
Automated Refactoring for Testability
Mel Ó Cinnéide

School of Computer Science and Informatics
University College Dublin

Ireland
Email: mel.ocinneide@ucd.ie

Dermot Boyle
Microsoft Labs

Dublin
Ireland

Email: dboyle@microsoft.com

Iman Hemati Moghadam
School of Computer Science and Informatics

University College Dublin
Ireland

Email: Iman.Hemati-Moghadam@ucdconnect.ie

Abstract—Current software practice places a strong empha-
sis on unit testing, to the extent that the amount of test
code produced on a project can exceed the amount of actual
application code required. This illustrates the importance of
testability as a feature of software. In this paper we investigate
whether it is possible to improve a program’s testability using an
automated refactoring approach. We conduct a quasi-experiment
where we create a small application that scores poorly using a
proven cohesion metric, LSCC. Using our automated refactoring
platform, Code-Imp, this application is automatically refactored
using the LSCC metric to guide the search for better solutions. To
evaluate the results, a number of industrial software engineers
were asked to write test cases for the application both before
and after refactoring and compare the relative difficulty involved.
The results were interesting though inconclusive, and suggest that
further work is required.

I. INTRODUCTION

Testability is a highly desirable external attribute of soft-
ware. Software that ranks highly on testability measures can
be expected to be easier to write test cases for, enable more
concise and readable test cases and be less likely to contain
errors undetected by the test cases. Testability is also a very
broad concept, incorporating issues from architecture through
to implementation. For example, at an architectural level,
user interface software must be separated from business logic
software, otherwise the business logic cannot be tested without
being entangled with interface issues. At the other extreme,
at an implementation level, nested conditional statements can
be converted to a single compound conditional to reduce the
number of paths through the code and hence reduce testing
effort [23].

In this work, we are concerned with design issues that affect
testability. At a design level, the key software quality metrics
are based on coupling and cohesion. Studies by Bruntink and
van Deursen [6] and more recently by Badri, Badri and Toure
[4] have shown that cohesion metrics are good predictors for
testability, where testability is measured inversely by the num-
ber of lines of test code and the number of assert statements
in the test code. These studies prompted us to consider if it is
possible to improve the testability of a program by improving
its cohesion measure through automated refactoring, and this
is the research question addressed in this paper.

A multitude of cohesion metrics are described in the liter-
ature. We decided to use the LSCC metric (Low-level design
Similarity-based Class Cohesion) which was introduced by Al

Dallal and Briand [10]. We choose this metric for a number
of reasons:

• LSCC is a low-level design metric, suitable for applying
to source code.

• It has been evaluated on industrial examples and shown
to measure a dimension of cohesion not detected by other
cohesion metrics.

• The authors demonstrate its usefulness in guiding class
refactoring.

This leads to the question of how we can improve the LSCC
measure for a program. In previous work, we developed an
automated refactoring platform, Code-Imp, that can be used to
improve the design of a program according to certain metrics
[17]–[19]. In this paper, we use Code-Imp to refactor the
design of a program to improve its LSCC score. The Code-Imp
platform is described in more detail in section III.

Our approach in this work is to first develop a small Java
application that has severe cohesion problems. We refactor
this program using Code-Imp in order to improve its design
according to the LSCC cohesion metric. We then invited a
number of industrial software engineers to write test cases for
the both versions of the program, before and after refactoring,
and to compare the difficulty in writing the test cases. If
writing test cases for the refactored version of the program
proves significantly easier, then there is indicative evidence
that automated refactoring can indeed improve testability.

The remainder of the paper is structured as follows. In
section II we describe related work. Our automated refactoring
platform, Code-Imp, is the topic of section III, and in section
IV we present in detail our experiment to test if automated
refactoring can improve testability. The results of this experi-
ment are presented and evaluated in V. Possible future work
is outlined in section VI and we present our conclusions in
section VII.

