
Most Common Mistakes in Test-Driven Development Practice:
Results from an Online Survey with Developers

Mauricio Finavaro Aniche, Marco Aurélio Gerosa
Department of Computer Science - University of São Paulo (USP) - Brazil

{aniche,gerosa}@ime.usp.br

Abstract

Test-driven development (TDD) is a software
development practice that supposedly leads to better
quality and fewer defects in code. TDD is a simple
practice, but developers sometimes do not apply all the
required steps correctly. This article presents some of
the most common mistakes that programmers make
when practicing TDD, identified by an online survey
with 218 volunteer programmers. Some mistakes
identified were: to forget the refactoring step, building
complex test scenarios, and refactor another piece of
code while working on a test. Some mistakes are
frequently made by around 25% of programmers.

1. Introduction

Test-driven development (TDD) is an important
practice in Extreme Programming (XP) [1]. As agile
practices suggest, software design emerges as software
grows. In order to respond very quickly to changes, a
constant feedback is needed and TDD gives it by
making programmers constantly write a small test that
fails and then make it pass. TDD is considered an
essential strategy in emergent design because when
writing a test prior to code, programmers contemplate
and decide not only the software interface (e.g.
class/method names, parameters, return types, and
exceptions thrown), but also on the software behavior
(e.g. expected results given certain inputs) [13].

TDD is not only about test. It is about helping the
team to understand the features that the users need and
to deliver those features reliably and predictably. TDD
turns testing into a design activity, as programmers use
tests to clarify the expectations of what a piece of code
should do [3].

Many other assumptions are made about TDD.
Some researches show that it helps the development
process by increasing code quality and reducing the
number of defects, as presented in Section 2.

Kent Beck sums up TDD as follows: 1) quickly add
a test; 2) run all tests and see the new one fail; 3) make
a little change; 4) run all tests and see them all succeed;
5) refactor to remove duplication [18]. In order to get
all benefits from TDD, programmers should follow
each step. As an example, the second step states that
programmers should watch the new test fail and the
fifth step states to refactor the code to remove
duplication. Sometimes programmers just do not
perform all steps of Beck's description. Thus, the value
TDD aggregates to software development process
might be reduced.

This article presents some of the most common
mistakes that programmers make during their TDD
sessions, based on an online survey conducted during
two weeks in January, 2010, with 218 volunteer
programmers. The survey and its data can be found at
http://www.ime.usp.br/~aniche/tdd-survey/.

This article is structured as follows: Section 2
presents some studies about the effects of TDD on
software quality; Section 3 shows the most common
mistakes programmers make based on the survey;
Section 4 discusses about the mistakes and ideas on
how to sort them out; Section 5 presents threats to
validity on the results of this article; Section 6
concludes and provides suggestions for future works.

2. The effects of TDD on software quality

Empirical experiments about the effects of TDD
have been conducted generally with two different
groups: graduate students at universities and
professional developers at the industry. Most of them
show that TDD increases code quality, reduces the
defect density, and provides better maintainability.
However, industry studies presented stronger results
indicating that TDD is more helpful.

2.1. Studies in an industry context

Janzen [5] demonstrated that programmers using
TDD in industry produced code that passed in up to
50% more external tests than code produced by control
groups not using TDD and spent less time in
debugging. Janzen also reported that computational
complexity is much lower in test-first code while test
volume and coverage are higher.

A study from Maximillien and Williams [6] showed
a 40-50% reduction in defect density and minimal
impact to productivity when programmers in industry
were using TDD.

A study from Lui and Chan [7] comparing a group
with TDD and another using the traditional test-last
approach showed that TDD leads to a significant
reduction in defect density. Moreover, defects that were
still found were fixed faster with TDD. A study from
Damm, Lundberg and Olson [8] showed significant
defect reduction as well.

A study from George and Williams [9] found that
although TDD might initially reduce productivity
among inexperienced programmers, the produced code
passed between 18% and 50% more in external test
cases than the code produced by groups not using
TDD. The code also presented a test coverage between
92% and 98%. A qualitative analysis showed that
87.5% of the programmers believed that TDD
approach facilitated requirements understanding and
95.8% believed that it reduced debugging effort. 78%
of them thought that TDD improved overall
programming productivity; however only 50% of them
believed that TDD led to less code development time.
Regarding quality, 92% of the developers believed that
TDD yielded higher quality code and 79% thought it
promoted simpler design.

