
HAL Id: hal-00646089
https://inria.hal.science/hal-00646089

Submitted on 29 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Abstracting Time and Data for Conformance Testing of
Real-Time Systems

Wilkerson L. Andrade, Patricia D. L. Machado, Thierry Jéron, Hervé
Marchand

To cite this version:
Wilkerson L. Andrade, Patricia D. L. Machado, Thierry Jéron, Hervé Marchand. Abstracting Time
and Data for Conformance Testing of Real-Time Systems. 7th Workshop on Advances in Model Based
Testing A-MOST 2011, Mar 2011, Berlin, Germany. �hal-00646089�

https://inria.hal.science/hal-00646089
https://hal.archives-ouvertes.fr

Abstracting Time and Data for Conformance Testing of Real-Time Systems

Wilkerson L. Andrade, Patrı́cia D. L. Machado
Federal University of Campina Grande

Campina Grande, PB, Brazil
{wilker,patricia}@dsc.ufcg.edu.br

Thierry Jéron, Hervé Marchand
INRIA Rennes - Bretagne Atlantique

Rennes, France
{thierry.jeron,herve.marchand}@inria.fr

Abstract—Current approaches to model-based conformance
testing of real-time systems are mostly based either on fi-
nite state machines/transition systems or on timed automata.
However, most real-time systems manipulate data while being
subject to time constraints. The usual solution consists in
enumerating data values (in finite domains) while treating
time symbolically, thus leading to the classical state explosion
problem. This paper proposes a new model of real-time systems
as an extension of both symbolic transition systems and timed
automata, in order to handle both data and time requirements
symbolically. We then adapt the tioco conformance testing the-
ory to deal with this model and describe a test case generation
process based on a combination of symbolic execution and
constraint solving for the data part and symbolic analysis for
timed aspects.

Keywords-Conformance Testing; Real-time Systems; Sym-
bolic Execution; Model-Based Testing; Test Case Generation;

I. INTRODUCTION

The correct behaviour of real-time systems (RTSs) de-
pends not only on the generated results but also on whether
the results are generated at the right time-points. For soft-
ware testing of such RTSs, the main challenges are related to
handling time requirements along with the usual difficulties
posed by concurrent and reactive systems. In this paper, we
focus on conformance testing where the implementation is a
black-box whose internal details are unknown, thus the tester
can only interact with it through its observable behaviour
(inputs and outputs) with test cases derived from a formal
specification based on a conformance relation between the
implementation and the specification that guides the verdicts
of test execution [1].

Since research in this field is very recent, developed
techniques and tools are still immature and difficult to use
in practice. Most approaches are based on model checking
techniques to support test case generation such as [2], [3].
Other approaches extend some classic testing strategies to
support the test of RTS, for instance, coverage based test
selection [4] and test purposes to select specific scenarios
to be verified [5], [6]. Also, some approaches extend finite
state machines (FSMs) and their associated methods to deal
with time [7], [8].

There are still very few work in this context and most
of them use either (variations of) FSMs or (variations of)

timed automata (TAs) as the underlying model. However,
most approaches to testing real-time systems abstract only
time and enumerate data values. This is not suitable when the
specification uses large or infinite data domains because data
values are enumerated, leading to the state space explosion
problem.

In practice, RTSs handle variables and action parameters.
Thus, powerful models are needed where variables, action
parameters and time are explicitly modelled and these infor-
mations are treated in a symbolic way. There is few work
whose goal is to provide symbolic approaches to software
testing such as [9], [10], [11], [12]. However, none of these
approaches take time requirements into account.

The main goal of this work is to propose a new approach
for model-based conformance testing of real-time systems,
where the system under test (SUT) is modelled through an
extension of both symbolic transition systems and timed
automata, thus dealing with both data and time requirements.
We then adapt the tioco conformance testing theory to deal
with this new model. Finally, we propose a test case gen-
eration process based on test selection using test purposes,
which is based on symbolic execution and constraint solving
for the data aspects combined with symbolic analysis of
timed aspects.

The rest of the paper is structured as follows. Section II
discusses the related work. The proposed model is presented
in Section III. Section IV introduces the conformance testing
theory to deal with the model proposed. The test case
generation process is described in Section V and some
properties of the generated test cases are discussed in Section
VI. Finally, Section VII presents the concluding remarks and
future work.

II. RELATED WORK

To our knowledge, most work on model-based testing
of real-time systems, either do not deal with data, or enu-
merate data values in finite domains. For example, Cardell-
Oliver [13] proposes a strategy for test generation based on
the UPPAAL timed automata [14] and digital clock approx-
imation. As the semantics of a TA is given by a possibly
infinite state timed transition system (TLTS), each timed
trace is mapped into a set of possible integer-timed trace

interpretations. Thus, symbolic states are used to represent
a set of clock valuations but data is not handled.

En-Nouaary et al. [7] consider a variant of timed automata
with inputs and outputs (TAIOs) with no data. The model
considers only urgent transitions, i.e., once enabled, a tran-
sition must be taken immediately. This assumption reduces
too much the expressiveness of the model. For instance, the
following cannot be expressed “when an input is provided,
an output must be generated within at most 10 time units”.

Li et al. [5] propose an approach to property-oriented real-
time test case generation but the work only focuses on the
specification language, time-enriched statecharts.