II. RELATED WORK

Many structural cohesion metrics have been proposed for
object-oriented programs both at design and implementation
levels, e.g. Tight Class Cohesion (TCC) of Bieman and
Kang [5], Lack of Cohesion between Methods (LCOM) of
Chidamber and Kemerer [8], Normalised Hamming Distance
(NHD) of Counsell et al. [9], Similarity-based Class Cohesion
(SCC) of Briand and Al Dallal [1]. Cohesion is a difficult
property to measure since structural measurements do not



directly capture semantic cohesion. Hence the debate as to
which approach to cohesion is best is ongoing and new
cohesion metrics are still appearing [1], [4], [10].

Bruntink and van Deursen [6] studied five open source
Java projects that had unit tests to determine if a correlation
could be found between various structural metrics and unit test
metrics. The unit test metrics used were lines of test code and
number of assert statements, which are proposed as inverse
measures of testability. They found significant correlation in
the case of the coupling metrics used (fan-out, lines of code
per class and Response For a Class (RFC) [8]) and the unit
test metrics. In the case of the single cohesion metric they
studied (LCOM), some correlation was found, though this
appeared to be dependent on the application. Badri, Badri and
Toure performed a similar study more recently [4]. They used
two open source Java systems and tried to find a correlation
between a lack of cohesion and low testability characteristics.
The cohesion metrics they used were LCOM, LCOM* and
LCD and their notion of test case quality was the same as in
the work of Bruntink and van Deursen above. They found a
clear correlation between cohesion and testability and this has
motivated our use of cohesion metrics in this work.

Alshayeb investigated the impact refactoring has on external
software quality attributes, including testability [2]. In his
experiments he found that the refactorings performed by
students had a mixed impact on the testability of the software.
Rather than try to measure testability directly, he measured
the metrics that Bruntink and van Deursen [6] had found
to be good predictors of testability. In general, his work
failed to show that refactoring improved any of the external
quality attributes studied, namely adaptability, maintainability,
understandability, reusability, and testability1.

Search-Based Refactoring is fully automated refactoring
driven by metaheuristic search and guided by software quality
metrics. It was introduced in our previous work by O’Keeffe
and Ó Cinnéide [20], where it was used with some success
to automate the improvement of software design [18], [19].
Seng et al [22] developed a search-cased refactoring approach
using a genetic algorithm and a novel evaluation function
based largely on the Chidamber and Kemerer metrics suite [8].
They used this to successfully reposition displaced methods
in the class structure of HotDraw. Harman and Tratt [15]
demonstrated the benefit of using pareto optimality in search-
based refactoring. Otero et al [21] use search-based refactoring
to refactor a program as it is being evolved using genetic
programming in an attempt to find a different design which
may admit a useful transformation as part of the genetic
programming algorithm. Jensen and Cheng [16] use genetic
programming to drive a search-based refactoring process that
aims to introduce design patterns.

1A similarly curious result was found by Chatzigeorgiu who studied the
evolution of code smells in open source software and found that very few of
them were actually removed by refactoring [7].

III. THE CODE-IMP REFACTORING PLATFORM

Code-Imp is an extensible platform for automated refac-
toring that we have previously used for automated design
improvement [18], [19]. It is focussed on design-level refac-
torings such as moving methods around the class hierarchy,
splitting classes and changing inheritance and delegation re-
lationships. It does not attempt to split or merge methods.
Code-Imp was recently reengineered to use the RECODER
platform [13] and now supports Java 6. It currently implements
the following refactorings:
Method-level Refactorings:

• Push Down Method: Moves a method from some class
to those subclasses that require it.

• Pull Up Method: Moves a method from some class(es)
to their immediate superclass.

• Increase/Decrease Method Security: Changes the security
of a method by one level, e.g. private to protected or
public to default.

Field-level Refactorings:
• Push Down Field: Moves a field from some class to those

subclasses that require it.
• Pull Up Field: Moves a field from some class(es) to their

immediate superclass.
• Increase/Decrease Field Security: Changes the security

of a field by one level, e.g., private to protected or public
to default.