Nagappan [12] showed a case study in Microsoft
and IBM and the results indicated that defect density of
four products decreased between 40% and 90% relative
to similar projects that did not use TDD. On the other
hand, TDD increased in 15% to 35% the initial
development time.

Langr [10] showed that TDD improved code
quality, provided better maintainability, and produced
33% more tests.

2.2. Studies in an academic context

A study from Erdogmus et al [11] with 24
undergraduate students showed that TDD increased
productivity. However no differences between quality
effects in TDD code were found.

Another study from Janzen [13] with three different
academic groups (each one using a different approach:

test-first, test-last, no test) found that the code
produced by the test-first team better used object-
oriented concepts, and responsibilities were separated
in thirteen different classes while the other teams
produced a more procedural code. The test-first team
also produced more code and delivered more features.
Moreover, tests produced by the test-first team had
twice more assertions than the others and covered 86%
more branches than the test-last team. Furthermore,
tested classes had 104% lower coupling measures than
untested classes and tested methods were 43% on
average less complex than the untested ones.

Müller and Hagner [17] study showed that TDD has
no quality and productivity effects. However, students
noticed a better reuse in a TDD code.

Pancur [14] showed an experiment with 38 students
in which they did not notice any quality effect or
productivity improvement. In fact, students thought
TDD was not a very effective practice.

Steinberg [15] showed that TDD code was more
cohesive and less coupled and students reported that
defects were easier to fix.

A study from Edwards [16] with 59 students
showed that TDD code has 45% fewer defects and
gives a higher programmer confidence.

2.3. Threats to Validity

Several empirical researches investigate the effects

of TDD on software quality. However, they do not
evaluate if programmers are applying TDD correctly,
which might be a factor of influence and might affect
the result of the study. As explained in Section 3,
mistakes during TDD practice may decrease code and
software quality.

Indeed, there is a lack of literature about common
mistakes that programmers may incur in while
practicing TDD.

3. Common Mistakes in TDD

TDD is theoretically a simple technique since it
only has few steps to be followed. However, in practice
the steps are not that easy to follow as programmers
need to be very disciplined. This might reflect why
programmers are induced to make some mistakes,
which might lead code to a poor quality and/or
unexpected behaviors.

In order to identify common mistakes that
programmers are aware to be making, an online survey
was conducted during two weeks in January, 2010. The
survey was announced in several discussion lists [27]
[28] [29] [30] and in the micro-blog Twitter [31].

The survey was conducted with 218 volunteer
programmers in order to evaluate their experience,
feelings, and which mistakes are more common while
practicing TDD. All questions about mistakes were
elaborated based on empirical observation of mistakes
programmers usually make. Hence, it was focused only
on problems related to TDD approach and not on
mistakes programmers do when writing unit tests
before or after the implementation.

 For each question, programmers could choose a
number from zero to five, in which zero meant “never”
and five meant “always.” During the analysis,
intermediate numbers received a meaningful term in
order to better communicate the results. The terms are
respectively, from zero to five: “never,” “rarely,”
“sometimes,” “regularly,” “frequently,” “always.”
Moreover, in order to make the same comparison, the
complement of each answer in sections 3.9, 3.5 and 3.8
were analyzed.

As illustrated in Figure 1, almost 75% of
programmers were practicing TDD for at most 3 years
and only 22% were doing for more than 4 years.

0.5 year

1 year

1.5 years

2 years

2.5 years

3 years

3.5 years

4 years

4.5 years

5 years

5.5 years

6+ years

0% 2% 4% 6% 8% 10%12%14%16%18%

Figure 1. Programmers' experience in TDD

When asked to evaluate their first time using TDD,
in a scale from 0 to 5, the average answer was 2.36 and
the standard deviation was 1.4. In addition, 50% of
programmers chose between 0 and 2 and only 7%
thought they did well since the beginning and chose
option 5.

Programmers were also inquired about where they
practice TDD and available options were: academy,
industry, and open source projects. They were able to
choose more than one. As illustrated in Figure 2, 90%
of programmers use TDD in industry, 50% in open
source projects, and only 20% in academy.

