
Benchmarking Testing Strategies with Tools from Mutation Analysis

Ralph Guderlei∗ René Just Christoph Schneckenburger

Franz Schweiggert

Institute of Applied Information Processing

Ulm University, D-89069 Ulm, Germany

{ralph.guderlei, rene.just, christoph.schneckenburger, franz.schweiggert}@uni-ulm.de

Abstract

The assessment of a testing strategy and the comparison

of different testing strategies is a crucial part in current re-

search on software testing. Often, manual error seeding is

used to generate faulty programs. As a consequence, the re-

sults obtained from the examination of these programs are

often not reproducible and likely to be biased.

In this paper, a flexible approach to the benchmarking of

testing strategies is presented. The approach utilizes well-

known results from mutation analysis to construct an ob-

jective effectiveness measure for test oracles. This measure

allows to draw conclusions not only on the effectiveness of

a single testing strategy but also to compare different testing

strategies by their effectiveness measure.

1 Introduction

Manual extensive testing is often not feasible. Therefore,

the automation of the software testing process is necessary

to reduce the testing effort. The automated testing requires

solutions for two problems: the automatic generation of test

inputs and the automatic validation of the output of the im-

plementation under test (IUT). The latter problem is often

referred to as the oracle problem (c.f. [18]). The combina-

tion of a method to generate the test input and an oracle will

be referred to as a testing strategy.

A class of oracles, the so-called partial oracles (c.f. [2]),

seem to be a promising class of techniques to automate the

verification of the output of the IUT. Partial oracles are char-

acterized by the property, that if an IUT is judged to be

faulty by the oracle, then the IUT contains a fault. That

means that the oracle produces no false-positive results. On

the other hand, if an IUT is judged to be correct, it may con-

tain a fault. The fact that partial oracles may leave some

∗work supported by the DFG research training group 1100 ”Model-

lierung, Analyse und Simulation in der Wirtschaftsmathematik”

faults undetected requires a strict assessment of the pro-

posed oracles.

The test input has also an impact on the ability of the

testing strategy to detect faults in the IUT. Several methods

have been proposed for the assessment of test inputs. In the

present paper, methods from mutation analysis will be used

to measure the adequacy of the test input.

Often, selected example programs are used for the as-

sessment of testing methods. The assessment procedure

usually starts with the manual insertion of errors to the pro-

grams. Then, the testing method is measured by its ability

to detect the inserted faults. The results of this kind of as-

sessment are hard to reproduce and can hardly be used for

the comparison to other testing methods.

Therefore, a benchmarking method based on known re-

sults frommutation analysis is presented in this paper. After

a short introduction to mutation analysis in Section 2, the

proposed approach is depicted and an example is given in

Section 3. Thereafter, the presented approach is discussed

in Section 4. Finally, a conclusion is given in Section 5.

2 Preliminaries

Mutation analysis is a fault-based method to examine the

effectiveness of a test set. It has been explored since 1977

and was originally introduced in [4, 6]. In order to assess

the test case adequacy, faults are seeded systematically into

the implementation which is to be investigated. Thus, faulty

versions of the original implementation, so-called mutants,

are generated. In contrary to the classical error seeding

(c.f. [13]), where the seeding is led by the intuition of ex-

perienced engineers, the way of seeding faults in mutation

analysis is formally described by so-called mutation opera-

tors. Examples for mutation operators are the replacement

of variables by constants or swapping the comparison oper-

ators (i.e. a<b will be replaced by e.g. a>b or a==b) (see

e.g. [9, 10] for definitions of mutation operators). Due to

the methodical seeding of faults the way of obtaining the

mutants is reproduceable and the applicability is indepen-

dent of the semantics of the concerning implementation, i.e.

the implementation can be chosen arbitrarily and the corre-

sponding semantics is exclusively covered by the test cases.

This fact can be regarded as fundamental in order to yield

reliable and comparable benchmarking results of those test

cases.