Larsen et al. [3] propose a tool and the related the-
ory for online testing of real-time systems based on
non-deterministic TAIOs. The developed tool (UPPAAL
TRON) was implemented by extending the UPPAAL model-
checking tool [14]. The tool allows data restricted to finite
data domains, which values are enumerated.

Krichen and Tripakis [4] propose a framework for con-
formance testing of real-time systems where specifications
are modelled as non-deterministic TAIOs. They extend
the ioco conformance relation of [1] into a timed input-
output conformance relation (tioco), which is defined by
considering time delays as observable outputs. Data is not
considered. [6] extend the approach by a better treatment of
non-determinism and test selection based on test purposes.

Merayo et al. [8] propose an extension of finite state
machines with only one clock and no data.

Khoumsi [15] combines a real-time testing strategy with
a non-real-time symbolic testing strategy. Basically, the
approach is in two steps: first, the real-time symbolic model
is transformed into an symbolic transition system where the
setting and expiring of clocks are represented as actions;
second, the symbolic testing strategy presented in [9], [11]
is adapted to generate tests. However, the semantics of
the proposed model is not formally defined. Additionally,
the first step restricts too much the use of clocks and
guards leading to a less expressive and flexible specification
language.

The work presented in [16], [17] proposes an initial
symbolic model-based testing strategy for real-time systems
with interruptions. Moreover, it investigates a possible in-
frastructure that can support test execution in an actual real-
time environment. Test cases are designed to run on a real-
time operating system named FreeRTOS [18] – a mini-kernel
that can be used to develop real-time systems for embedded
devices [18].

Timo et al. [19] propose a conformance testing strategy
for data-flow reactive systems with time constraints based
on an extension of TA that uses variables as inputs and
outputs. All transitions of the model are urgent, reducing
expressiveness, and time is treated with region graphs which
may lead to the state space explosion problem.

The problem of symbolically abstracting both time and

data is addressed in this paper by an extension of the model
defined in [9], [11] that allows to handle time requirements.

III. THE SYMBOLIC MODEL

This section presents a new symbolic model named Timed
Input-Output Symbolic Transition System (TIOSTS). This
model is an extension of two existing models: Timed Au-
tomata with Inputs and Outputs (TAIOs), itself an extension
of timed automata [20] with distinguished inputs and out-
puts, and deadlines to model urgency [21]; and Input-Output
Symbolic Transition Systems (IOSTSs) [9]. In other words,
a TIOSTS is an automaton with a finite set of locations,
variables used to represent the system data, and a finite set of
clocks used to represent time evolution. An edge comprises a
guard on variables and clocks, an action carrying parameters
for the communication with its environment, an assignment
of variables, and resets of clocks.

A. Syntax of TIOSTS

A TIOSTS is formally described as follows:
Definition 3.1 (TIOSTS): A TIOSTS consists in a tuple

W = 〈V, P,Θ, L, l0,Σ, C, T 〉, where:
• V is a finite set of typed variables;
• P is a finite set of parameters. For x ∈ V ∪P , type(x)

denotes the type of x;
• Θ is the initial condition, a predicate with variables in
V ;

• L is a finite, non-empty set of locations and l0 ∈ L is
the initial location;

• Σ = Σ?∪Σ!∪Στ is a non-empty, finite alphabet, which
is the disjoint union of a set Σ? of input actions, a set Σ!

of output actions, and a set Στ of internal actions. Each
action a ∈ Σ has a signature sig(a) = 〈p1, ..., pn〉,
that is a tuple of distinct parameters. The signature of
internal actions is the empty tuple;

• C is a finite set of clocks;
• T is a finite set of transitions. Each transition t ∈ T is

a tuple 〈l, a,G,A, y, l′〉, where:
– l ∈ L is the origin location of the transition,
– a ∈ Σ is the action,
– G = GD ∧ GC is the guard, where GD is a

predicate over variables in V ∪ sig(a)1 and GC is
a clock constraint over C defined as a conjunction
of constraints of the form α#c, where α ∈ C, c is
an integer constant and # ∈ {<,≤,=,≥, >},

– A = AD ∪AC is the assignment of the transition.
For each variable x ∈ V there is exactly one
assignment in AD, of the form x := AD

x, where
AD

x is an expression on V ∪ sig(a). AC ⊆ C is
the set of clocks to be reset,

– y ∈ {lazy, delayable, eager} is the deadline of the
transition,

1GD is assumed to be expressed in a theory in which satisfiability is
decidable.

Figure 1. TIOSTS Example

– l′ ∈ L is the destination location of the transition.
�

We intuitively explain the different notions of the TIOSTS
model through the example shown in Figure 1 that models a
withdrawal transaction in an ATM system. The transaction
has a precondition (the initial condition) that says that the
current balance must be strictly positive. Initially, the system
is in the Idle location where it expects the Withdrawal
input carrying a strictly positive integer parameter amount
that is saved into the variable withdrawalValue with the
clock set to zero when the transition is taken. Then, as
the value of withdrawalValue is less than or equal to the
balance and the time represented by clock is less than or
equal to 10 time units, the ATM system dispenses the cash
through the output DispenseCash carrying the parameter
amount (the guard amount = withdrawalV alue and
withdrawalV alue <= balance means “choose a value for
the parameter amount that, with the value of the variable
withdrawalValue, satisfies the guard”), the variable balance
is decreased by the withdrawn value, and the system returns
to Idle. Otherwise, if the account does not have sufficient
funds, the system must emit the invalid withdrawal value
through the output InsufficientFunds carrying the parameter
amount when clock is at most 2 (the guard amount =
withdrawalV alue and withdrawalV alue > balance has
a similar meaning to the previous guard), and reset the
clock to zero again. Finally, the current balance is emitted
through the output PrintBalance when clock is at most 5
(the guard amount = balance means “choose a value for
the parameter amount such that it is equal to the value of
the parameter balance”), and the system returns to Idle.