Class-level Refactorings:
• Extract Hierarchy: Adds a new subclass to a non-leaf

class C in an inheritance hierarchy. A subset of the
subclasses of C will inherit from the new class.

• Collapse Hierarchy: Removes a non-leaf class from an
inheritance hierarchy.

• Make Superclass Abstract: Declares a constructorless
class explicitly abstract.

• Make Superclass Concrete: Removes the explicit abstract
declaration of an abstract class without abstract methods.

• Replace Inheritance with Delegation: Replaces an inher-
itance relationship between two classes with a delegation
relationship; the former subclass will have a field of the
type of the former superclass.

• Replace Delegation with Inheritance: Replaces a delega-
tion relationship between two classes with an inheritance
relationship; the delegating class becomes a subclass of
the former delegate class.

Code-Imp drives the refactoring process using one of a
number of metaheuristic search techniques. In this work,
straightforward first-ascent hill climbing was used, using the
LSCC metric as the fitness function. So at each stage in
the refactoring process, a random refactoring is chosen to
be applied. If it improves LSCC, the refactoring is accepted
and the search for another refactoring restarts with the new
program. If the refactoring fails to improve LSCC, it is rejected
and another refactoring is randomly chosen. The process stops
when no refactoring can be found that improves LSCC.



IV. EXPERIMENTAL DESIGN

We wish to test the hypothesis that automated refactoring
can improve the testability of a program. Our approach is to
develop a Java application that has serious cohesion problems
(the “before” version, termed version A). This application is
then automatically refactored using the Code-Imp platform
guided by the LSCC cohesion metric to produce the “after”
version, termed version B. Both these versions exhibit the
same external functionality, but have distinctly different inter-
nal designs. We then invited a number of industrial software
engineers to write a series of test cases for both versions, and
to assess their relative difficulty. Given the simplicity of the
test cases in these examples, it was decided that an objective
measure of test case quality, such as code coverage or mutation
testing, would not yield much differentiation.

This quasi-experiment2 is detailed in the following sections.

A. Sample Programs

For this proof-of-concept experiment, we created a small
Java application of 14 classes that models people in various
roles (student, teacher, manager etc.). After building the ap-
plication, we refactored it by hand with the goal of reducing
its cohesion. This was mainly achieved by moving methods
and fields from their natural class to another related, but
inappropriate, class. This initial uncohesive program is termed
version A.

We ran Code-Imp using version A as input six times. First-
ascent hill-climbing has a random element, so different results
were achieved each time. We selected the run that produced the
longest sequence of refactorings (26) to use in the experiment.
This choice was made purely on the basis of the length of
the refactoring sequence and did not involve examining the
final code of the refactored program. Figure 1 presents an
overview of the refactorings that were performed. The design
was changed quite radically – seven new classes were added
(by Extract Hierarchy), one interface was added (by Replace
Inheritance with Delegation) and a total of 13 method and
field displacements occurred3. The LSCC cohesion metric was
improved from an initial value of 0.042 in version A to a final
value of 0.088 in Version B. It is very possible that the score
for some other metrics decreased. However, as described in
section IV-B, the testability exercises are designed to focus on
parts of the program that appeared to have improved in the
refactored version.

On inspection, the design of version B appeared indeed to
be an improvement over the design of version A. In previous
experiments with Code-Imp we found that certain metrics can
lead the refactoring process to ruin the program design [19],

2In a formal experiment, participants would be randomly assigned to
the before and after programs. Given the small numbers involved in this
experiment, each participant did the test cases for both before and after
versions.

3To aid program comprehension, the new classes and interface added were
given sensible names rather than the names generated by Code-Imp. This
is the one aspect of our approach that is not fully automatable. Automated
generation of suitable names for classes and methods is a possibility using a
lexical database such as Wordnet [3], [11].

Collapse Hierarchy (1)

Increase Field Security 
(1)

Replace Inheritance with 
Delegation (1)

Push Down Method (2)

Decrease Field Security 
(3)

Pull Up Field (3)

Pull Up Method (3)

Push Down Field (5)

Extract Hierarchy (7)

Fig. 1. Breakdown of the 26 refactorings applied to version A to produce
version B.

so it was interesting to note that, in this example at least, the
LSCC metric gave rise to a refactoring sequence that led to a
stable result.

