
Test Case Generation from Mutants using Model
Checking Techniques

Heinz Riener∗ Roderick Bloem† Görschwin Fey∗
∗Institute of Computer Science †Institute for Applied Information Processing and Communications

University of Bremen, Germany Graz University of Technology, Austria

{hriener, fey}@informatik.uni-bremen.de rbloem@iaik.tugraz.at

Abstract—Mutation testing is a powerful testing technique: a
program is seeded with artificial faults and tested. Undetected
faults can be used to improve the test bench. The problem
of automatically generating test cases from undetected faults
is typically not addressed by existing mutation testing systems.
We propose a symbolic procedure, namely SymBMC, for the
generation of test cases from a given program using Bounded
Model Checking (BMC) techniques. The SymBMC procedure
determines a test bench, that detects all seeded faults affecting
the semantics of the program, with respect to a given unrolling
bound. We have built a prototype tool that uses a Satisfiability
Modulo Theories (SMT) solver to generate test cases and we
show initial results for ANSI-C benchmark programs.

Index Terms—Mutation testing, Test case generation, Satisfia-
bility modulo theories, Bounded model checking.

I. INTRODUCTION

Mutation testing [1], [2] is a powerful testing technique

based on the idea of making changes to a syntactic description

of a computing task and deriving test cases from these changes.

The changes mimic mistakes programmers or designers make

during the description of the computing task.

We focus on program-based mutation testing: the source

code of a program, written in a high-level programming lan-

guage, is seeded with artificial faults and then systematically

executed on each test case of a test bench. Undetected faults

indicate holes in the test bench and can be used to improve it.

Mutation testing provides a fault-based test criterion, called

mutation adequacy, i.e., a rule imposing test requirements on

the test bench that “good” test cases should examine. Mutation

adequacy is among the best test criteria. Its effectiveness

has been shown by analytic comparison to other criteria [3],

[4], [5] and is additionally supported by numerous empirical

studies [6], [7], [8], [9].

The tasks of a mutation testing system or tool are manifold.

The system supports the tester in the creation of faulty versions

of a given program (called mutants), by duplicating the pro-

gram and introducing syntactic changes into the duplication

according to a fixed fault model, the management and the

automated execution of test cases on the individual mutants,

and in assessing the fault finding abilities of a test bench (e.g.

by calculating the ratio of the number of detected faults to

the number of seeded faults, called mutation score). Mutation

This work was supported in part by the German Research Foundation (DFG,
grant no. FE 797/6-1) and the European Union (project DIAMOND, FP7-
2009-IST-4-248613).

testing systems, however, typically do not address the problem

of detecting seeded faults by automated test case creation

[10]. Thus, in contrast to push-button verification approaches

(e.g. model checking [11]) mutation testing remains a labor-

intensive, manual process. Research in the mid 1980s [12] and

early 1990s [13], [14] in mutation testing already proposed

approaches for the automated generation of test cases based

on solving a constraint satisfaction problem by representing

conditions under which mutants will be detected as algebraic

constraints. These approaches are sound but incomplete, allow-

ing the construction of “false negative” test cases that do not

lead to the detection of seeded faults. Moreover, they target the

programming language Fortran-77 omitting pointer aliasing

and have never been shown to scale to programs larger than a

few lines of code. The general problem of answering whether

test data exists that eventually reaches a specific program

location is undecidable [15].

The early test case generation approaches precede the devel-

opment in Satisfiability Modulo Theories (SMT) [16] solvers,

which implement efficient decision procedures for large in-

stances of constraint satisfaction problems according to some

specific background theories [17]. More recently, researchers

focus on automated verification approaches dedicated to high-

level programming languages like Java, C, and C++ [18], [19],

[20], [21] improving applicability and scalability of software

verification.

We propose a symbolic procedure, namely SymBMC, to

generate test data, that achieves high mutation scores. The

input of the SymBMC procedure is a program and a set of

mutants of the program. The procedure examines the given

program and its mutants on the same input data and attempts

to find witnesses for their differences, that are, executions

resulting in different externally observable outputs for the

program and the mutants. If a failing execution is found,

SymBMC saves the corresponding input data as effective test

data that led to the detection of a seeded fault.

The SymBMC procedure uses a Bounded Model Checking
(BMC) [22] approach: loops in the original and mutated

programs are unrolled for a fixed number k of loop iterations.

The unrolled original and mutated programs are then encoded

into quantifier-free logic formulae fk and f ′
k, respectively,

over the same input variables. SymBMC then generates a

propagation condition g, i.e., a logic formula ensuring that

a seeded fault affects the output of the mutant. Finally, the

formula fk ∧f ′
k conjoined with the propagation condition g is



checked for satisfiability. A satisfying assignment if one exists

serves as effective test input data that results in a different

externally observable output on the original program and the

mutant if executed.

We have evaluated our approach with a prototype imple-

mentation that uses the theory of bit-vectors of arbitrary size

supported by standard SMT solvers to encode the logic for-

mulae. The prototype implementation takes as input a source

program in the programming language ANSI-C and transforms

it into a RISC-like intermediate representation, Low Level
Virtual Machine (LLVM) [23]. The prototype implementation

then generates a meta-mutant [24], i.e., a program containing a

set of faults and additional control logic to enable and disable

the individual faults for testing purpose.

Our approach is sound and complete with respect to the

unrolled model: the SymBMC procedure precisely detects

all seeded faults that propagate in the unrolled model to an

externally observable output and reports these fault to the

user. In contrast to techniques entirely based on testing, we

proof for all faults not reported to the user, that there is

no execution in the unrolled model resulting in a different

externally observable output. We have evaluated SymBMC on

a small set of benchmark programs and report initial results.

The remainder of the paper is organized as follows. In

Section II, we discuss related work in mutation testing and

bounded model checking. In Section III, we introduce mu-

tation testing, discuss a subset of the LLVM intermediate

representation, and present the fault model used. Section IV

gives our symbolic procedure for test input data generation.

In Section V, we show initial empirical results. Section VI

concludes the paper.