Guards on transitions indicate when they are enabled.
However transitions can be forced using deadlines used to
model urgency [21]. Transitions are annotated with one of
the following three deadlines: lazy, delayable, and eager.
The lazy deadline imposes no urgency to the transition to be
taken, delayable means that once enabled the transition must
be taken before it becomes disabled, and eager means the
transition must be taken as soon as it becomes enabled. In the
figures, when not specified, the deadline of transitions with

output actions is assumed to be delayable and the deadline
of transitions with input actions is assumed to be lazy.

B. Semantics of TIOSTS
The semantics of a TIOSTS 〈V, P,Θ, L, l0,Σ, C, T 〉 is

described by a Timed Input-Output Labelled Transition
Systems (TIOLTS). Intuitively, the TIOLTS states explore
the sets of locations, of valuations of variables V and clocks
C, while transitions explore the sets of actions Σ associated
with parameters values P . A valuation of the variables in
V is a mapping ν which maps every variable x ∈ V to a
value ν(x) in the domain of x. Valuations of parameters P
are defined similarly. Let V denote the set of valuations of
the variables V and let Γ denote the set of valuations of
the parameters P . Let the function ψ : C → R≥0 denote a
clock valuation. We note 0 the valuation that assigns 0 to
all clocks.

Considering ν ∈ V and γ ∈ Γ, for an expression E
involving a subset of V ∪P , we denote by E(ν, γ) the value
obtained by evaluating the result of substituting in E each
variable by its value according to ν and each parameter by
its value according to γ.

Definition 3.2 (TIOLTS semantics of a TIOSTS): The
semantics of a TIOSTS W = 〈V, P,Θ, L, l0,Σ, C, T 〉 is a
TIOLTS [[W]] = 〈S, S0, Act, T 〉, defined as follows:
• S = L × V × (C → R≥0) is the set of states of the

form s = 〈l, ν, ψ〉 where l ∈ L is a location, ν ∈ V is a
specific valuation for all variables V , and ψ is a clock
valuation;

• S0 = {〈l0, ν, ψ〉 | Θ(ν) = true, 0} is the set of initial
states;

• Act = Λ∪D is the set of actions, where Λ = {〈a, γ〉 |
a ∈ Σ, γ ∈ Γsig(a)} is the set of discrete actions and
D = R≥0 is the set of time-elapsing actions. Λ is
partitioned into the sets Λ? of input actions, Λ! of output
actions, and Λτ of internal actions;

• T is the transition relation defined as follows: (1) transi-
tions with discrete actions are of the form 〈l, ν, ψ〉 〈a,γ〉→
(l′, ν′, ψ′), where the system moves from 〈l, ν, ψ〉 to
〈l′, ν′, ψ′〉 through an action 〈a, γ〉 if there is a transi-
tion t : 〈l, a,G,A, y, l′〉 ∈ T such that G evaluates
to true, ν′ = AD(ν, γ), and ψ′ = AC(ψ); (2)
transitions with time-elapsing actions are of the form
(l, ν, ψ) d→ (l, ν, ψ + d) for all d ∈ D considering
that the deadlines do not block time progress. Once
the lazy deadline is used only to denote the absence of
deadlines, lazy transitions cannot block time progress.
A delayable transition can block time progress if there
exist 0 ≤ d1 < d2 ≤ d such that ψ + d1 |= GC and
ψ + d2 6|= GC , whereas an eager transition can block
time progress if ψ |= GC .

�
Remark 3.1: As in [4], delayable transitions with guards

of the form α < c are not allowed because there is no latest

time so that the guard is still true. Also, eager transitions
with guards of the form α > c are not allowed because
there is no earliest time so that the guard becomes true.
Moreover, the deadline of transitions with internal actions is
assumed to be eager. �

Most notions and properties of TIOSTS are defined in
terms of their underlying TIOLTS semantics (Definition
3.2). Then, consider s, s′, si ∈ S; τi ∈ Λτ ; ω, ωi ∈ Act;
and a, ai ∈ (Act\Λτ). Moreover, let ρ ∈ Act∗ be a
sequence of discrete actions and time-elapsing actions, and
σ ∈ (Act\Λτ)∗ be a sequence of visible discrete and time-
elapsing actions. ε ∈ Act∗ is the empty sequence. The sum
of all delays spent in a sequence of actions ρ (respectively σ)
is denoted by time(ρ) (respectively by time(σ)). For example,
time(ε) = 0 and time(2.5 a? 0.5 x!) = 3.0.