Mutation analysis is based on two hypotheses, namely

the so called competent programmer hypothesis and the

coupling effect. The latter assumes that complex faults can

be regarded as an accumulation of small mutations. Due to

this premise it can be said that every test case which detects

a simple mutation will reveal a complex fault. On the other

hand the competent programmer hypothesis implies that an

application written by an experienced programmer contains

just small faults, i.e. these faults are similar to simple muta-

tions. Therefore, every mutant contains just one mutation to

satisfy the indicated hypotheses and to avoid an exploding

number of mutants as a result of combining multiple muta-

tion operators.

Before the mutants are generated all test cases are ap-

plied to the original implementation in order to ensure that

the implementation as well as the test cases are correct (cor-

rectness means for every input value and test case respec-

tively the output of the implementation meets the expec-

tation). Thereafter, mutants are generated by applying all

mutant operators to the original implementation.

Every test case is then applied to the original implemen-

tation as well as every mutant and the outputs are compared.

If the outputs differ, the mutant is said to be killed. Owing

to Rice’s theorem [17] which states that equivalence of non-

trivial programs is not decidable in general, it can be neces-

sary to inspect the not-killed mutants for equivalence man-

ually (A mutant can produce the same output as the original

implementation either if the test cases don’t cover the mu-

tation or if the mutation has no effect, e.g. a post-increment

of a variable at the end of its life cycle).

As a result of disassociating the equivalent mutants from

the whole bundle the number of killed mutants can be re-

lated to the number of mutants not being equivalent to the

original implementation. The subsequent quotient Ms(T)is
referred to as mutation score.

Ms(T) = #{killed mutants}
#{not-equivalent mutants}

Thus, the mutation score is suitable for measuring the

adequacy of the test input. Further extensive research re-

sults and the current state of affairs in the field of mutation

analysis can be found in [15].

3 A Benchmark for Testing Strategies

Recall that a testing strategy consists of two parts, a

method to select test input data and a method to verify the

actual output of the IUT (an oracle). Each part of the testing

strategy will be considered in a separate quality measure.

The benchmark of the testing strategy T is then defined as

the product

E(T) = Ein(T) · Eout(T)

of the quality measures for the generated test input and the

oracle, Ein and Eout, respectively. These quality measures

are based on results from mutation analysis. The measure

Ein is equal to the mutation score as presented in Section 2.

In order to benchmark a testing strategy T , the following

steps have to be proceeded:

1. Choose a benchmark implementation:

The domain and the structure of the implementation

should match the testing strategy to be assessed and

the implementation itself should be representative for

the testing problem to be solved by the testing method.

The implementation should be complex enough so that

a large number of mutants can be generated. In the

following, the chosen implementation will be referred

to as original implementation.

2. Apply T to the benchmark implementation:

The testing strategy should not detect a bug in the orig-

inal implementation. Otherwise, either the original im-

plementation or the testing strategy has to be corrected.

3. Generate mutants:

This step can be automated using various tools, e.g.

for programs written in Java, Fortran, C#, or PHP. One

possibility is to consider programs written in Java and

to use the tool MuJava (c.f. [11]) to create the mutants.

4. Determine the number of non-equivalent mutants

N : Usually, this step has to be proceeded manually,

as there is no tool for that. But an algorithm for the

automatic detection of equivalent mutants is presented

in [16].

5. Examination of T :

For each mutant, do:

(a) Generate test input according to the input gener-

ation method taken from T

(b) Execute the mutant and compare the output of the

mutant to the output of the original implementa-

tion. If the outputs differ increase m by one.

(c) Apply the oracle of T to the mutant. If the oracle

judges the mutant to be faulty, increase n by one.

6. Compute E(T):

E(T) =
m

N
·

n

m
=

n

N

The comparison of the mutants outputs to the outputs

of the original implementation can be interpreted as

a perfect oracle (see e.g. [3]) as the original imple-

mentation is a defect free version of the mutant. The

perfect oracle is the best available oracle. Therefore,

if the same inputs are used for the perfect oracle and

the examined testing strategy T , the number of mu-

tants killed by T cannot exceed the number of mutants

killed by the comparison with the original implemen-

tation. If the oracle of T is a partial oracle, it holds that

0 ≤ Eout(T) ≤ 1 and thus 0 ≤ E(T) ≤ 1. It is neces-
sary to benchmark only partial oracles, because if the

oracle can have false-positive decisions, the measure

Eout makes no sense.