II. RELATED WORK

Offutt et al. proposed constraint-based test data gener-
ation [13] or simply Constraint-Based Testing (CBT) [14]

as an approach for the automated generation of inputs that

distinguish a set of mutants from its original program when

executed. Their approach uses three conditions (reachability,

necessity, and sufficiency) per mutant. Each condition is

described as a constraint over symbolic input variables that

conjoined form a Constraint Satisfaction Problem (CSP). An

assignment satisfying the CSP (if one exists) is an effective

test case that distinguishes the mutant from the original

program. Constraint solving was implemented as a domain
reduction procedure that successively finds values for the

variables, substitutes them into the CSP, and backtracks when

the resulting CSP becomes inconsistent. Domain reduction

suffers from shortcomings including handling arrays, loops,

and nested expressions. Offutt et al. proposed a refinement of

their procedure, called dynamic domain reduction [25], [26],

that attempts to overcome previous shortcomings. Moreover,

Offutt and Pan [27] used CBT as a decision procedure to

decide functional non-equivalence of a program and one of

its mutants.

CBT, however, was proposed as an approximation technique

that does not exploit the sufficiency conditions, i.e., a test

case generated by CBT may not propagate to an externally

observable output. Thus, CBT serves as an over-approximation

technique in case of test case generation and as an under-

approximation technique in case of equivalence checking.

Our SymBMC procedure statically encodes the program and

its mutants into one SMT formula. In case of a finite number

of execution paths in the program, the SMT formula contains

the complete path information corresponding to the encoding

of all three conditions used in CBT for each mutant. Thus, we

can precisely decide the test case generation problem and the

equivalent mutant problem for programs with a finite number

of paths. In case of input-dependent loops, the path space of

a program is unbounded resulting in an infinite number of

paths. We approximate the path space then by unrolling loops

up to a given maximum bound, which under-approximates the

solutions of the test case generation problem. We may miss

seeded faults that affect an externally observable output in a

program unrolled beyond the given maximum bound.

Ammann et al. [28] suggested specification-based mutation

to obtain test cases with a model checker by turning a

counterexample into a test case. Okun et al. [29] presented

two approaches to obtain counterexamples that are guaranteed

to propagate to an externally observable output. Although they

target test case generation based on a specification, one of their

approaches, namely state machine duplication, is similar to

our work. Their approach duplicates a given state machine,

introduces a fault into the duplicate, and adds a temporal

logic formula given in Computation Tree Logic (CTL) [30]

asserting equal externally observable outputs for the original

state machine and its faulty duplicate. A model checker is then

used to obtain a counterexample that violates the CTL formula,

which can be automatically turned into a test case [31]. State

machine duplication doubles the number of states for each

considered mutation. We use a meta-mutant construction that

encodes a set of mutants with respect to a fault model. The size

of the meta-mutant grows linear with the size of the original

program and linear with the number of mutants.

There are two potentially bad influences on the performance

of test case generation using a model checker: on the one hand,

equivalent mutants consume time for encoding and model

checking but result in no test cases. On the other hand, many

different mutants lead to identical or subsumed test cases.

Fraser and Wotawa [32] addressed these two problems con-

sidering mutants of transition systems, where a mutant differs

from the original transition system in exactly one transition.

As an optimization of the state machine duplication approach,

they proposed the characteristic property of a mutant, i.e., a

temporal logic formula ϕ that guarantees non-equivalence of

the original transition graph M and the mutant M ′ if M �|= ϕ.

The logic formula ϕ expresses that the mutated transition,

firstly, corresponds to behavior already allowed in the original

transition graph and, secondly, does not restrict the original

transition graph.

Our SymBMC procedure alleviates the issues noted in

[32]. The prototype implementation encodes all mutants with

respect to a given fault model into one SMT formula and

lets the SMT solver choose which individual fault to enable

during test case generation. From a satisfying assignment,

SymBMC extracts the detected fault and constrains the SMT



formula such that the next satisfying assignment will lead

to the detection of another fault. The equivalent mutants

remain undetected. Eventually the SMT formula becomes

unsatisfiable. The proof of the unsatisfiability of the formula

corresponds to a proof of equivalence of all remaining mutants

in the unrolled model and the unrolled original program.

Bounded Model Checking (BMC) [22] was originally pro-

posed as a symbolic model checking approach complemen-

tary to model checking based on Binary Decision Diagrams
(BDD) [33]. Given a model M of a finite-state system and

a property in Linear Time Logic (LTL) [34], BMC searches

for a counterexample of finite-length k in the model. Biere

et al. [22] suggested encoding the model and the property

into one Boolean formula, which is satisfiable if and only

if there is a finite counterexample in the model that refutes

the property. The Boolean formula was solved with a SAT

solver. The parameter k is often called unrolling bound or

counterexample length. Clarke et al. [19] proposed an efficient

prototype implementation of BMC for a subset of the ANSI-

C programming language, known as CBMC. Armando et al.

[35] used an SMT rather than a SAT solver to encode BMC,

which improves scalability in case of complex arithmetic or

array manipulations and additionally produces more compact

formulae. More recently, Sinz et al. [21] proposed a formal-

ization of BMC for the LLVM intermediate representation,

termed Low-Level Bounded Model Checking. They especially

focused on the memory model and the translation of pointer

manipulations into logic constraints. Moreover, Sinz et. al [21]

argued that the syntax and semantics of LLVM are simpler

and allow an easier formalization of the verification problem

than high-level programming languages like C or C++. Our

encoding of the LLVM intermediate representation into logic

formulae is similar to the encoding used in [21]. We use BMC

to generate test cases that are guaranteed to propagate to an

externally observable output within a given unrolling bound

k. Mutation and BMC are applied to the LLVM intermediate

representation.

III. PRELIMINARIES

In the following section, we describe the mutation testing

process in detail (Section III-A), formalize the syntax and

semantics of a subset of the LLVM intermediate language

(Section III-B), and define the fault model used (Section III-C).