Let W = 〈V, P,Θ, L, l0,Σ, C, T 〉 be a TIOSTS whose
semantics is defined by the TIOLTS [[W]] = 〈S, S0, Act, T 〉.
We write s

ω→ s′ for (s, w, s′) ∈ T , s ω→ for ∃s′ : s ω→
s′. Let s ω1...ωn→ s′

∆= ∃s0, ..., sn : s = s0
ω1→ s1

ω2→...
ωn→

sn = s′ be an execution. We also write s
ρ→ for ∃s′ :

s
ρ→ s′. Traces(s) ∆= {ρ ∈ Act∗ | s ρ→} describes the set

of sequences of discrete and time-elapsing actions fireable
from s. The set of fireable actions from s is defined by
Ω(s) ∆= {ω ∈ Act | s ω→}. Out(s) ∆= Ω(s) ∩ (Λ! ∪ D) is
the set of all output events (including time-elapsing actions)
fireable from s. The definition of Out(s) can be extended for
sets of states: for P ⊆ S we have Out(P) ∆=

⋃
s∈P Out(s).

The⇒ relation is used to denote the observable behaviour.
Given s, s′ ∈ S, d ∈ R≥0 and a ∈ Λ! ∪ Λ?, we have
s

d⇒ s′ whenever ∃ρ ∈ (Λτ ∪ D)∗ such that s
ρ→ s′ and

time(ρ) = d, whereas we have s a⇒ s′ whenever ∃ρ1, ρ2 ∈
(Λτ)∗, s1, s2 ∈ S such that s

ρ1→ s1
a→ s2

ρ2→ s′. Given
a1, · · · an ∈ (Act \Λτ)∗, an observable execution is defined
as s a1...an⇒ s′

∆= ∃s0, ..., sn : s = s0
a1⇒ s1

a2⇒...
an⇒ sn = s′.

For a ∈ Act \ Λτ we also define s
a⇒ ∆= ∃s′ : s a⇒ s′

and for σ ∈ (Act \ Λτ)∗, s σ⇒ ∆= ∃s′ : s
σ⇒ s′.

ObservableTraces(s) ∆= {σ ∈ (Act \ Λτ)∗ | s σ⇒} describes
the set of sequences of observable and time-elapsing actions
fireable from s. Finally, the set of sequences of observable
behaviours fireable from the initial state of a TIOSTS W is
defined by ObservableTraces(W) ∆= ObservableTraces(S0).

The set s after σ ∆= {s′ ∈ S | s σ⇒ s′} is the set of
states reachable from s after the execution of σ, and P after
σ

∆=
⋃
s∈P s after σ is the set of states reachable from the

set P after the execution of σ.
Subclasses of TIOSTS. Let W = 〈V, P,Θ, L, l0,Σ, C, T 〉
be a TIOSTS and [[W]] = 〈S, S0, Act, T 〉 its associated
TIOLTS. W is complete if it can accept any action at any
state, i.e., ∀s ∈ S, b ∈ Λ : s b→. On the other hand, W is
input-complete if it can accept any input action at any state,
possibly after internal actions, i.e., ∀s ∈ S, b ∈ Λ? : s b⇒.
W is said to be a lazy-action TIOSTS if the deadlines of all

transitions are lazy. W is said to be non-blocking when it
does not block time [4]: ∀s ∈ S0 after ρ, ∀d ∈ R≥0, ∃ρ′ ∈
(Λ! ∪ Λτ ∪ D)∗ : time(ρ′) = d ∧ s ρ′

→. W is said to be
deterministic if these conditions are satisfied [9], [11]: (1)
Λτ = ∅ (i.e. there is no internal actions); (2) |S0 |= 1, (3) for
all l ∈ L and for each pair of distinct transitions with origin
in l carrying the same action a, i.e., t1 : 〈l, a,G1, A1, y1, l

′
1〉

and t2 : 〈l, a,G2, A2, y2, l
′
2〉, the guards G1 and G2 are

mutually exclusive (i.e., G1 ∧G2 is unsatisfiable).

C. Synchronous Product of TIOSTS
The synchronous product of two TIOSTSs W1 and W2

is an important operation used in both property oriented
testing and conformance testing. This operation is used in
the former for identifying behaviours of the specification
accepted or rejected by a particular property (e.g., W1 could
be a specification and W2 could be a test purpose). On the
other hand, for conformance testing, this operation is used
for modelling the synchronous execution of a test case on an
implementation (e.g., W1 is a test case and W2 is a SUT).
The synchronous product operation requires compatibility
between W1 and W2, i.e., W1 and W2 must share the same
sets of input and output actions from the same signature,
with same set of parameters, and have no variables, internal
actions, or clocks in common.

Definition 3.3 (Compatible TIOSTS): The TIOSTSs
Wi = 〈Vi, Pi,Θi, Li, l

0
i ,Σi, Ci, Ti〉 (i = 1, 2) are

compatible if V1 ∩ V2 = ∅, P1 = P2,Σ?
1 = Σ?

2,Σ
!
1 =

Σ!
2,Σ

τ
1 ∩ Στ2 = ∅, and C1 ∩ C2 = ∅. �

Given the ordering lazy < delayable < eager on
deadlines and two deadlines y1, y2, op(y1, y2) = (y2 if
y1 < y2 and y1 otherwise) is an operation which computes
the resulting deadline in the synchronous product operation
by keeping the most restrictive one.

Given two compatible TIOSTSs, Definition 3.4 formally
describes the synchronous product between them.