The separation of the overall benchmark in two parts

allows to separate the impact of the two parts of the

testing strategy on the overall measure. A low value

in one of the two measures indicates which part of the

testing strategy has to be improved.

In principal, it is not necessary to use the mutation score

as Ein. Any other adequacy criterion, e.g. a coverage mea-

sure, can be used instead. By doing that, the manual detec-

tion of equivalent mutants can be avoided, as the compari-

son with the original implementation as a benchmark for the

oracle does not require to identify equivalent mutants. If the

input adequacy criterion can be automatically obtained, the

benchmarking process itself can be automated.

Furthermore, the presented approach can be used to com-

pare different testing strategies T1 and T2. If it holds

E(T1) < E(T2), then it can be concluded that T2 is more

effective than T1 and in that sense T2 is better than T1.

In our past work, we have used the proposed bench-

mark to examine various testing strategies. In [12], the

effectiveness of Metamorphic Testing (see e.g. [5]) was

examined using different implementations for the compu-

tation of matrix determinants. Roughly said, Metamorphic

Testing checks necessary (post-)conditions on tuples of pro-

gram outputs. The preconditions (for tuples of inputs) and

post-conditions (for tuples of outputs) are specified by so-

called Metamorphic relations. Different metamorphic rela-

tions were assessed and general hints on the choice of good

relations are derived from the empirical results. Each Meta-

morphic Relation implicitly defines a testing strategy.

In the empirical study, 306 mutants were created, 37 of

the mutants are equivalent to the original implementation

(N = 269). For all of the relations, it turned out that

Ein = 0.978 (m = 263). Therefore, the different rela-

tions differ only by Eout ranging from Eout(R2) = 0.44
to Eout(R12) = 1. Fig. 3 gives an overview on the results.

On the x-axis, the size of the input matrices is shown. The

y-axis depicts the oracle effectiveness Eout.

An approach for the fully automated testing of imaging

applications by means of random and Metamorphic testing

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20

e
ff
e
c
ti
v
e
n
e
s
s

matrix size

Effectiveness of metamorphic relations

 R1
 R2
 R3
 R4
 R5
 R6
 R7
 R8
 R9

 R10
 R11
 R12

Figure 1. Example: effectiveness of different

metamorphic relations

was presented and examined in [7]. Here, the influence of

different techniques for the generation of input data was

taken into consideration and quantified using the proposed

approach. The effectiveness of statistical methods to test

randomized software was examined in [8]. In these papers,

the proposed methods were also compare to other testing

strategies.

4 Discussion

Some restrictions must be considered when using the

proposed approach. First, the weaknesses of mutation anal-

ysis also apply to our approach. There is only empirical evi-

dence that the general assumptions of mutation analysis, the

competent programmer hypothesis and the coupling effect

actually hold. Additionally, it is not clear, that the results

derived from experiments based on mutation analysis can

be transferred to real world faults. An empirical study (c.f.

[1]) supports this hypothesis, but that has to be confirmed

by further research.

A further technical limitation is the tool support. All of

the available tools have certain limitations, e.g. MuJava

cannot work on source code containing Java 1.5 language

features. Other tools implement only some mutation opera-

tors. Remind that our approach is not efficiently applicable

without appropriate tool support.

On the other hand, the presented approach is very

generic. The implementation which is used to generate the

mutants is not restricted to a specific application domain.

The proposed approach can be applied to any testing strat-

egy which consists of a partial oracle. Therefore, the bench-

mark implementation and the testing strategy be chosen to

fit exactly to the research project.

Given the necessary tools and testing strategies, the ap-

proach can be fully automated. Therefore, it is possible to

examine either a large number of testing strategies or to ap-

ply these testing strategies on a large number of different

programs.

To make the approach more efficient, the mutation oper-

ators can also be selected. In [14], an empirical study de-

termining the most relevant mutation operators is presented.

Manual error seeding often leads to faults which support the

claims of the researcher. In contrary, the proposed effec-

tiveness measure based on the formal specification of the

mutation operators. Therefore, it leads to (at least more)

objective results of the benchmarks.

The two parts of the benchmark can be used separately.