B. Exercises

Our hypothesis can now be expressed that version B of
the program is easier to test than version A. To test this, we
invited 10 experienced software engineers to compare version
A of the Java application that had cohesion issues with the
refactored version B. Even for a small application like this,
making an overall assessment of testability is difficult, vague
and time-consuming. Hence we created six exercises related
to testability that were to be performed on both versions. The
participants were then asked to assess the relative difficulty of
the exercise for version A and version B on a 7-point Likert
scale as follows:

1) Version A is much easier to test.
2) Version A is moderately easier to test.
3) Version A is slightly easier to test.
4) Both are the same / I have no opinion.
5) Version B is slightly easier to test.
6) Version B is moderately easier to test.
7) Version B is much easier to test.

In creating the exercises, we deliberately chose parts of
the application where the A version had a design problem
that was resolved in the B version, and where we felt that
this difference would make writing test cases easier. The full
survey and results can be obtained by emailing the authors
(MÓC); here we summarise the nature of each exercise we
created:

• Exercise 1: The class Industrialist in both versions
provides the functionality to set the industrialist’s name.
In version A this method is inherited from a superclass
while in version B it is implemented by delegation to
another class. This exercise involved writing a test case
for this method for both versions.



• Exercise 2: This exercise involved writing test cases for
the constructor of the Industrialist class in both
versions. As in exercise 1, the essential difference is in
testing a class that uses inheritance (version A) versus a
class that uses delegation (version B).

• Exercise 3: In version A, the functionality to validate
input is split between one class which provides the
method, and a superclass that stores the fields that the
method has to access. In version B, the method and the
fields it uses have been moved to the same class. This
exercise involved writing a test case for this method for
both versions.

• Exercise 4: In both versions, a class Company pro-
vides the functionality to set the company’s manager.
In version A the manager is stored in Company as
a field of the class Person, and the setManager
method expects a Person object as parameter. In version
B the manager is stored as a field of the interface
InterIndustrialistPerson, and the parameter to
setManager is also of this interface type. This exercise
involved writing a test case for setting a new company
manager for both versions.

• Exercise 5: Both versions have an identical utility func-
tion getTextValue that is in the class Student in
version A and moved to the class Trainee in version
B. The difference is that in version A getTextValue
is defined in a complex class of 100 lines of code, while
in version B it is the only method in a class of only 20
lines of code. This exercise involved writing a test case
for the getTextValue method in both versions.

• Exercise 6: In version A, the class Industrialist
is a subclass of Person. In Version B, this in-
heritance relationship does not exist, but Person
and Industrialist both implement the interface
InterIndustrialistPerson. The exercise is to
compare the difficulty in writing test cases for each
version.

Exercises 1 and 2 relate to the difference between inher-
itance and delegation. It is widely accepted that delegation
should be preferred over inheritance [12], so we anticipate
that the version that uses delegation would prove easier to
test. Exercise 3 simply compares writing a test case for a
method that uses a field in the same class with one that
uses a field defined in the superclass. It would seem obvious
that the former design would be easier to test. Exercise 4
examines if it is easier to test a method that uses a parameter
of concrete class, or one of a appropriate interface type? We
would expect the latter to be the preferred option. Exercise
5 simply compared the difficulty of testing a method when
it is surrounded by a lot of ‘noise’, i.e., situated in a more
complicated class. Obviously, one would expect the method
in the less noisy context to be easier to test. Exercise 6 was
more challenging. It is not recommended to inherit from a
concrete superclass as in version A; the preferred solution
is for both concrete classes to share a common abstract

superclass or interface, as in version B. We anticipated that the
latter structure would be preferred, and that some participants
would note the possibility of parameterised test cases to lessen
the burden for version B.