Academy
Industry

Open source project

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Figure 2. Where programmers practice TDD

Each sub-section below presents a possible mistake
programmers might do. All charts show the distribution
of the mistakes split in three different ranges, each one
representing an interval of years of experience in TDD
(at most 2 years, between 2 and 4 years, more than 4
years). The X-axis represents the frequency in which
programmers make the mistake and the Y-axis
represents the percentage of programmers for each
range that makes it.

3.1. Do not watch the test fail

As previously presented, the second TDD step
states to watch the new test fail. At first, programmers
may think it is an unnecessary step as they just wrote
the test, so they know it is supposed to fail. Hence,
they skip this step and go directly to the next one,
implementing the simplest thing that makes the test
pass. This approach may guide the programmer to
unexpected errors.

If a new test does not fail, programmers receive an
indication that the production code was not working as
they thought it was and a code revision might be
necessary. Another problem that might occur is that
programmers cannot be sure about what made the test
pass; nothing ensures the new code was actually
responsible for it. The test implementation might have
been wrong since the beginning.

In all cases presented, if the programmer had run
the test before, s/he would have caught the problem
just by noticing that the test was not actually failing.

The survey showed that 55% of programmers
declared to make this mistake very rarely or never
make it. However, as illustrated in Figure 3, 24% of the
programmers forget to watch the test fail regularly or
frequently and almost 4% always forget to watch it
fail, while 15% never forget to do it before starting to
code. Moreover, the average frequency of errors was
1.75, which indicates that programmers in general

make this mistake rarely or sometimes. The standard
deviation was 1.35.

Never
Rarely

Sometimes
Regularly

Frequently
Always

0%

10%

20%

30%

40%

50%

60%

At most 2
years
Between 2
and 4 years
More than
4 years

Figure 3. How often programmers
forget to watch the test fail

The result of Pearson correlation between how often

programmers forget to watch the test fail and years of
experience in TDD was approximately -0.22. It
indicates that experience is a small factor of influence.
Thus, Figure 3 shows that the more experienced the
programmer is, the less s/he makes this mistake.
However, the chart also shows that around 15% of
programmers with more than 4 years of experience
forget to watch the test fail frequently or always, which
might indicate that experienced programmers are too
confident with the process and skip this test.

3.2. Forget the refactoring step

Refactoring is the process of improving the internal
structure by editing the existing working code, without
changing its external behavior [19]. It is the fifth and a
fundamental step in TDD process, because the simplest
code that the programmer has written in the previous
step is not always the best possible clean code. It also
prevents code from being scattered over time.

Ron Jeffries says that TDD is about “clean code that
works” and it gets done in two phases: The simplest
code step takes care of the “work code” part while the
refactoring step takes care of the “clean code” part
[18].

When asked about how often they forget to apply a
refactoring after the green bar, the average response
was 2.37 in a scale of 0 to 5, indicating that
programmers in general forget to refactor code almost
regularly. The standard deviation was 1.17. About 1%
always forget, while only 5% never forget the
refactoring step. The chart in Figure 4 shows that
experienced programmers tend to forget it a bit less
than beginners do. However, 44% of the experienced
programmers forget it regularly or frequently, while

52% of beginners forget to do it regularly or frequently.
It might indicate that programmers in general think that
the newly produced code is good enough and it does
not need to be refactored, which might not be always
true. Nevertheless, Pearson correlation between how
often programmers forget the refactoring step and
years of experience in TDD was approximately -0.03,
indicating that experience is not a factor of influence.

Never
Rarely

Sometimes
Regularly

Frequently
Always

0%

5%

10%

15%

20%

25%

30%

35%

At most 2
years
Between 2
and 4
years
More than
4 years

Figure 4. How often programmers forget
the refactoring step

Another hypothesis on why programmers forget to
refactor may be a psychological factor: when
programmers make the test pass they get excited about
it and go directly to the next test, forgetting the refactor
step. Further investigation is necessary to evaluate this
factor.

3.3. Refactor some other piece of code while
working on a test

When programmers are trying to achieve a code that
makes the test pass, they usually navigate through a
code that was written before and as they start reading
legacy code they may feel a need to refactor some part
of it. TDD states that if there is a failing test, the first
thing is to make it pass and do some refactor only after
the green bar.