A. Mutation Testing Process

Program-based mutation testing forms a three step test

process: given a program and a test bench. (1) The program is

seeded with artificial faults according to a fixed fault model.

Each seeded fault is kept in an individual copy of the original

program source, called mutant. (2) Each test case from the

test bench is then executed on the original program and

on its mutants. We stick to the common mutation testing

terminology: initially all mutants are alive and a mutant that

results in a different externally observable output is called

killed. Some syntactic changes may not alter the semantics

of the original program. The corresponding mutants are called

equivalent. (3) The mutation score quantifies the fault finding

abilities of the test bench by calculating the ratio of mutants

killed by the test bench to the number of seeded faults, i.e.,

a real value in the interval [0, 1], which is interpreted as a

percentage value. The test bench is then improved by adding

additional (or replacing existing) test data. The second and

third steps are repeated until the mutation score exceeds a

predefined fault sensitivity threshold.

A fault sensitivity threshold of 100% is desirable. Equivalent

mutants, however, cause a systematic underestimation of the

mutation score. Equivalent mutant detection, as an optional

step, targets the correction of the mutation score. The number

of seeded faults is reduced by the number of detected equiv-

alent mutants. An equivalent mutant adds no information to

mutation testing and, thus, equivalent mutants are discarded

from the mutation testing processes if detected.

Mutation testing systems implement the mutation testing

process. Typically, mutation testing systems automate the first

step, the second step, and the calculation of the mutation score

from the third step. The task of equivalent mutant detection

and the task of test case improvement are left to the test engi-

neer. Unfortunately, as a direct consequence of Rice’s theorem

[36] automated equivalence checking of arbitrary programs is

undecidable. Moreover, Budd and Angluin [37] discussed the

close relation between test case generation and equivalence

detection. They showed that in general neither an effective

procedure for the generation of a mutation adequate test bench,

nor an effective procedure for the detection of equivalent

mutants exists. Although automated test case generation is

a hard problem, we propose a symbolic procedure based

on bounded model checking that uses an SMT solver. Our

procedure is sound and complete in case of a finite number of

program paths and otherwise approximates mutation adequacy

by unrolling the program up to given maximum bound.

B. LLVM Intermediate Representation

Low Level Virtual Machine (LLVM) is a strongly typed,

RISC-like assembly language which comes with two broad

characteristics: (1) The language allows the usage of an

unlimited number of registers and (2) LLVM programs can

be translated into Static Single Assignment (SSA) form, where

each register is assigned only once. These characteristics are

desirable because they simplify the transformation of the

operational semantics of LLVM into logic constraints.

In the following section, we describe the syntax and seman-

tics of a subset of the LLVM instruction set. For the sake of

simplicity, we omit memory and pointer instructions, inline

function calls but do not handle recursions, and assume that

each variable is of integral type. The omission of memory

and pointer instructions and the handling of recursions are

restrictions according to our prototype implementation. A

formalization of a memory model for the LLVM language can

be obtained from [21]. The other restrictions are only related

to the descriptions.

A program in the resulting simplified LLVM language

consists of global variables and, due to function inlining, of

a single function. The function defines a graph with basic

blocks as nodes and branches as edges, called control flow



graph. A basic block is a sequence of instructions with a

unique label, where the instructions are guaranteed to be

executed in consecutive order. The last instruction of each

basic block defines a set of successor basic blocks. We call

the relation between a basic block and its successors branches.

The first basic block of a function is the initial basic block,

which corresponds to the root node of the control flow graph

of the program. Moreover, we assume that two consecutive

sequences of registers i1, i2, . . . , in and o1, o2, . . . , om are

given, which serve as program inputs and outputs, respectively.

For LLVM programs, the state of a program is a valuation of

the register set and the program counter, i.e., a special register

that denotes the next instruction of the program to be executed.

Initially the value of the program counter is the address of the

first instruction in the initial basic block.

We assume that instructions are either load instructions,

binary operator instructions, branching instructions, or phi

instructions. The semantics of an LLVM program can then

be defined in terms of the manipulations of the register set

and the program counter of the individual instructions.

Suppose rdest denotes a register, v, vop1 , vop2 , . . . vopn

denote values that are either addresses of registers or constants,

and l, ltrue, lfalse denote labels. We define the syntax and

semantics of these instructions as follows:

• The load instruction is of the form

rdest = load v.

The register rdest is assigned the value v when the load

instruction is executed.

• The branching instruction is either of conditional

br v, label ltrue, label lfalse

or unconditional form

br label l.

The conditional branching instruction sets the value of the

program counter to the address of ltrue when v equals 1
and otherwise to the address of lfalse. The unconditional

branching instruction sets the program counter to the

address of label l when executed.

• The binary operator instruction is of the form

rdest = binop vop1, vop2 ,

where binop is a mnemonic denoting one of a fixed

set of binary operations. The binary operations include

arithmetic, relational, and bitwise operations, which are

described in detail in the LLVM Language Reference
Manual [38]. The binary operator instruction assigns the

register rdest the value of the function fbinop(vop1 , vop2)
when executed, where fbinop is a binary function repre-

senting the semantics of the binary operation denoted by

binop. For the sake of simplicity, our definition of the

binary operator instruction encompasses binary operator,

bitwise binary operator, and comparison instructions from

the LLVM language. We understand all of these instruc-

tions as binary operators that can be distinguished by the

mnemonic binop, respectively.

• The phi instructions enable the transformation of LLVM

programs into SSA form because the instructions merge

data from different branches. A phi instruction is of the

form

rdest = phi [vop1,l1],[vop2,l2],. . .,[vopn,ln].

We say that the current basic block is the basic block con-

taining the phi instruction. The basic blocks with labels

l1, l2, . . . , ln are direct predecessors of the current basic

block. The phi instruction assigns the register rdest the

value vopi if the basic block labeled with li, 1 ≤ i ≤ n,

was immediately executed before the current basic block.

In the remainder of the paper, we use the subset of the

LLVM instruction set to discuss our fault model and the

test case generation. The subset can naturally be extended to

similar instructions from the full LLVM instruction set (e.g.,

bitcast, switch, etc.). We do not discuss instructions

manipulating pointers.