We are conscious that we have “cherry-picked” these ex-
ercises in order to demonstrate the concept of refactoring for
testability. This experiment does not preclude the possibility
that refactoring to improve LSCC reduced testability in other
parts of the program, though we did not see evidence of this.
In any case, the results were very surprising, as we see in the
next section.

V. RESULTS AND EVALUATION

The survey above was sent to 14 volunteers on a masters
programme in Advanced Software Engineering in University
College Dublin. 10 responses were received. Each participant
had between 4 and 20 years industrial software engineering
experience, of which between 4 and 10 years were spent in
development. Each had an average of over 4 years experience
of unit testing, which ranged from 0.5 to 12 years.

Participant Experience E1 E2 E3 E4 E5 E6 Avg
(years)

1 10 4 4 4 3 4 1 3.3
2 20 3 2 4 2 4 3 3.0
3 20 3 4 1 1 4 2 2.5
4 4 5 4 4 4 7 5 4.8
5 5 4 4 4 4 4 4 4.0
6 8 4 4 5 3 5 2 3.8
7 13 4 4 4 4 4 4 4.0
8 4 5 5 4 4 n/a 4 4.4
9 6 4 4 5 4 4 3 4.0
10 9 7 6 6 7 1 7 5.7

Avg: 4.3 4.1 4.1 3.6 4.1 3.5

TABLE I
PARTICIPANTS’ RESPONSES TO EACH EXERCISE (E1 TO E6) ON A 7-POINT

LIKERT SCALE. A LOW NUMBER INDICATES PREFERENCE FOR VERSION
A; A HIGH NUMBER INDICATES A PREFERENCE FOR VERSION B.

The detailed results for each exercise are provided in Table
I, while Figure 2 provides an overview of the aggregation of
the results across all six exercises. This distribution was very
surprising to us, as it was anticipated that version B would
prove much easier to test. The distribution is roughly normal
in shape, but with a strong tendency to the mean. From a
quantitative perspective, we can make two observations:

• The distribution suggests that the participants judged
version A and version B to be approximately equally
difficult to test.

• Over half the responses received were ‘neutral’. This
suggests that the refactored version (version B) was not
sufficiently distinct from version A, or that the differences
involved did not affect testability.

A quantitative approach will not provide further insight,
so we look more closely at the comments provided by the
participants.

Exercise 1 and 2 were both based on the inheri-
tance/delegation trade-off. Each participant gave these two



0

5

10

15

20

25

30

35

A strongly A moderately A slightly Neutral B slightly B moderately B strongly

Preference Expressed

n
u

m
b

e
r 

o
f 

re
sp

o
n

se
s

Fig. 2. Aggregation of participants’ responses for all six exercises

exercises a similar rating (Spearman rank correlation 0.8),
which validates our experimental approach to some degree.
From the comments, most of the participants did not perceive
a significant difference between testing functionality inherited
from a superclass and functionality delegated to a client class.
This flies in the face of the the conventional ‘prefer delegation
to inheritance’ heuristic [12]. One explanation is that in the
actual context of the simple Java application we built, there
was little difference between the two designs. One participant
observed that most IDEs display inherited attributes for a class,
thus facilitating comprehension in version A.

Exercise 3 was based on testing a method that uses a field
defined in a superclass versus one that uses a field defined in
the same class. This was intended as a ‘slam dunk’ question
in favour of version B, yet the participants’ ranking varied
considerably. One participant, who slightly favoured version B
in this exercise, wrote a comment that summarised the authors’
intentions thus: “In version B, you could see straight away
how to set relevant fields. Although if you take into account
Eclipse’s prompts/shortcuts then both versions would be the
same.” However, most participants did not see this lack of
cohesion as a problem. It is impossible that testing a method
that accesses fields that are dispersed about the program is
easier than testing a method that accesses only fields in the
same class. Our suggested conclusion is that in this small
example, the difference in testability between the two versions
was not significant enough.