Definition 3.4 (Synchronous Product): The synchronous
product of two compatible TIOSTSs W1 and W2 is
denoted by SP = W1 ‖ W2. SP is the TIOSTS
〈V, P,Θ, L, l0,Σ, C, T 〉 defined by: V = V1∪V2, P = P1 =
P2,Θ = Θ1 ∧ Θ2, L = L1 × L2, l

0 = 〈l01, l02〉,Σ? = Σ?
1 =

Σ?
2,Σ

! = Σ!
1 = Σ!

2,Σ
τ = Στ1 ∪ Στ2 , and C = C1 ∪ C2. The

set T is the smallest set such that:
1) For a ∈ Στ1 and l2 ∈ L2: 〈l1, a,G1, A1, y1, l

′
1〉 ∈

T1 ⇒ 〈〈l1, l2〉, a,G1, A1, y1, 〈l′1, l2〉〉 ∈ T ;
2) For a ∈ Στ2 and l1 ∈ L1: 〈l2, a,G2, A2, y2, l

′
2〉 ∈

T2 ⇒ 〈〈l1, l2〉, a,G2, A2, y2, 〈l1, l′2〉〉 ∈ T ;
3) For a ∈ Σ? ∪ Σ!: 〈l1, a,G1, A1, y1, l

′
1〉 ∈ T1 ∧

〈l2, a,G2, A2, y2, l
′
2〉 ∈ T2 ⇒

〈〈l1, l2〉, a,G1∧G2, A1∪A2, op(y1, y2), 〈l′1, l′2〉〉 ∈ T .
�

Rules 1 and 2 say that the execution of internal actions
can occur independently, while Rule 3 describes the syn-
chronization of W1 and W2 through observable actions.

IV. CONFORMANCE TESTING WITH TIOSTS

Conformance testing relates a specification with an imple-
mentation through a conformance relation, which is checked
by the execution of test cases, possibly selected according
to a test purpose [1]. These concepts are defined as follows.
The specification is a formal model of the SUT given as a
non-blocking TIOSTS S. We are considering specifications
of software systems that do not force input actions, i.e.,
the system cannot block because an input action was not
provided by the environment.
The implementation is a physical software system running
on a real-time environment (e.g., a real-time operating
system). In order to reason about conformance, it is assumed
that its semantics can be modelled by a formal object. We
assume here that it is modelled by a TIOLTS I. The notions
and properties of TIOLTSs are defined in [4]. Moreover,
the implementation is assumed to be input-complete, non-
blocking, and has the same interface (input and output
actions with their signatures) as the specification S. These
assumptions are called test hypotheses.
A Test Case is used to check the conformance between the
specification and its implementation. It is here defined as a
TIOSTS TC as follows:

Definition 4.1 (Test Case): A test case is a determinis-
tic, input-complete TIOSTS TC = 〈VTC , PTC ,ΘTC , LTC ,
l0TC ,ΣTC , CTC , TTC〉, where Σ?

TC = Σ!
S and Σ!

TC = Σ?
S

(actions are mirrored w.r.t. S), equipped with three disjoint
sets of locations Pass, Fail, and Inconclusive. �

Intuitively, when the location Fail is reached, it means
rejection, the location Pass means that some targeted be-
haviour has been reached (this will be clarified later) and
Inconclusive means that targeted behaviours cannot be
reached anymore.
Conformance Relation. We consider the conformance rela-
tion tioco defined by Krichen and Tripakis in [4]. Informally,
an implementation conforms to a specification for tioco if
and only if, after any trace of the specification, any output
action (including time-elapsing actions) that the implemen-
tation provides after this trace is an output action that the
specification may also provide.

Definition 4.2 (tioco): An implementation I conforms to
a specification S for tioco, denoted by I tioco S, iff ∀σ ∈
ObservableTraces(S), Out(I after σ) ⊆ Out(S after σ). �

V. TEST CASE GENERATION PROCESS

The test generation process describes how test cases are
derived from specifications according to the conformance
relation. For simplicity, we assume that the specification S
is deterministic and non-blocking. However, it is possible
to deal with non-determinism, under some assumptions, for
both data [22] and time [6]. We will consider the selection
of test cases by test purposes. We introduce this notion here.
A test Purpose describes some desired behaviours that
we wish to check on the implementation during the test

campaign. They are used to select test cases in order to
check specific scenarios. In our setting, a test purpose is a
particular TIOSTS TP formally described as follows:

Definition 5.1 (Test Purpose): Given a specification
TIOSTS S with action alphabet Σ, a test purpose
is a deterministic, complete, lazy-action TIOSTS
TP = 〈VTP , PTP ,ΘTP , LTP , l

0
TP ,ΣTP , CTP , TTP 〉,

equipped with a special set of locations Accept ⊆ LTP such
that all transitions leaving these locations are self-loops2.
Moreover TP has to be compatible with S thus ΣTP = Σ.
�

Complete test purposes are needed to ensure that the
runs of a specification are not restricted before they are
accepted (if ever). Accept locations are used to indicate that
the expected scenario modelled by the test purpose has been
fulfilled. Figure 2 presents an example of a test purpose for
the withdrawal transaction system. It is used to select the
scenarios where the user successfully performs a withdrawal
transaction.

Figure 2. Test Purpose for the specification of Figure 1

The test case generation process starts with the specifica-
tion S of the SUT I and a test purpose TP . The specification
of I is combined with TP through the computation of the
synchronous product (Definition 3.3). Figure 3 shows the
synchronous products obtained from specification of Figure
1 and the test purpose of Figure 2. Then, the resulting
TIOSTS model is symbolically executed to identify and
select possible traces leading to an Accept location. Finally,
the selected trace is translated into a test case.