When asked about refactoring some other piece of
code while working on a test, the average response was
2.34, indicating that programmers in general do it
almost regularly. The standard deviation was 1.36.
Almost 40% of programmers do some refactoring
while a test is failing regularly or frequently, 5% do it
all the time and only 6% of them make the test pass
first and then refactor the legacy piece of code. Figure
5 shows that, differently from what would be expected,
38% of the experienced programmers refactor another
piece of code regularly or frequently. However, 44% of
them never do it or do it very rarely. None of them do
it all the time. Although 9% of beginner programmers

make this mistake all the time, 28% never do it or do it
very rarely. The result of Pearson correlation between
how often programmers refactor some other piece of
code while working on a test and years of experience
in TDD was approximately -0.13, indicating that years
of experience in TDD is a small factor of influence.

Never
Rarely

Sometimes
Regularly

Frequently
Always

0%

5%

10%

15%

20%

25%

30%

35%

40%

At most 2
years
Between 2
and 4
years
More than
4 years

Figure 5. How often programmers refactor some
other piece of code while working on a test

Programmers should only refactor code when all
tests are passing and never when any test is failing.
This way he may detect what part of the refactoring
has broken the code and fix it. If programmers find a
piece of legacy code that needs to be refactored they
need to make the test pass first, make sure all tests in
the suite are passing and then refactor the legacy code.

3.4. Use bad test names

Programmers spend more time reading code than
producing code [22]. Therefore, all code should be
clear enough to be understood very easily. This is valid
for test code as well, because TDD programmers spend
much time reading test code.

It is a common practice to read all test names before
implementing a new feature: programmers get more
confident in it. If the test name is not good, then its
programmer will need to spend time reading the test
code implementation (which might be a bit complex)
instead of doing something more valuable. However, if
a test has a good and legible name, the programmer
will understand what that test does without reading its
implementation.

Having understandable test names also makes the
use of the test suite as documentation feasible since
each test name describes a feature in the system.
Putting tests all together, they might become an
informal documentation (or even the formal one) and it
can be read, as an example, by new programmers in the
team or by the product owner in order to know what
features are currently implemented and tested.

Never
Rarely

Sometimes
Regularly

Frequently
Always

0%

5%

10%

15%

20%

25%

30%

35%

At most 2
years
Between 2
and 4 years
More than
4 years

Figure 6. How often programmers
write bad test names

When asked about bad test names, the average
response was 1.84, indicating that programmers in
general recognize to write bad test names rarely or
sometimes. The standard deviation was 1.25. On the
other hand, as illustrated in Figure 6, 32% of the
programmers affirm that they write a bad test name
regularly or frequently, and 1% affirm that they write
bad test names all the time, when only 14% affirm that
they never write a bad test name. Therefore, around
45% of programmers never write a bad test name or do
it very rarely. Pearson correlation between writing bad
tests name and years of experience in TDD was -0.02
indicating that experience time in TDD is not a factor
of influence.

3.5. Do not start from the simplest test

Each new feature in a program is commonly
compound by many requirements and to accomplish it
in a TDD way, the programmer writes more than one
test. As Freeman suggests, the best way is to start
testing the simplest success case [3]. Once this test is
working, the programmer has a better idea of the real
structure of the solution and become more confident in
that code.

Programmers were asked if they start from the
simplest possible test. In order to compare with other
mistakes, the complement of each answer was
analyzed. The average frequency was 2.0, indicating
that programmers do not start from the simplest test
sometimes. The standard deviation was 1.28. As
illustrated in Figure 7, 33% of the programmers said
that they do not start from the simplest possible test
regularly or frequently, 10% always start from the
simplest ones and only 2% never do it.

Never
Rarely

Sometimes
Regularly

Frequently
Always

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

At most 2
years
Between 2
and 4
years
More than
4 years

Figure 7. How often programmers start
from the simplest possible test

The chart also shows that beginner programmers do

it more frequently than experienced (around 20% of
experienced and 40% of beginners do it regularly or
frequently). It indicates that experienced programmers
can evaluate better whether the test is the simplest one
or not, while beginners still do not have the required
experience for it. However, Pearson correlation
between starting from the simplest test and years of
experience in TDD was -0.09, indicating that
experience is not a factor of influence.