Exercise 4 was based on testing a method that has a param-
eter of a concrete class versus testing a method that uses a
parameter of an appropriate interface type. This is an example
of the ‘program to an interface, not an implementation’ edict
[12]. One participant who strongly favoured version B wrote
“Objects of Company class are much easier to test. My tests
can pass anything that implements the InterIndustrialistPerson
interface to the SetTheBoss setter method thus my tests can be
more general.” However, many participants did not distinguish
between the versions, or even favoured version A. Although
version B is a better design structure, the added level of
indirection caused by the interface actually makes it a bit more
work to test. Again, the benefits may be clear in a large system,

but less evident in a small example.
Exercise 5 explored if it is easier to test a method in a simple

class rather than one in a larger, more complicated class. Most
of the participants did not regard the noise around the method
under test to be an issue, though one did and commented “I felt
a bit distracted by everything else going on in Student.” One
strongly preferred version A, as the method appeared lower
in the class hierarchy, hence affecting fewer classes, a point
overlooked by the authors.

Exercise 6 compared an inheritance relationship between
two classes with two classes that share the same interface.
The latter is the preferred solution, and from a testability
perspective the effort required can be reduced by using param-
eterised test cases. Again, most participants did not see this as
significant. One simply preferred the structure with concrete
inheritance and one commented that a modern IDE hid the
complexities of the relationships anyway. One participant who
favoured version B noted that it might be easier to use
mock objects in version B. A neutral participant commented
“Having the interface is great for defining your test structure
possibly quicker, but in reality I don’t actually see a significant
difference in implementation.”

We experienced some challenges in designing and perform-
ing the experiment itself. To make it possible to complete
the experiment in a reasonable time, we had to use a small
application and direct the participants to certain aspects of it.
This application transpired to be too simple in that many par-
ticipants did not detect the differences between the original and
refactored versions, although in an industrial-scale application
these differences would surely be relevant. Although we asked
participants to assess in each case which version was easier
to test, many assessed them as equal because the resulting
test case were identical, apparently ignoring the challenge in
writing the test case, which was the key aspect of interest.

In terms of assessing our hypothesis that automated refac-
toring can be used to improve testability, we observe the
following:

• Automated refactoring using the LSCC metric did lead
to some significant design changes which could be antic-
ipated to aid testability, viz,

– Some inheritance relationships were changed to del-
egation.

– The type of some attributes and parameters were
changed from being a concrete class to an interface.

– Methods that were separated from the fields they use
(feature envy) were reunited.

– Some classes that inherited from concrete super-
classes were refactored sever the inheritance link and
give both classes a shared interface instead.

• From a quantitative perspective, the survey results suggest
that automated refactoring to improve testability is not
effective. However, on looking at the written comments
the participants made it is clear that many other factors
were involved. As biased proponents of this approach,
we take some comfort that the participant who spent



the longest time doing the exercises and gave the most
detailed comments, found the refactored version B to be
much easier to test.

A. Threats to Validity

This experiment was intended only to investigate whether
automated improvement of testability is an area worthy of
further study. As such, our results are not generalisable, for
several reasons. Only one contrived Java application was used.
The participants were self-selected, had an interest in unit
testing and could not be considered a random sample of
practicing software engineers as all are undertaking the same
part-time programme of study.

The ordering of the test cases could tend to lead to a bias in
favour of version B. After performing the exercise for version
A, the participant would naturally find it easier to write a
similar test case in version B. Judging from the participants’
comments, this was not a significant factor, but varying the
order of the versions, or randomly assigning each participant
to only one version would have avoided this.

Selecting the parts of the program that were to be used as
targets for the testability exercises could exert a bias on the
results. Even if testability deteriorated overall, it might still be
possible to find places where it improved. We were conscious
of this potential for bias, but on inspecting the code we did
not find parts that appeared to have become less testable in
the refactored version.