The remainder of this section describes the following
steps: symbolic execution, test case selection and translation.

A. Symbolic Execution

Symbolic execution is a technique for analysing programs
based on symbolic values as input rather than concrete
values [23], [24]. Symbolic execution techniques were used
by Gaston et al. [25] and Jöbstl et al. [26] for test generation
for untimed systems. We here extend the work proposed by
Jöbstl et al. [26] to TIOSTS models to deal with time.

The main idea is to symbolically execute TIOSTS models
using the same technique used for symbolically executing
programs. Thus, all possible traces are identified using

2One can also consider another set of locations Reject that can be used
to discard all other scenarios where the system does not exhibit the desired
behaviour.

Figure 3. Synchronous Product Example

symbolic values instead of concrete values for action pa-
rameters and variables of the model, avoiding the state space
explosion problem w.r.t. the data part since data values are
not enumerated. The resulting traces are represented as a
zone-based symbolic execution tree (Definition 5.4), whose
nodes are zone-based symbolic extended states (Definition
5.2) and edges are symbolic actions (Definition 5.3).

Definition 5.2 (Zone-Based Symbolic Extended State): A
zone-based symbolic extended state (ZSES) of a TIOSTS
W = 〈V, P,Θ, L, l0,Σ, C, T 〉 is a tuple η = 〈l, π, ϕ, Z〉,
where: (1) l ∈ L is a location of W ; (2) π is a path
condition, i.e. a Boolean expression representing a data
guard; (3) ϕ is a mapping from variables and action
parameters to their symbolic values; (4) Z is a zone
representing the solution set of a clock constraint. �

Symbolically executing a TIOSTS implies that data and
time must be taken into account. As in [26], path conditions
are checked using constraint solving. However, our definition
of states differs from [26] because zones are used to check
the reachability of states w.r.t. time requirements: a state
is reachable if its path condition π is satisfiable and its
zone Z is not empty. Zones provide an efficient symbolic
representation of time requirements, avoiding the state space
explosion problem w.r.t. time part. Furthermore, ZSESs are
connected through transitions labelled by symbolic actions
(Definition 5.3).

Definition 5.3 (Symbolic Action): A symbolic action is
a tuple sa = 〈a, µsa, ϕsa〉, where: (1) a ∈ Σ is the
corresponding action in the TIOSTS; (2) µsa is a list of
unique identifiers denoting the action parameters of sa; (3)
ϕsa is a mapping from the original action parameter names
to the unique identifiers in µsa. �

We are now ready to define zone-based symbolic execu-
tion trees:

Definition 5.4 (Zone-Based Symbolic Execution Tree):
A zone-based symbolic execution tree (ZSET) is a
deterministic, connected graph with no cycles represented
by a tuple 〈S,SA, η0, T 〉, where: (1) S is a finite set of
zone-based symbolic extended states; (2) SA is a finite set
of symbolic actions; (3) η0 ∈ S is the initial zone-based
symbolic extended state; (4) T is a finite set of transitions.

Each transition t ∈ T is a tuple 〈η, sa, η′〉, where: (4.1)
η ∈ S is the origin state, (4.2) sa ∈ SA is the symbolic
action, (4.3) η′ ∈ S is the destination state. �

A ZSET is deterministic if ∀η, η′, η′′ ∈ S, ∀sa ∈ SA :
〈η, sa, η′〉 ∈ T ∧ 〈η, sa, η′′〉 ∈ T ⇒ η′ = η′′.

Algorithms for symbolically executing symbolic transition
systems have been proposed by Gaston et al. [25] and Jöbstl
et al. [26]. However, as they do not deal with time, a
new algorithm is presented in this work. Algorithm 1 is an
extended version of the one proposed by Jöbstl et al. [26].
It requires two parameters: TIOSTS W is the model to be
symbolically executed and ZSET is the resulting zone-based
symbolic execution tree. Firstly, a unique symbolic value is
generated for each variable of V and each action parameter
of P (Line 2). In Line 3, the first state η0 of ZSET is defined
considering the initial location of W , the initial condition of
W as first path condition, the mapping defined in Line 2,
and the initial clock zone (i.e., all clocks set to zero). Once
defined, the first state η0 is added to ZSET (Line 4).

The state η0 is added to the set of states to be visited
(Line 5). As long as there are unvisited states (Line 6), the
algorithm picks and remove some state η from Unvisited
(Line 7). The ZSES η refers to a location l of W and the
loop in Line 8 processes all transitions from l.