C. Fault Model

A mutant is a duplication of the original program source

containing one syntactic change. For instance, an addition

operator is turned into a subtraction operator. The fault model

defines a set of mutation operators, that are, rules describing

possible syntactic changes to the source code of a program.

We use a fault model similar to the fault models proposed

in [39] and [40]: we introduce syntactic changes into arith-

metic, relational, and bitwise operators, and inject values into

expressions used in load instructions. Our test case generation

approach, however, is not tied on this fault model.

We formalize the fault model using mutation operators
on the level of the LLVM intermediate representation. A

mutation operator is a rule that describes how a particular

syntactic pattern of LLVM programs is changed. When the

mutation operator is applied to a source program, it parses

the program source top-down. For each syntactic part of the

program that matches the pattern of the mutation operator,

the source program is duplicated and the matched part of the

source code is replaced by syntactically different source code

resulting in new mutants of the program. Thus, a mutation

operator defines a mapping from a program to a set of mutants

of the program. We use four mutation operators: AOR, ROR,

BOR, and IVI. Technical details are left to Figure 1. The

ROR mutation operator, for instance, replaces each occurrence

of a relational operator by another relational operator, e.g.,

the mnemonic for lower than (lt) against the mnemonics for

equality (eq), inequality (ne), greater than (gt), lower than

(le), and greater equal (ge), resulting in five mutants of the

source program.

Our mutation operators are similar to Offutt’s set of

expression-selective mutation operators [39], [41] for Fortran-

77 and the mutation operators used in [40]. Some of the

operators in [40] are only marginally described, which prevents

us from making an in depth comparison. We took the AOR and

ROR mutation operators from [41] and adapted them for the

LLVM instruction set. Moreover, we supplemented the BOR
mutation operator because in [41] no bitwise operators for



The fault model considers four mutation operators: the replace-

ment of arithmetic, relational, and bitwise binary operators,

and the injection of values into load instructions.

Suppose P is the set of programs, Occ(T, P ) is the set of

occurrences of the tokens t ∈ T in the program P , and P [t/t′]
denotes the replacement of token t by token t′ in program P .

Replacement of Arithmetic Operators (AOR): The AOR
mutation operator is a mapping

tAOR :P → 2P ,

P �→ {P [t/t′] | t ∈ Occ(AOp, P ), t′ ∈ AOp \t},
that mimics a mistake in an arithmetic binary operator, where

AOp := {add, sub, mul, div, mod}.

Replacement of Relational Operators (ROR): The ROR
mutation operator is a mapping

tROR :P → 2P ,

P �→ {P [t/t′] | t ∈ Occ(ROp, P ), t′ ∈ ROp \t},
that mimics a mistake in a relational binary operator, where

ROp := {eq, ne, gt, ge, lt, le}.

Replacement of Bitwise Operators (BOR): The BOR muta-

tion operator is a mapping

tBOR :P → 2P ,

P �→ {P [t/t′] | t ∈ Occ(BOp, P ), t′ ∈ BOp \t},
that mimics a mistake in a bitwise binary operator, where

BOp := {and, or, xor, shl, lshr, ashr}.

Integral Value Injection (IVI): The IVI mutation operator

is a mapping

tIVI :P → 2P ,

P �→ {P [t/t + 1], P [t/t − 1], P [t/0], t ∈ Occ(Value \t)},
that mimics off-by-one faults and the injection of zero values,

where Value denotes the set of values. Constant values are

simply replaced. In order to encode the off-by-one faults for

values representing registers, the syntax of LLVM requires the

insertion of additional add and sub binary operator instruc-

tions.

Fig. 1. The fault model considered in our work consisting of four mutation
operators (AOR, ROR, BOR, and IVI).

Fortran-77 are described. The IVI mutation operator is similar

to Offutt’s UOI mutation operator and covers all mutations

from the category “replace numerical constants” in [40].

IV. TEST CASE GENERATION

In the following section, we present the symbolic procedure

SymBMC. We start with the discussion of a simplified version

SimplifiedBMC. For a given program and one of its mutants,

SimplifiedBMC attempts to generate an effective test case (if

one exists) that distinguishes the behavior of the mutant and

the original program, i.e., a test case that results in a different

externally observable output when executed on the original

program and its mutant. We give a high-level overview of Sim-

plifiedBMC (Section IV-A), then we present the unrolling of

the program (Section IV-B), and the encoding of the program

into an SMT formula (Section IV-C) in detail. Next, we show

the meta-mutant construction (Section IV-D) that statically

encodes a set of mutants into one “meta” program. Finally,

we present the symbolic procedure SymBMC (Section IV-E)

that generalizes SimplifiedBMC and iteratively generates test

cases for the set of mutants represented by a meta-mutant.

A. Simplified Symbolic Procedure

Procedure 1 gives SimplifiedBMC in pseudo code. First, for

a given program P , one of its mutants P ′, and a maximum

unrolling bound k, SimplifiedBMC generates a model of

the original program P and the mutant P ′ by unrolling the

programs with respect to the maximum unrolling bound k and

consecutively translating them into SSA form. The models of

the unrolled programs are then encoded into quantifier-free

bit-vector formulae fk and f ′
k. We describe the unrolling, the

SSA-transformation, and the encoding tasks by the pseudo

code function Encode in lines 2 and 3. The function Encode
encodes a program P with respect to the maximum unrolling

bound k and returns the three parameters (iPj ), (oP
l ), and

fk, where fk is a logic formula corresponding to the SSA-

transformed, k-times unrolled model of the program P , and

(iPj ), (oP
l ) are finite sequences of bit-vector variables used in

fk denoting the encoded input and output registers of P .