VI. FUTURE WORK

Firstly, our approach to validation proved time consuming
and not very effective. There are other approaches that can
be used instead. Rather than asking experiment participants to
judge the difficulty in writing test cases for the original and
refactored versions of a program, we can use an automated
test case generation tool to create the test cases. This can be
applied to the original and refactored versions of the program
and the resulting test suites compared on the basis of metrics
such as code coverage, lines of test code and number of
assert statements [4], [6]. The feasibility of this would need
to be assessed in further research, but it has the advantage
that it eschews the need for an costly experiment to assess the
result.

Another approach is to focus on automated test case gener-
ation completely. In this case, the goal of the transformation
is not to refactor the program for the benefit of the developers,
but to transform it so as to enable more effective automated
test case generation, while maintaining certain test adequacy
criteria such as branch coverage or statement coverage4. Test
cases then are generated for the transformed program, but
applied to the original one. Harman discusses this idea and
possible testability transformations in detail in [14]. It is
interesting to consider if the application this type of this

4A similar idea approach is used by Otero at al [21] to refactor a program
as it is being evolved using genetic programming – the goal is not to improve
program design in the usual sense, but to find a different design which may
admit a useful transformation as part of the genetic programming algorithm.

type of transformation can be driven using a search-based
approach. The key questions are (1) is search necessary in
this context? and (2) what would the fitness function look
like? If testability can be improved by direct application
of testability transformations, then search is not required.
Defining an efficient fitness function is likely to be a challenge.
One possibility is to generate test data for the program under
transformation after each transformation, and to evaluate this.
Performing search in this manner may be time consuming,
though we note that a similar approach has been used e.g. in
the configuration of application servers [24].

Naturally our approach can be extended to use other metrics
rather than LSCC. From our experience with search-based
refactoring, we would not anticipate that other cohesion met-
rics would produce a much better result that LSCC. However,
combining LSCC with other cohesion metrics might result is
some aspects of cohesion being covered that are not covered
by LSCC alone.

We have not considered coupling metrics in this work but
there is reason to expect that they would produce a useful
result. For example, Brutnik and van Deursen [6] found a sig-
nificant correlation between the Response For Class coupling
measure [8] and test case size in the open source examples
they studied. Probably a fitness function based on a judicious
mixture of coupling and cohesion metrics would work well.
They can be combined either using a weight-based approach
[18] or a pareto-optimal approach [15].

VII. CONCLUSION

We have demonstrated through a proof-of-concept exper-
iment that automated refactoring can improve the cohesion
properties of a program in a way that would be expected to
improve the program’s testability. Our subsequent attempt to
validate this through experimentation with industrial software
engineers appeared to produce an ambivalent result. On closer
analysis of the engineers’ comments, our original hypothesis
that automated refactoring can improve testability still appears
likely to be valid, but requires further testing.

ACKNOWLEDGMENT

This research was partly funded by the Irish Programme for
Research in Third-Level Institutions and by the Lero Graduate
School in Software Engineering. The authors also thank the
anonymous reviewers for their constructive feedback.

REFERENCES

[1] Jehad Al Dallal and Lionel C. Briand. An object-oriented high-level
design-based class cohesion metric. Inf. Softw. Technol., 52:1346–1361,
December 2010.

[2] Mohammad Alshayeb. Empirical investigation of refactoring effect on
software quality. Information and Software Technology, 51(9):1319 –
1326, 2009.

[3] Rushikesh Amin, Mel Ó Cinnéide, and Tony Veale. Laser: a lexical
approach to analogy in software reuse. Proceedings of the Workshop on
Mining Software Repositories, pages 112–116, 2004.



[4] Linda Badri, Mourad Badri, and Fadel Toure. Exploring empirically the
relationship between lack of cohesion and testability in object-oriented
systems. In Tai-hoon Kim, Haeng-Kon Kim, Muhammad Khurram
Khan, Akingbehin Kiumi, Wai-chi Fang, and Dominik lzak, editors,
Advances in Software Engineering, volume 117 of Communications
in Computer and Information Science, pages 78–92. Springer Berlin
Heidelberg, 2010.

[5] James M. Bieman and Byung-Kyoo Kang. Cohesion and reuse in
an object-oriented system. SIGSOFT Softw. Eng. Notes, 20:259–262,
August 1995.