The symbolic action sa is computed from the action a,
attributing unique symbolic values for every parameter of a
(Line 9) and mapping the original action parameter names
to the defined symbolic values (Line 10). Once the symbolic
action has been defined (Line 11), the target state η′ is
computed in the next step. Thus, the path condition π′ for η′

is defined (Line 12) as the conjunction of π with the guard

Algorithm 1. Symbolic Execution of W = 〈V, P,Θ, L, l0,Σ, C, T 〉
1 s y m b o l i c E x e c u t i o n (TIOSTS W , ZSET ZSET) {
2 ϕ0 ← map of variables of V ∪ P to symbolic values
3 η0 ← 〈l0,Θ, ϕ0, Z0〉
4 addState(ZSET, η0)
5 Unvisited ← {η0}
6 whi le Unvisited 6= ∅ do
7 pick and remove some η = 〈l, π, ϕ, Z〉 from Unvisited
8 f o r a l l 〈l, a,G,A, y, l′〉 ∈ T do
9 µsa ← list of unique symb. values for every param. of a

10 ϕsa ← map of action parameters to symbolic values
11 sa← 〈a, µsa, ϕsa〉
12 π′ ← π ∧ ϕ(ϕsa(GD))
13 ϕ′ ← ϕ ◦ ϕsa ◦AD

14 Z′ ← [AC ← 0](GC ∩ ~Z)
15 η′ = 〈l′, π′, ϕ′, Z′〉
16 i f (isReachable(η′) ∧ ¬(upperBoundReached(l′)) ∧

η′ 6⊆ η′′ ∀η′′ ∈ ZSET) then
17 Unvisited ← Unvisited ∪ {η′}
18 addState(ZSET, η′)
19 addTransition(ZSET, 〈η, sa, η′〉)
20 end i f
21 end f o r
22 end whi l e
23 }

Figure 4. Zone-Based Symb. Execution Tree of the TIOSTS of Figure 3

GD (i.e., the data guard of G) considering the mappings ϕ
and ϕsa. The mapping ϕ′ is defined through ϕ ◦ ϕsa ◦ AD
(Line 13), where AD represents data assignments of A and
◦ denotes function composition.
Z ′ is defined in Line 14. The successor of Z is defined

by letting time elapse (~Z), taking the intersection with the
clock guard GC , and finally updating the values of clocks
that are reset (i.e., clocks in AC).

Once π′, ϕ′, and Z ′ have been defined, the target state
η′ is created in Line 15. Finally, η′ is added to the set of
states to be visited (Line 17) and a new transition labelled
by sa connecting η to η′ is added to ZSET (Lines 18 and
19), if the following conditions are satisfied (Line 16): (1)
The state η′ is reachable, that is, the path condition π′ is
satisfiable and the zone Z ′ is not empty; (2) The number of
ZSESs in the current path that correspond to the location l′

does not exceed a certain bound. This checking is needed
to avoid infinite ZSETs in the case where there are loops
in the specification whose number of iterations depends on
values assigned to parameters and variables [26]; (3) η′ 6⊆
η′′ ∀η′′ ∈ ZSET according to Definition 5.5, where the
state inclusion of Gaston et al. [25] was extended to deal
with zones. Figure 4 presents the ZSET obtained from the
symbolic execution of TIOSTS of Figure 3.

Definition 5.5 (ZSES comparison): Let η = 〈l, π, ϕ, Z〉
and η′ = 〈l′, π′, ϕ′, Z ′〉 be two zone-based symbolic ex-
tended states. ZSES η′ is included in ZSES η, that is, η′ ⊆ η,
if and only if: (1) l′ = l; (2) (π′ ∧

∧
x∈AD (x = ϕ′(x))) ⇒

(π∧
∧
x∈AD (x = ϕ(x))) is a tautology, where AD represents

data assignments of the TIOSTS; (3) Z ′ ⊆ Z. �

B. Test Case Selection

Once all possible traces have been identified by symbolic
execution, the next step is to select a test case by choosing

a trace that leads to an Accept state. For this, it is necessary
to select a subtree of the generated ZSET called test tree.

The strategy used for the selection of the test tree is the
same proposed by Jöbstl et al. [26], which is similar to the
strategy of the TGV tool [27]. The idea is to select one
reachable Accept state and perform a backward traversal to
the root ZSES. Finally, a forward traversal is performed in
order to extend the selected path to a test tree by adding
missing inputs that are allowed by the specification. These
missing inputs are possible outputs of the SUT and they are
important to avoid fail verdicts on outputs allowed by the
specification. In this case, the verdict is Inconclusive. Note
that the forward traversal ensures the controllability of the
generated test tree (i.e. test cases do not have the choice
between inputs and outputs, or between several outputs).

The test tree from the ZSET in Figure 4 is the same ZSET
since there is only one path leading to an Accept state and
the addition of missing inputs leads to the whole ZSET.

C. Test Tree Transformation

The last step of the test case generation process consists
in translating the selected test tree TT = 〈S,SA, η0, T 〉 into
a test case TIOSTS TC = 〈V, P,Θ, L, l0,Σ, C, T 〉.

The data of TC (i.e. V ∪ P) is defined by symbolic
values of ZSET. As in [26], the symbolic values are con-
sidered as variables and parameters of the test case. Let
η0 = 〈l0, π0, ϕ0, Z0〉 be the initial state of ZSET, then the
initial condition of TC is π0, the set of locations is S, the
initial location is η0, the alphabet is

⋃
〈a,µsa,ϕsa〉∈SA a, and

the set of clocks is the same as the synchronous product
SP , that is, CSP.

All transitions 〈η, sa, η′〉 ∈ T of ZSET are analysed. Each
transition of ZSET leads to the creation of a new transition
〈l, a,G,A, y, l′〉 ∈ T in the test case. Thus, the source
location is η, the action of the new transition is the action of
sa = 〈a, µsa, ϕsa〉 with parameters of µsa, the conjunction
of the path condition of η′ with clock guards associated with
a in SP is the guard, the assignments are defined based on
clock resets associated with a in SP, the deadline is the same
as the one associated with a in SP, and the target location
is η′.