For example, if two testing strategies share a common

method for the generation of the input, then only the ef-

fectiveness measure of the oracles have to be considered.

5 Conclusion

In the present paper, a very flexible method to mea-

sure the effectiveness of a testing strategy is presented. By

choosing the implementation to generate the mutants, the

approach can be tailored to the researchers needs. The au-

tomation of the benchmarking process also allows to con-

sider a large number of different programs in empirical

studies. Therefore, the presented approach can be (and has

been) applied to a broad range of different testing problems.

References

[1] J. Andrews, L. Briand, and Y. Labiche. Is mutation an ap-

propriate tool for testing experiments? In Proceedings of

the 27th International Conference on Software Engineering

(ICSE 2005), pages 402–411. ACM, 2005.

[2] A. Bertolino. Software Testing Research: Achievements,

Challenges, Dreams. In Proceedings of the International

Conference on Software Engineering (ICSE 2007), pages

85–103. IEEE Computer Society Washington, DC, USA,

2007.

[3] R. Binder. Testing Object-Oriented Systems: Models, Pat-

terns, and Tools. Addison-Wesley Professional, 1999.

[4] T. Budd. Mutation Analysis of Program Test Data. PhD

thesis, Yale University, 1980.

[5] T. Y. Chen, T. Tse, and Z. Zhou. Fault based testing in the ab-

sence of an oracle. In Proceedings of the 25th IEEE Annual

International Computer Software and Applications Confer-

ence (COMPSAC 2001), pages 172–178. IEEE Computer

Society, 2001.

[6] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test

data selection: Help for the practicing programmer. IEEE

Computer, 11:34–41, 1978.

[7] R. Guderlei and J. Mayer. Towards automatic testing of

imaging software by means of random and metamorphic

testing. International Journal on Software Engineering and

Knowledge Engineering (accepted; Special Issue on Quality

Software, Invited extended version), 18(3):??, 2008.

[8] R. Guderlei, J. Mayer, C. Schneckenburger, and F. Fleis-

cher. Testing randomized software by means of statistical

hypothesis tests. In Proceedings of SOQUA ’07: Fourth in-

ternational workshop on Software quality assurance, pages

46–54, New York, NY, USA, 2007. ACM.

[9] K. N. King and A. J. Offutt. A fortran language system

for mutation-based software testing. Software Practice and

Experience, 21(7):685–718, 1991.

[10] Y.-S. Ma, Y. R. Kwon, and J. Offutt. Inter-class muta-

tion operators for java. In Proceedings of the 13th Interna-

tional Symposium on Software Reliability Engineering (IS-

SRE 2002), pages 352–366, 2002.

[11] Y.-S. Ma, J. Offutt, and Y. R. Kwon. Mujava: an automated

class mutation system. Softw. Test., Verif. Reliab., 15(2):97–

133, 2005.

[12] J. Mayer and R. Guderlei. An Empirical Study on the Selec-

tion of Good Metamorphic Relations. In Proceedings of the

30th Annual International Computer Software and Applica-

tions Conference, 2006 (COMPSAC 06)., volume 1, 2006.

[13] H. Mills. On the Statistical Validation of Computer Pro-

grams. Technical report, IBM FSD Report, 1970.

[14] A. Offutt, A. Lee, G. Rothermel, R. Untch, and C. Zapf. An

experimental determination of sufficient mutant operators.

ACM Transactions on Software Engineering and Methodol-

ogy, 5(2):99–118, 1996.

[15] J. Offutt and R. H. Untch. Mutation 2000: Uniting the or-

thogonal. In Proceedings of Mutation 2000: Mutation Test-

ing in the Twentieth and the Twenty First Centuries, San

Jose, CA, pages 45–55, 2000.

[16] A. Ofutt and J. Pan. Detecting equivalent mutants and the

feasible path problem. The Journal of Software Testing, Ver-

ification, and Reliability, 7(3):165–192, 1997.

[17] H. Rice. Classes of Recursively Enumerable Sets and Their

Decision Problems. Transactions of the American Mathe-

matical Society, 74(2):358–366, 1953.

[18] E. Weyuker. On Testing Non-Testable Programs. The Com-

puter Journal, 25(4):465–470, 1982.