3.6. Run only the current failing test

Automatic tests should be run after each change of
the application code in order to assure that the changes
have not introduced errors to the previous version of
the code [19]. Test suites can become really big and as
they grow, the time needed to run the whole suite
increases.

When programmers write a failing test and start
making it pass, they should always run the all test suite
as the code they are writing might affect another part
of the system and break some other test. If
programmers only run the actual failing test, they will
not notice when an old test breaks.

Running all the test suite only at the end of the
process is not a final solution for the problem. If
programmers finish the implementation and only after
that they see that an old test just broke, it could take
more time to find the problem because too many lines
of code have been written.

In the survey, when asked how often they forget to
run the all test suite, the average frequency of response
was 1.4, indicating that programmers in general run the
all suite rarely or sometimes. The standard deviation
was 1.2. Moreover, 16% of programmers forget to run
all tests regularly or frequently, 2% forget all the time
while only 25% never forget.

Never
Rarely

Sometimes
Regularly

Frequently
Always

0%

5%

10%

15%

20%

25%

30%

35%

40%

At most 2
years
Between 2
and 4
years
More than
4 years

Figure 8. How often programmers
forget to run the complete test suite

Figure 8 shows that, differently from what would be

expected, experienced programmers tend to forget to
run more frequently the complete suite more often than
beginners (21% of experienced programmers forget it
regularly or frequently, compared to only 14% of the
beginners). Hence, the Pearson correlation was -0.009,
indicating that years of experience in TDD is not a
factor of influence.

3.7. The need for writing a complex test
scenario

A test case is usually written for a tiny piece of
functionality and the code that makes the test pass
should not be too long. When programmers are forced
to write a large amount of lines of code just to make
one test, it might indicate that the class being tested
contains too many responsibilities and should be
refactored (maybe dividing it in two or more classes).

Never
Rarely

Sometimes
Regularly

Frequently
Always

0%

5%

10%

15%

20%

25%

30%

35%

At most 2
years
Between 2
and 4
years
More than
4 years

Figure 9. How often programmers need
to write a complex test scenario

When asked about how often programmers need to

write a complex test scenario, the average response
was 2.58, indicating that programmers in general do it
almost regularly. The standard deviation was 1.21. In

addition, 50% of programmers write complex tests
regularly or frequently, 4% write them all the time, and
only 3% never write a complex test. The chart in
Figure 9 shows that 35% of experienced programmers
need to write a complex test scenario regularly or
frequently, 27% do it very rarely while almost 53% of
beginner programmers need to do it regularly or
frequently, and only 12% do it rarely. Thus, Pearson
correlation was -0.10, indicating that years of
experience in TDD is a small factor of influence.

Programmers should be always aware of it. As soon
as the first complex test needs to be written, they
should refactor it immediately; otherwise they will be
forced to write many complex tests that probably need
too much time to be written and probably need too
much effort to write code that makes it pass. Later, it
might be more difficult to make a big refactoring.

3.8. Do not refactor the test code

As previously mentioned, programmers spend more
time reading code than producing it, and TDD
programmers spend time reading two different types of
code: production code and test code. Because of that,
test code should be as clear as possible, and in order to
achieve that it needs to be constantly refactored.

Never
Rarely

Sometimes
Regularly

Frequently
Always

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

At most 2
years
Between 2
and 4
years
More than
4 years

Figure 10. How often programmers
apply a refactoring on a test code

In the survey, programmers were asked about how
often they refactor test code. In order to compare with
other mistakes, the complement of each answer was
analyzed. The average response was 1.67, indicating
that programmers in general forget to do it almost
sometimes. The standard deviation was 1.19.
Moreover, as illustrated in Figure 10, only 16% of
programmers never forget to refactor test code while
23% of programmers forget to do it regularly or
frequently, and 1% always forget to refactor. In
addition, Pearson correlation was -0.21, indicating that
years of experience in TDD is a small factor of

influence and makes difference. Hence, beginner
programmers tend to forget to refactor the test code
more often than experienced (25% of beginners forget
it regularly or frequently while only 12% of
experienced programmers do it).