Second, SimplifiedBMC creates the propagation condition g
in line 4 by asserting that there is at least one pair of different

outputs oP
j �= oP ′

j , 1 ≤ j ≤ m, under the assumption of

equal inputs iPl = iP
′

l , 1 ≤ l ≤ n, where m and n denote

the length of the sequences, respectively. The models of the

unrolled programs, represented by the logic formulae fk and

f ′
k, are then conjoined with the propagation condition g in

line 5 and solved by handing the resulting formula fk ∧f ′
k ∧g

to an SMT solver, denoted by the pseudo code function Solve
in line 6. If the SMT solver finds a satisfying assignment, we

extract input and output data from the satisfying assignment,

denoted by the pseudo code function ExtractTestCase in

line 7, and return the data as a test case. We save the test case

in a database as an effective test case that kills the mutant P ′.
Otherwise, if the SMT solver concludes the unsatisfiability

of the logic formula, the models of the unrolled original

program and unrolled mutant are equivalent with respect to

the maximum unrolling bound k (line 9).

B. Unrolling the Program

Suppose k is a maximum unrolling bound. The SymBMC

procedure first unrolls the given program. The control flow

graph of the program is step-wise traversed from the root node

(corresponding to the initial basic block of the entry function)

by following the outgoing edges in a breadth-first manner. If

a node is revisited during traversing, SymBMC duplicates the

corresponding basic block, directs the incoming edge to the

duplicate, and continues traversing from the new node. The

maximum unrolling bound k prevents unlimited unrolling in

case of input-dependent loop conditions. Each basic block is

duplicated at most k times. Currently, the symbolic procedure

quits if the unrolling bound k is not sufficient to unroll all



Procedure 1: Test Case Generation for a Mutant

Input : a program P , a mutant of the program P ′, and

a maximum unrolling bound k
Output: a test case that kills the mutant P ′ with respect

to the maximum unrolling bound k if P and P ′

are non-equivalent and EQUIVALENT otherwise

1 begin
2 ((iPj ), (oP

l ), fk) := Encode (P , k);

3 ((iP
′

j ), (oP ′
l ), f ′

k) := Encode (P ′, k);

4 g :=
∧n

j=1(i
P
j = iP

′
j ) ∧ ∨m

l=1(o
P
l �= oP ′

l );
5 s := fk ∧ f ′

k ∧ g;

6 if Solve(s) = SATISFIABLE then
7 return ExtractTestCase (s);

8 else
9 return EQUIVALENT;

10 end
11 end

loops entirely, i.e., a loop condition is not satisfied after k-

times unrolling the program. During traversing the control flow

graph, SymBMC inlines function calls.

C. Encoding the Program

The unrolled programs are translated into SSA form to ease

the logical encoding, which is a standard task provided by

the LLVM compiler infrastructure. We encode programs into

logic formulae over the theory of quantifier-free bit-vectors of

arbitrary size, where a symbolic variable is either a bit-vector
variable or a binary decision variable. A bit-vector variable

consists of a finite sequence of bits, whereas a binary decision

variable denotes a single bit. Bit-vector variables can be used

to encode arbitrary information of finite length. SMT solvers

supporting the theory of bit-vectors of arbitrary size provide

several word-level operations (e.g. addition, subtraction, if-

then-else, etc.) for manipulating bit-vector variables.

We introduce a bit-vector variable bvx of corresponding

size for each program variable x and additionally one binary

decision variable bbl for each basic block of the program,

where l denotes the label of the basic block. The additional

binary decision variables are used to encode the transfer of

control flow of a program. The variable bbl is 1 if and only if

the basic block labeled with l has been executed.

Suppose bvrdest
, bvv , bvvop1

, bvvop2
, bvc1 , bvc2 , . . . , bvcn are

bit-vector variables denoting the register rdest and the values

v, vop1 , vop2 , c1, c2, . . . , cn, respectively. The encoding of the

individual instruction types is straightforward.

• The load instruction

rdest = load v

in a basic block labeled with l is mapped to an implication

bbl → (bvrdest
= bvv).

• The binary operator instruction

rdest = binop vop1, vop2

in a basic block labeled with l is encoded by mapping

the mnemonic binop of the instruction to its SMT

counterpart bvbinop resulting in an implication

bbl → (bvrdest
= bvbinop(bvvop1

, bvvop2
)).

• The branching instruction

br v label ltrue, label lfalse

in a basic block labeled with l is encoded into a conjunc-

tion of implications

((bbl ∧ v) → bbltrue
) ∧ ((bbl ∧ ¬v) → bblfalse

).

• The phi instruction

rdest = phi [vop1,l1],[vop2,l2],. . .,[vopn
,ln]

in a basic block labeled with l is encoded into a sequence

of nested logic ite (if-then-else)-operations

bbl → (ite(bvc1,vop1, ite(bvc2,vop2,. . .

ite(bvcn−1,vopn−1,vopn
). . .))),

where the value ci, 1 ≤ i ≤ n, denotes the logic condition

under which the control flow transfers from the basic

block labeled with li to the basic block labeled with l.
The value ci is calculated from the branching instructions

of the basic block labeled with li.

Finally, we constrain the binary decision variable corre-

sponding to the initial basic block of the program true,

denoting that each execution of the program must enter the

initial basic block of the program. The resulting logic formula

is satisfiable if and only if there is an execution path from

the initial basic block to the program’s exit and the unrolling

bound k is sufficient to unroll the program.

D. Meta-Mutant Construction

The SimplifiedBMC procedure attempts to generate a test

case for a program and one of its mutants, whereas the

SymBMC procedure generalizes the approach to generate test

cases from a set of mutants. We create one “meta” program

containing a set of mutants, called meta-mutant [24], rather

than generating several independent mutants. The meta-mutant

serves as an effective data structure to reason about a set of

mutants.

Given a program P and a list of faults to be seeded into

the program according to a fixed fault model, first, each fault

gets a unique id, e.g. by consecutively numbering the faults.

We start numbering at 1 and reserve the id 0 for the original

program behavior. The faults are systematically seeded into the

program. For each fault, the basic block that is seeded with the

fault, is duplicated and then mutated. Thus, the meta-mutant

contains the original and the new, mutated basic block.

We add a global variable FAULT_ID and additional control

logic per fault to the program. The control logic enables one

mutated basic block at a time if the value of FAULT_ID
is equal to the id of the fault and the original basic block

otherwise.