[6] Magiel Bruntink and Arie van Deursen. An empirical study into class
testability. J. Syst. Softw., 79:1219–1232, September 2006.

[7] Alexander Chatzigeorgiou and Anastasios Manakos. Investigating the
evolution of bad smells in object-oriented code. In Proceedings of
the 7th International Conference on the Quality of Information and
Communications Technology. IEEE, Sep 2010.

[8] Shyam R. Chidamber and Chris F. Kemerer. A metrics suite for object
oriented design. Transactions in Software Engineering, 20(6):476–493,
June 1994.

[9] Steve Counsell, Stephen Swift, and Jason Crampton. The interpretation
and utility of three cohesion metrics for object-oriented design. ACM
Trans. Softw. Eng. Methodol., 15:123–149, April 2006.

[10] Jehad Al Dallal and Lionel C Briand. A precise method-method
interaction-based cohesion metric for object-oriented classes. IEEE
TOSEM, pages 1–37, Oct 2010.

[11] Ingo Feinerer and Kurt Hornik. wordnet: WordNet Interface, 2011. R
package version 0.1-7.

[12] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign Patterns: Elements of reusable object-oriented software. Addison-
Wesley Publishing, 1995.

[13] Tobias Gutzmann et al. Recoder: a framework for java program analysis
and source code transformation, March 2010. http://sourceforge.net/
projects/recoder.

[14] Mark Harman. Open problems in testability transformation. IEEE
International Conference on Software Testing Verification and Validation
Workshop, 0:196–209, 2008.

[15] Mark Harman and Laurence Tratt. Pareto optimal search based refac-
toring at the design level. In Proceedings of the 9th annual Conference
on Genetic and Evolutionary Computation (GECCO ’07), pages 1106–
1113, London, England, 7-11 July 2007. ACM.

[16] A.C. Jensen and B.H.C. Cheng. On the use of genetic programming
for automated refactoring and the introduction of design patterns. In
Proceedings of the 12th annual conference on Genetic and Evolutionary
Computation, page 1341–1348. ACM, ACM, 07/2010 2010.

[17] Mark O’Keeffe and Mel Ó Cinnéide. Automated design improvement
by example. In H. Fujita and D.M. Pisanelli, editors, New Trends in
Software Methodologies, Tools and Techniques. The Netherlands: IOS
Press, 2007.

[18] Mark O’Keeffe and Mel Ó Cinnéide. Search-based refactoring: an
empirical study. J. Softw. Maint. Evol., 20(5):345–364, 2008.

[19] Mark O’Keeffe and Mel Ó Cinnéide. Search-based refactoring for
software maintenance. J. Syst. Softw., 81(4):502–516, 2008.

[20] Mark O’Keeffe and Mel Ó Cinnéide. A stochastic approach to automated
design improvement. In James F Power and John T Waldron, editors, In-
ternational Conference on the Principles and Practice of Programming
in Java, pages 59–62, Kilkenny, June 2003.

[21] Fernando E. B. Otero, Colin G. Johnson, Alex A. Freitas, , and Simon J.
Thompson. Refactoring in automatically generated programs. Search
Based Software Engineering, International Symposium on, 0, 2010.

[22] Olaf Seng, Johannes Stammel, and David Burkhart. Search-based
determination of refactorings for improving the class structure of object-
oriented systems. In Proceedings of the 8th annual Conference on
Genetic and Evolutionary Computation (GECCO ’06), pages 1909–
1916, Seattle, Washington, USA, 8-12 July 2006. ACM.

[23] Harry M Sneed. Reengineering for testability. In Proceedings of the 8th
Workshop on Software Reengineering. Gesellschaft fur Informatik, May
2006.

[24] Bowei Xi, Cathy H. Xia, Zhen Liu, Li Zhang, and Mukund
Raghavachari. A smart hill-climbing algorithm for application server
configuration. In 13th Int. Conference on the World-Wide Web, pages
287–296, 2004.