Refactoring is not the only activity programmers
should do to keep the tests clear. It should also be
updated together with the production code: if a feature
is removed from the production code, its test code
should be deleted together; if a feature needs to be
changed, its tests need to be changed as well. The
survey shows that 26% of programmers find test for
features that does not exist anymore regularly or
frequently, 2% find them all the time, and only 18%
never find them.

3.9. Do not implement the simplest thing that
makes the test pass

The third step of TDD states that programmers
should do the simplest thing that makes the test pass.
When programmers do not follow this rule they might
be creating unnecessary complex code, and as a
consequence, decreasing code quality.

Never
Sometimes

Frequently

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

Up to 2
years of
TDD
practice
Between 2
and 4 years
More than
4 years

Figure 11. How often programmers do not
implement the simplest thing that makes test pass

Programmers were asked about how often they
implement the simplest thing that makes the test pass.
In order to compare with other mistakes, the
complement of each answer was analyzed. The average
response was 1.90, indicating that programmers do not
implement the simplest thing sometimes. The standard
deviation was 1.19. Pearson correlation was -0.24,
indicating that experience is a small factor of influence.
As illustrated in Figure 11, 35% of beginners tend not
to implement the simplest thing regularly or frequently
while 20% of experienced programmers do not do it.

4. Discussion

Table 1 summarizes all mistakes programmers
make, ordered by the most frequent mistake in average.

Mistake Avg/Std.
Dev.

Pearson
correl.

Frequently
or always

The need for
writing complex

test scenario [3.7]

2.58/1.21 -0.1 26.61%

Forget the
refactoring
 step [3.2]

2.37/1.17 -0.03 19.72%

Refactor other
piece of code

while working
on a test [3.3]

2.34/1.36 -0.13 23.85%

Do not start from
the simplest

test [3.5]

2.00/1.28 -0.09 15.14%

Do not implement
the simplest thig
that make the test

pass [3.9]

1.90/1.19 -0.24 11,01%

Use bad test
names [3.4]

1.84/1.25 -0.02 11.01%

Do not watch the
test fail [3.1]

1.75/1.35 -0.22 14.22%

Do not refactor
the test code [3.8]

1.67/1.19 -0.21 8.72%

Run only the
current failing

test [3.6]

1.40/1.20 -0.01 5.96%

Table 1. Most Common Mistakes when
practicing Test-Driven Development

As previously mentioned, 75% of programmers
were practicing TDD for at most 3 years, which might
indicate that this technique is still recent to most of
programmers. This might explain the frequency of
mistakes that are made by programmers.

 The average response when programmers were
asked to evaluate their first time doing TDD was not
high, indicating that TDD is not easy to understand and
looks like a non-natural way to develop a software to
many programmers.

The mistakes presented in this article may be
avoided if programmers follow all TDD steps correctly.
Always refactoring code after the green bar, for

example, prevents code from a big refactoring need in
a long term.

The act of choosing good and understandable test
names help programmers to avoid spending much time
reading test and production code. Programmers may
check if a test has a good name paying attention after
finishing its implementation: if the programmer gets to
know what the test should do and what the
expectations are by just reading the test name, then it is
a valid test name.

Thus, keeping test code clean is also a good
practice, as programmers might need to read some old
tests during their activities. There are some techniques
in order to make it clean; Test Data Builders [3], which
are simple implementations of Builder Pattern [24], are
helpful when there is a need to build instances of
complex objects for a specific test scenario. With it, all
lines used to create the object are now replaced by the
test data builder. Many other ways to improve test code
can be found in literature [23].

Starting from the simplest test is a way to make
programmers more confident about code and the
software needs. As Beck [18] and Freeman [3]
suggests, a good way to start from the simplest is to
keep a list with the features that should be tested in a
piece of paper. The list helps programmers on deciding
the next simplest test that should be implemented.

The need for writing complex test scenarios might
indicate some design smell in production code such as
high coupling, as the programmer needs to code too
many test lines just to test one feature. Therefore, in
order to avoid that, some known design patterns, as
Strategy, State, Observer [24] may come in handy. The
utilization of them help programmers to reduce the
coupling and class responsibilities, making it possible
to test without the need to build a complex scenario.