Figure 2 gives a short example program that conforms to

the subset of LLVM described in Section III-B. The example



l1: r1 = load i1
r2 = lt i2, i1
br r2 label l2, label l3

l2: r1 = load i2
br label l3

l3: o1 = load r1

Fig. 2. An example program conforming to the subset of LLVM described
in Section III-B, that calculates the minimum of two given variables i1 and
i2 and saves the resulting output in the variable o1.

chk: r1 = load FAULT_ID
r2 = eq r1, 1
br r2 label mut1, label l1

mut1: r3 = load i1
r4 = le i1, i2
br r4, label l2, label l3

l1: r3 = load i1
r5 = lt i1, i2
br r5 label l2, label l3

l2: r3 = load i2
br label l3

l3: o1 = load r3

Fig. 3. A meta-mutant of the example program given in Figure 2 with a
single fault: the mnemonic of the binary operator instruction lt in basic block
l1 is replace with mnemonic le.

program calculates the minimum of two given program inputs

and returns the result as program output. We denote the

program inputs by the input registers i1, i2, and the program

output by the output register o1. For the sake of simplicity,

the example program is not in SSA form (the register r1 is

assigned twice).

Suppose a potential fault in the basic block l1 with id 1,

where the mnemonic of the binary operator instruction lt
(lower than) is turned into the mnemonic le (lower equal).

In order to construct the meta-mutant, the basic block l1 is

duplicated and mutated. The meta-mutant is shown in Figure 3.

The basic block mut1 corresponds to the faulty duplicate of

basic block l1 and the basic block chk serves as control

logic, which, based on the value of the variable FAULT_ID,

either enables the mutant in basic block mut1 or the original

program behavior in basic block l1.

Figure 3 contains only a single mutant, the meta-mutant

construction can be extended to an arbitrary number of faults

by adding more basic blocks each containing one fault (similar

to the basic block mut1) and control logic (similar to the basic

block chk). However, we use a more subtle construction using

the switch instruction contained in the full LLVM instruction

set. The size of the resulting meta-mutant is linear in the size

of the original program.

E. Symbolic Procedure

Procedure 2 gives the symbolic procedure SymBMC, which

is built similar as SimplifiedBMC. The inputs of SymBMC

are a meta-mutant M of a program and a maximum unrolling

bound k. The output of SymBMC is a set Ψ of test cases.

Initially Ψ is empty (line 2).

The SymBMC procedure, first, unrolls the meta-mutant

M twice, shown in line 3 and 4. The distinct bit-vector

variables id1 and id2 represent the global variable FAULT_ID
in the logic formulae fk and f ′

k that encode the unrolled

programs, respectively. The first time the meta-mutant is

unrolled, SymBMC constrains id1 to the value 0 in line 3, and,

thus, disables every fault in the first unrolled model. The first

unrolled model behaves as the original program. The second

time the meta-mutant is unrolled, id2 remains unconstrained

in line 4.

The logic formula s encodes the test case generation prob-

lem. The construction of s shown in line 5 and 6 is equal to

the construction used in SimplifiedBMC. The resulting logic

formula is then handed to an SMT solver. A satisfying assign-

ment corresponds to an execution path through the program

that kills a particular mutant. From the satisfying assignment,

we extract the values of the symbolic variables denoting

the program inputs and the value of the symbolic variable

denoting the global program variable FAULT_ID to identify

which mutant has been killed. The extraction task is repre-

sented by the pseudo code functions ExtractTestCase
and ExtractFaultID in the lines 8 and 9, respectively. The

symbolic variable id2 is then constrained such that another

satisfying assignment of the logic formula must enable a

mutant distinguished from the mutants already killed. We

solve and incrementally constrain id2 until the logic formula

becomes unsatisfiable and no remaining mutant can be killed.

The unsatisfiability proof of the last call to the SMT solver

proofs all remaining mutants functionally equivalent to the

original program with respect to the unrolled model, i.e., none

of the mutants result in a different externally observable output

with respect to the maximum unrolling bound k.

Procedure 2: Test Case Generation for the Meta-Mutant

Input : a meta-mutant M and a maximum unrolling

bound k
Output: a list of test cases Ψ that guaranteed kills all

non-equivalent mutants of the meta-mutant M
with respect to the maximum unrolling bound k

1 begin
2 Ψ := ∅;

3 ((iPj ), (oP
l ), fk) := Encode(M, k) ∧ (id1 = 0);

4 ((iP
′

j ), (oP ′
l ), f ′

k) := Encode(M,k);
5 g :=

∧n
j=1(i

P
j = iP

′
j ) ∧ ∨m

l=1(o
P
l �= oP ′

l );
6 s := fk ∧ f ′

k ∧ g;

7 while Solve(s) = SATISFIABLE do
8 Ψ = Ψ ∪ ExtractTestCase(s);
9 s = s ∧ (id2 �= ExtractFaultID(s));

10 end
11 return Ψ;

12 end



TABLE I
RESULTS OF THE TEST CASE GENERATION WITH BOOLECTOR

Name Instr. Instr. Faults Test Cases Time
(Program) (Meta-

Mutant)
[s]

min 24 71 17 16 0.48
isl 20 80 19 18 0.14
fmin3 40 137 33 23 7.49
fmin5 58 203 49 37 34.38
fmin10 103 368 89 72 213.65
mid 52 194 46 43 6.82
tri 116 819 206 196 246.80

V. EXPERIMENTAL RESULTS

We present initial results for the SymBMC procedure on

a case study of seven, small ANSI-C benchmarks programs.

The programs are similar to benchmark programs considered

by Offutt et al. [27] but are rewritten to ANSI-C. Moreover, we

have not tested programs that use floating point types because

the mapping from floating point types is not directly supported

by SMT solvers. All experiments were conducted on a PC with

an AMD Athlon
TM

64 X2 Dual Core Processor 6000+, which

has 2 cores with 3 GHz each and 4.12 GB RAM.

