mit-
igated by over-approximating tighter and tighter the ellipsoids.

V. CASE STUDY

To illustrate our method, we will consider the benchmark
case study in the SMPC literature of the DC-DC-converter
regulation problem [3], [15]. Here, the linear dynamics are of
the form (1) given by

A =

[
1.000 0.0075
−0.143 0.996

]
, B =

[
4.798
0.115

]
, (22)

where we assume that the disturbance is Gaussian with zero
mean and variance 0.1I2. We assume that the performance



cost function has weights Q = diag[1, 10] and R = 10 and
the prediction horizon will be N = 15. Finally, we consider a
chance constraint on each element of the state given by

P(−2 ≤ xi(k) ≤ 2) ≥ 0.6, i ∈ {1, 2}, (23)

that is, the target lower bound is given by p̄x = 0.6, each
element of the state must be within the interval [−2, 2] and no
constraints on the input.

Fig. 3. Top-Left: The measured state over a time horizon [0, 100]. Top-
Right: The nominal state over a time horizon [0, 100]. Lower-Left: The
relaxed lower bound calculated during the safety step. Lower-Right: The
zonotope over-approximation of a probabilistic reachable set.

To showcase the benefits of our method, we consider an
initial state for which the choice of static chance constraints
will result in infeasibility, i.e. no controller can be synthesized
without lowering the target lower bound. One such initial
condition is given by x(0) = [1, 1]T . As explained in this
paper, a safety allocation is first attempted by solving the
safety step optimization problem (16). If this attempt is met
positively, the controller can be determined by solving the
performance step optimization problem (18). The results of
both optimization problems can be found in Figure 1, and the
probabilistic reachable tube corresponding to the relaxed lower
bounds can be observed in Figure 2.

Fig. 4. The probabilistic reachable tube corresponding to the relaxed lower
bounds in Figure 1. Notice that at time k = 0 and k = 14 the red ellipsoids
are smaller, in correspondence to the relaxed lower bounds in Figure 1.

From Figure 1, it can be deduced that relaxation occurred at
time k = 0 and at time k = 14. The former is due to our choice
of the initial state, while the latter is due to enforcing the
nominal state to be within the terminal set after N = 15 time
steps. That relaxation happens at both time instances can also
be observed from the nominal trajectory z1. Notice that at time
k = 0 and time k = 14, the nominal state z1 is respectively
a maximum and a minimum, violating the boundary enforced
by the target lower bound. All-in-all, it can be concluded that

initial state x(0) would lead to infeasibility should the chance
constraints be static, as relaxation of the target lower bound
would be necessary. More specifically, the target lower bound
would have to be lowered to p̄x = 0.27 for a solution to exist.

VI. CONCLUSION & FUTURE WORK

In this work, we have introduced a stochastic model pre-
dictive control scheme for dynamic chance constraints. We
considered two subsequent stochastic optimization problems,
the first of which optimizes safety and the second of which
optimizes performance. By utilizing probabilistic reachable
tubes with dynamic cross-sections, we have tightened the dy-
namic chance constraint, thereby reformulating both stochastic
optimization problems into, respectively, a linear program and
a tube-based MPC optimization problem. We have shown
that the deterministic reformulations are recursively feasible,
and the closed-loop system satisfies the dynamic chance
constraints. In addition, we have introduced a novel implemen-
tation using zonotopes to describe the tightening analytically.
Finally, we gave an example to illustrate the method’s benefits.
In the future, we also want to prove stability and consider
lexicographic formulations of the problem statement.
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tubes in model predictive control with probabilistic constraints,” IEEE
Transactions on Automatic Control, vol. 56, no. 1, pp. 194–200, 2010.

[4] S. Dharmadhikari and K. Jogdeo, “Multivariate unimodality,” The Annals
of Statistics, pp. 607–613, 1976.

[5] M. Farina, L. Giulioni, and R. Scattolini, “Stochastic linear model
predictive control with chance constraints–a review,” Journal of Process
Control, vol. 44, pp. 53–67, 2016.

[6] V. Gaßmann and M. Althoff, “Scalable zonotope-ellipsoid conversions
using the euclidean zonotope norm,” in 2020 American Control Confer-
ence (ACC). IEEE, 2020, pp. 4715–4721.

[7] L. Hewing, K. P. Wabersich, and M. N. Zeilinger, “Recursively feasible
stochastic model predictive control using indirect feedback,” Automatica,
vol. 119, p. 109095, 2020.

[8] L. Hewing and M. N. Zeilinger, “Stochastic model predictive control
for linear systems using probabilistic reachable sets,” in 2018 IEEE
Conference on Decision and Control (CDC), 2018, pp. 5182–5188.

[9] V. Ionescu and M. Weiss, “Continuous and discrete-time Riccati theory:
a Popov-function approach,” Linear Algebra and its Applications, vol.
193, pp. 173–209, 1993.
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