Never
Rarely

Sometimes
Regularly

Frequently
Always

0%

10%

20%

30%

40%

50%

60%

70%

80%

At most 2
years
Between 2
and 4 years
More than 4
years

Figure 12. Programmers' opinion about
TDD reducing defect density

Although all programmers declared to make
mistakes, Figure 12 shows that almost 60% of
volunteers are really convinced that TDD helps
reducing defect density and only 0.50% of
programmers are convinced that TDD does not help in
reducing defects at all (average was 4.44 and standard
deviation was 0.83). In addition, Pearson correlation
was 0.20, indicating that years of experience is a small
factor of influence. No programmers with more than 2
years of experience thought that TDD rarely helps or
does not help at all.

Their opinions about code quality improvement
were almost the same: 65% were convinced that TDD
produces better code and 0% of programmers thought
that TDD does not help at all (average was 4.46 and
standard deviation was 0.88). Hence, Pearson
correlation was 0.21, indicating that years of
experience is a small influence. In addition, Figure 13
shows that 13% of beginners considered that TDD
improves code quality only sometimes or regularly,
which might indicate that TDD is not an easy practice.

Never
Rarely

Sometimes
Regularly

Frequently
Always

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

At most 2
years
Between 2
and 4
years
More than
4 years

Figure 13. Programmers' opinion about
TDD improving code quality

Different from what would be expected,
programmers with more than 4 years of experience
sometimes make more mistakes than programmers
with at most 2 years of experience. It might happen
because, as suggested by Dreyfus Model [26], when
experienced professionals get more confident with the
technique, sometimes they start skipping some steps,
and it might lead them to make mistakes. Another
possible explanation is that experienced programmers
usually tend to be more self-critic about their practices
and might choose lower values in the survey scale than
reality. On the other hand, beginners in general often
oversell their skills as they are still not able to evaluate
their technique, so it is possible that the percentage of
mistakes this article shows in the beginners' range is
underestimated.

5. Threats to Validity

The main threats to validity are:

• The most common mistakes were based on
programmers' self-evaluation and as
previously discussed, it might not represent
the reality.

• All mistakes were raised by empirical
observation in industry and there might be
many other possible mistakes programmers
make while practicing TDD.

• As presented in Figure 1, the number of
programmers with more than 4 years of
experience is only 16% of total and the
sample may not be representative.

• Programmers were only categorized by years
of experience in TDD. As studies in Section 2
shows some difference between opinions in
academy and in industry, it might be a factor
of influence and might affect the results of
this study.

6. Conclusions and Future Work

Although TDD is increasingly becoming more
popular, the number of mistakes programmers still
make is high. In the analysis, “regularly”, “frequently,”
and “always” were sometimes grouped, as they might
indicate the number of programmers that make that
mistake very often. As presented in this article, some
mistakes are made frequently or always by around 25%
of programmers.

The analysis shows that years of experience in TDD
is only a small factor of influence, at least statistically.
A more complete investigation is necessary to evaluate
this factor of influence.

Deviations in TDD practice were considered
mistakes and were hypothetically connected to defects.
A study should be done in order to check whether all
these mistakes really reduce TDD benefits.

TDD leads code to better quality and promotes a
reduction in defect density. All advantages TDD
provides might increase if programmers make fewer
mistakes during the process. All studies presented in
Section 2 regarding effects of TDD on software quality
might be affected by all mistakes programmers affirm
to make. A future step of this research is to conduct an
experiment isolating this factor of influence and
checking whether these mistakes reduce the aggregated
value of TDD on software development process or not.

7. References

[1] Beck, K., Extreme Programming Explained, Second
Edition: Embrace Change. Boston, Massachusetts, USA,
Addison-Wesley, 2004.

[2] Beck, K., Beedle, M., et al., Manifesto for Agile Software
Development, 01.12.2010, http://www.agilemanifesto.org.

[3] Freeman, S., Pryce, N., Growing Object-Oriented
Software, Guided by Tests. First edition, Addison-Wesley
Professional, 2009.

[4] Siniaalto, M. Test-Driven Development: Empirical Body
of Evidence. Technical report, ITEA, Information Technology
for European Advancement, 2006.