Table I reports the results of the test case generation on the

seven benchmark programs. The columns from left to right

name the individual benchmark program, give the number of

LLVM instructions of the original program, the number of

LLVM instructions of the unrolled meta-mutant, the number

of seeded faults according to our fault model, the number of

generated test cases using SymBMC, and the accumulated time

required for incrementally solving the individual constraint

satisfaction problems in seconds.

For solving the quantifier-free bit-vector formulae, we have

used the SMT solver Boolector1. We do not report the time

needed to encode the programs into bit-vector formulae in the

table, which on average takes less than one second for the

benchmark programs. The difference between the number of

seeded faults and the number of test cases generated equals the

number of equivalent mutants. For instance, 10 of 206 seeded

faults in the meta-mutant of the benchmark program tri do

not affect the program semantics.

Note, that not every LLVM instruction is mutated, e.g.

conditional and unconditional branching instructions are not

affected by our fault model. Moreover, the full LLVM instruc-

tion set contains allocation and bitcast instructions, which we

do not mutate. Thus, the number of seeded faults is lower

than the number of instructions for most of the benchmark

programs. The tri benchmark program has several binary

operator instructions, which significantly increases the number

of seeded faults according to our fault model.

Figure 4 and Figure 5 show the generation of the individual

test cases for the benchmark program tri in detail. Figure 4

gives the local time required for the generation of the individ-

ual test cases. On the t-axis, we show the time t in seconds

separated into continuous intervals of one second and on the

dF -axis, we count the number of individual logic formulae

1Boolector 1.4, 64-bit [42]: http://fmv.jku.at/boolector/

t

dF

20

40

60

80

100

120

140
124

0
<

t ≤
1

43

1
<

t ≤
2

13

2
<

t ≤
3

2

3
<

t ≤
4

6

4
<

t ≤
5

1

5
<

t ≤
6

0

6
<

t ≤
7

2

7
<

t ≤
8

0

8
<

t ≤
9

1

9
<

t ≤
10

1

t >
10

Fig. 4. Test case generation of the benchmark program tri over time. The
t-axis separates the time into continues intervals of one second. The dF -axis
shows the number of the logic formulae solved by the SMT solver in the
individual continues time intervals.

dF

t
0 50 100 150 200 250

0

50

100

150

200

Fig. 5. Test case generation of the benchmark program tri over time.
The t-axis shows the accumulated time needed by the SymBMC procedure in
seconds. The dF -axis gives the total number of faults detected by SymBMC.

solved by the SMT solver. For instance, for 124 seeded

faults (60.19%) of the benchmark program tri, solving the

individual logic formulae takes less or equal to one second

per fault and, remarkably, for only five faults (2.46%) solving

the individual logic formulae takes five or more seconds per

fault.

Figure 5 shows the test case generation of the benchmark

program tri over time. On the t-axis, we show the accumu-

lated time needed by SymBMC and on the dF -axis, we give

the total number of faults detected by SymBMC.

Table I indicates that a completely symbolic approach may

not scale to larger programs. Increasing the size of a program,

drastically increases the time required by SymBMC. The

precise test case generation from mutants in a particular,

local context of a program still appears reasonable. Moreover,

Figure 4 shows that a significant number of faults is detected

very fast, which indicates that a heuristic approach focusing

on these faults has the potential to speed up the test case

generation.

VI. CONCLUSION

In this paper, we propose a new symbolic procedure,

SymBMC, for the automated generation of test cases from a



set of mutants using bounded model checking techniques. The

procedure SymBMC obtains a model from a “meta” program,

annotated with a set of artificial faults, and encodes the model

as a logic formula using the theory of quantifier-free bit-

vectors of arbitrary size. The SymBMC procedure derives a set

of test cases by incrementally solving the logic formula. When

a satisfying assignment detects a fault, the corresponding fault

is excluded from the search space by a blocking clause.

We have presented initial empirical results using a prototype

implementation with an SMT solver as backend. The results

of the case study, despite still very small, are promising. Our

symbolic procedure achieves on the example set considered

a mutation score of 100% with respect to the maximum

unrolling bound k. We conclude that a completely symbolic

approach gives deeper insights into the problem of generating

test cases from mutants and allows the development of better

heuristics in the future.

VII. ACKNOWLEDGMENT

We would like to thank Finn Haedicke for supporting the

development of the SMT solver backend used by SymBMC.

REFERENCES

[1] R. G. Hamlet, “Testing programs with the aid of a compiler,” IEEE
Transactions on Software Engineering, vol. SE-3, no. 4, pp. 279–290,
1977.

[2] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data
selection: Help for the practicing programmer,” IEEE Computer, vol. 11,
no. 4, pp. 34–41, 1978.

[3] A. P. Mathur and W. E. Wong, “A theoretical comparison between
mutation and data flow based test adequacy criteria,” in 22nd Annual
ACM Conference on Computer Science, 1994, pp. 38–45.

[4] A. J. Offutt and J. M. Voas, “Subsumption of condition coverage tech-
niques by mutation testing,” Department of Information and Software
Systems Engineering, George Mason University, Tech. Rep. ISSE-TR-
96-100, 1996.

[5] P. Ammann and A. J. Offutt, Introduction to Software Testing. Cam-
bridge Univeristy Press, Cambridge, 2008.

[6] P. G. Frankl and S. N. Weiss, “An experimental comparison of the
effectiveness of branch testing and data flow testing,” IEEE Transactions
on Software Engineering, vol. 19, no. 8, pp. 774–787, 1993.

[7] A. P. Mathur and W. E. Wong, “An empirical comparison of data flow
and mutation-based test adequacy criteria,” Software Testing, Verifica-
tion, and Reliability, vol. 4, no. 1, pp. 9–31, 1994.

[8] A. J. Offutt, J. Pan, K. Tewary, and T. Zhang, “An experimental
evaluation of data flow and mutation testing,” Software — Practice &
Experience, vol. 26, no. 2, pp. 165–176, 1996.

[9] N. Li, U. Praphamontripong, and A. J. Offutt, “An experimental com-
parison of four unit test criteria: Mutation, edge-pair, all-uses and prime
path coverage,” in IEEE International Conference on Software Testing,
Verification and Validation Workshops, 2009, pp. 220–229.

[10] Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” CREST Centre, King’s College London, Tech. Rep.
TR-09-06, 2009.

[11] E. Clarke, O. Grumberg, and D. Peled, Model Checking. MIT Press,
1999.

[12] M. R. Girgis and M. R. Woodward, “An integrated system for program
testing using weak mutation and data flow analysis,” in IEEE Interna-
tional Conference on Software Engineering, no. 313-319, 1985.

[13] A. J. Offutt, “Automated test data generation,” Ph.D. dissertation,
Georgia Institute of Technology, Atlanta GA, 1988.

[14] R. A. DeMillo and A. J. Offutt, “Constraint-based automatic test data
generation,” IEEE Transactions on Software Engineering, vol. 17, no. 9,
pp. 900–910, 1991.

[15] A. Goldberg, T. C. Wang, and D. Zimmerman, “Applications of feasible
path analysis,” in International Symposium on Software Testing and
Analysis, 1994, pp. 80–94.

[16] C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli, “Satisfiability modulo
theories,” in Handbook of Satisfiability. IOS Press, Amsterdam, 2008,
ch. 23, pp. 737–797.

[17] H. Gatzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli,
“DPLL(T): Fast decision procedures,” in Computer Aided Verification,
vol. 3114, 2004, pp. 175–188.

[18] W. Visser, K. Havelund, G. Brat, and S. Park, “Model checking
programs,” in IEEE International Conference on Automated Software
Engineering, 2000, pp. 3–11.

[19] E. Clarke, D. Kroening, and F. Lerda, “A tool for checking ANSI-C
programs,” in Tools and Algorithms for the Construction and Analysis
of Systems, 2004, pp. 168–176.

[20] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs,” in
Symposium on Operating Systems Design and Implementation, 2008,
pp. 209–224.

[21] C. Sinz, S. Falke, and F. Merz, “A precise memory model for low-level
bounded model checking,” in Workshop on System Software Verification,
2010, pp. 7–16.

[22] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic model
checking without BDDs,” in Tools and Algorithms for the Construction
and Analysis of Systems, 1999, pp. 193–207.

[23] C. Lattner, “LLVM: An infrastructure for multi-stage optimization,”
Master’s thesis, University of Illinois at Urbana-Champaign, 2002.

[24] R. H. Untch, A. J. Offutt, and M. J. Harrold, “Mutation analysis using
mutant schemata,” ACM SIGSOFT Software Engineering Notes, vol. 18,
no. 3, pp. 139–148, 1993.

[25] A. J. Offutt, Z. Jin, and J. Pan, “The dynamic domain approach for test
data generation: Design and algorithm,” Department of Information and
Software Systems Engineering, George Mason University, Tech. Rep.
ISSE-TR-94-110, 1194.

[26] ——, “The dynamic domain reduction procedure for test data genera-
tion,” Software — Practice & Experience, vol. 29, no. 2, pp. 167–193,
1999.

[27] A. J. Offutt and J. Pan, “Automatically detecting equivalent mutants and
infeasible paths,” Software Testing, Verification, and Reliability, vol. 7,
no. 3, pp. 165–192, 1997.

[28] P. E. Ammann, P. E. Black, and W. Majurski, “Using model checking
to generate tests from specifications,” in IEEE International Conference
on Formal Engineering Methods, 1998, pp. 46–54.

[29] V. Okun, P. E. Black, and Y. Yesha, “Testing with model checker:
Insuring fault visibility,” in International Conference on System Science,
Applied Mathematics & Computer Science, and Power Engineering
Systems, 2002, pp. 1351–1356.

[30] E. M. Clarke and E. A. Emerson, “Design and synthesis of synchroniza-
tion skeletons using branching-time temporal logic,” Logics of Programs,
vol. 131, no. 10, pp. 52–71, 1982.

[31] P. E. Black, “Modeling and marshaling: Making tests from model
checker counterexamples,” in Digital Avionics Systems Conference,
2000, pp. 1–6.

[32] G. Fraser and F. Wotawa, “Mutant minimization for model-checker
based test-case generation,” in Testing: Academic and Industrial Con-
ference Practice and Research Techniques, 2007, pp. 161–168.

[33] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” toc, vol. C-35, no. 8, pp. 677–691, 1986.

[34] A. Pnueli, “The temporal logic of programs,” in Annual Symposium on
Foundations of Computer Science, 1977, pp. 46–57.

[35] A. Armando, J. Mantovani, and L. Platania, “Bounded model checking
of software using SMT solvers instead of SAT solvers,” International
Journal on Software Tools for Technology Transfer, vol. 11, no. 1, pp.
69–83, 2009.

[36] H. G. Rice, “Classes of recursively enumerable sets and their decision
problems,” in Transactions of the American Mathematical Society,
vol. 74, no. 2, 1953, pp. 358–366.

[37] T. A. Budd and D. Angluin, “Two notions of correctness and their
relation to testing,” Acta Informatica, vol. 18, no. 1, pp. 31–45, 1982.

[38] C. Lattner, “LLVM language reference manual,” 2010, last visit on 22nd
of December, 2010.

[39] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf, “An
experimental determination of sufficient mutant operators,” in ACM
Transactions on Software Engineering and Methodology, 1996, pp. 99–
118.

[40] B. J. M. Gruen, D. Schuler, and A. Zeller, “The impact of equivalent
mutants,” in IEEE International Conference on Software Testing, Verifi-
cation and Validation Workshops, 2009, pp. 192–199.



[41] K. N. King and A. J. Offutt, “A Fortran language system for mutation-
based software testing,” Software — Practice & Experience, vol. 21,
no. 7, pp. 685–718, 1991.

[42] R. Brummayer and A. Biere, “Boolector: An efficient SMT solver for
bit-vectors and arrays,” in Tools and Algorithms for the Construction
and Analysis of Systems, 2009, pp. 174–177.