[5] Janzen, D., Software Architecture Improvement through
Test-Driven Development. Conference on Object Oriented
Programming Systems Languages and Applications, ACM,
2005.

[6] Maximilien, E. M. and L. Williams. Assessing test-driven
development at IBM. IEEE 25th International Conference on
Software Engineering, Portland, Orlando, USA, IEEE
Computer Society, 2003.

[7] Lui, K. M. and K. C. C. Chan. Test-driven development
and software process improvement in China. 5th International
Conference XP 2004, Garmisch-Partenkirchen, Germany,
Springer-Verlag, 2004.

[8] Damn, L.-O., Lundberg, L., et al. Introducing Test
Automation and Test-Driven Development: An Experience
Report. Electronic Notes in Theoretical Computer Science
116: 3 – 15, 2005.

[9] George, B., Williams, L., An Initial Investigation of Test-
Driven Development in Industry. ACM Symposium on
Applied Computing. Melbourne, Florida, USA, 2003.

[10] Langr, J., Evolution of Test and Code Via Test-First
Design, 02.12.2010, http://www.objectmentor.com/resources/
articles/tfd.pdf

[11] Erdogmus, H., Morisio, M., et al. On the effectiveness of
the test-first approach to programming. IEEE Transactions
on Software Engineering 31(3): 226 – 237, 2005.

[12] Nagappan, N., Bhat, T. Evaluating the efficacy of test-
driven development: industrial case studies. Proceedings of
the 2006 ACM/IEEE international symposium on Empirical
software engineering.

[13] Janzen, D., Saiedian, H. On the Influence of Test-Driven
Development on Software Design. Proceedings of the 19th
Conference on Software Engineering Education & Training
(CSEET'06).

[14] Pancur, M., Ciglaric, M., et al. Towards Empirical
Evaluation of Test-Driven Development in a University
Environment. EUROCON 2003, Ljubljana, Slovenia, IEEE.

[15] Steinberg, D. H. The Effect of Unit Tests on Entry
Points, Coupling and Cohesion in an Introductory Java
Programming Course. XP Universe, Raleigh, North Carolina,
USA, 2001.

[16] Edwards, S. H. Using Test-Driven Development in a
Classroom: Providing Students with Automatic, Concrete
Feedback on Performance. International Conference on
Education and Information Systems: Technologies and
Applications, Orlando, Florida, USA, 2003.

[17] Müller, M. M., Hagner, O. Experiment about test-first
programming. IEE Proceedings 149(5): 131 – 136, 2002.

[18] Beck, K. Test-Driven Development: By Example.
Addison-Wesley Professional, 2002.

[19] Astels, D. Test-Driven Development: A Practical Guide.
Upper Saddle River, New Jersey, USA, Prentice Hall, 2003.

[20] Kerievsky, J. Refactoring to Patterns. Addison-Wesley
Professional, 2004.

[21] Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts D.
Refactoring: Improving the Design of the Existing Code.
Addison-Wesley Professional, 1999.

[22] Begel, A., Simon, B. Struggles of New College
Graduates in Their First Software Development Job.
SIGCSE Bulletin, 40, n° 1, 226-230, ACM, 2008.

[23] Meszaros, G. xUnit Test Patterns: Refactoring Test
Code. Addison-Wesley Professional, 2007.

[24] Gamma, E., Helm, R., Johnson, R., Vlissides, J. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional, 1994.

[25] Beck, K. Aim, fire. IEEE Software 18, page 87-89, 2001.

[26] Benner, P. From novice to expert. The American Journal
of Nursing, 1982.

[27] Test Driven Development Discussion List.Yahoo!
Groups, 07.01.2010. http://tech.groups.yahoo.com/group/
testdrivendevelopment/.

[28] Agile Testing Discussion List. Yahoo! Groups,
07.01.2010. http://tech.groups.yahoo.com/group/agile-
testing/.

[29] Alt.NET Discussion List. Yahoo! Groups, 07.01.2010.
http://tech.groups.yahoo.com/group/altdotnet/.

[30] .NET Architects Brazilian Discussion List. Google
Groups, 07.01.2010. http://www.dotnetarchitects.net/.

[31] Microblog. Twitter, 07.01.2010.
http://twitter.com/mauricioaniche/status/7493800359.