Figure 5 presents the test case obtained from the ZSET
of Figure 4. It starts by performing a withdrawal transaction
and resetting the clock to zero. Then it expects to receive
the money. If the expected money is dispensed in at most 10
time units, the verdict is Pass, i.e., the implementation is in
conformance with the specification and the test purpose. If
the ATM system indicates insufficient funds in at most 2 time
units, the verdict is Inconclusive (i.e. the implementation
conforms to the specification but the desired behaviour was
not observed). Finally, if either an unspecified input is
observed or a time requirement is not met, the verdict is
Fail.

Figure 5. Test Case Obtained from the ZSET of Figure 4

VI. PROPERTIES OF THE TEST CASES

This section comments on properties of the test cases
generated by the process presented in Section V. The
generated test cases are considered as a mechanism for
guiding the execution of the implementation. Thus, the con-
formance checking is performed in an offline way. Firstly,
the implementation is executed, guided by test cases, and
all information needed to check the conformance (e.g., input
actions, responses, and time) are logged into a file. This is
important in real-time environments to reduce the number
of processes and consequently avoid introduction of noise
in the results.

The logged information is an observable trace (defined
in Subsection III-B). For the ATM system example, an ob-
servable trace of a scenario where a withdrawal transaction
is successfully done in 5 time units could be represented by
σ = 0 Withdrawal?(100) 5 DispenseCash!(100). Moreover,
it is not difficult to see that σ is a TIOLTS.

Let [[TC]] = 〈S, S0, Act, T 〉 be the TIOLTS semantics
of the test case TC = 〈V, P,Θ, L, l0,Σ, C, T 〉. Thus,
an observable trace of I can be checked with respect
to the test case through the TIOLTS parallel composi-
tion defined by Krichen and Tripakis [4]. In this case,
each trace σ ∈ Traces([[TC]] || ObservableTraces(I))
is associated with one of the following scenarios: (1) if
all outputs of TC are executed and all inputs are ob-
served on time, then the resulting verdict is Pass, that is,
verdict(σ) = Pass ∆= S0 after σ ⊆ Pass; (2) if, at any
moment, any unspecified input is observed by the test case
or some time requirement is not met, the conformance
checking is stopped and the resulting verdict is Fail, that
is, verdict(σ) = Fail ∆= S0 after σ ⊆ Fail; (3) we denote
verdict(σ) = Inconclusive ∆= S0 after σ ⊆ Inconclusive for
two situations: if I, at any moment, blocks or spends a lot of
time to emit an output; and if the outputs of I are specified
by S but the behaviour specified by a test purpose is not
exhibited.

Given these scenarios, the rejection of I by a test case
TC is formally defined as follows:

Definition 6.1 (may reject): TC may reject I ∆= ∃σ ∈
Traces([[TC]] || ObservableTraces(I)) : verdict(σ) = Fail.
�

The following definition formally relates tioco to the
verdicts considering some properties of test cases and test
suites.

Definition 6.2 (Soundness and Exhaustiveness): A test
case TC is sound for S and tioco if ∀I, I tioco S ⇒ ¬(TC
may reject I). A test suite is sound if all its test cases are
sound and it is exhaustive for S and tioco if ∀I, ¬(I
tioco S) ⇒ ∃TC : TC may reject I. Finally, a test suite is
complete if it is both sound and exhaustive. �

Informally, a test suite is sound whether correct imple-
mentations are never rejected. On the other hand, a test
suite is exhaustive if all non-conforming implementations
are rejected. A test suite that can identify all conforming and
non-conforming implementations is called complete. Since a
complete test suite is a very strong requirement for practical
testing, sound test suites are more commonly accepted. In
this context, the test cases generated by our approach have
the properties stated in Theorem 6.1.

Theorem 6.1: For every specification S, all test suites
generated by our approach are sound. Moreover, test gener-
ation can be considered as being exhaustive in the following
sense: for each non-conformant implementation, one can
design a test purpose such that a test case generated from
this test purpose may reject the implementation. �

The proofs of Theorem 6.1 are only discussed here for the
sake of space. For soundness, we need to prove that if a test
case TC may reject I (implementing the specification S),
then ¬(I tioco S). In this case, we only need to prove that
a Fail verdict only occur if I emits an unspecified output or
some time requirement is not met. In our approach, test cases
are generated based on symbolic execution of specifications.
This approach allows to identify all possible traces of a
specification. Thus, the unique case where a Fail verdict
occurs is exactly when I emits an unexpected output or
some time requirements is not satisfied. For exhaustiveness,
we need to prove that for every non-conforming I there is
a test purpose TP and a way of generating a test case TC
from S and TP , such that TC may reject I. Given that ¬(I
tioco S), then there is a trace σ of S such that an output
of I after σ is not allowed by S. In this case, a TP can be
defined based on σ and used to generate test cases where I
may be rejected.

VII. CONCLUDING REMARKS

This paper presents an approach to conformance testing
of real-time systems based on the use of a symbolic model
that abstracts both time and data in order to broadening the
application of conformance testing in this field. It also intro-
duces a conformance testing theory to deal with the model
proposed and describes how test cases can be generated.

A tool is being developed to support the proposed ap-
proach. In order to check the satisfiability of path conditions
and verify state inclusion w.r.t. data we are using the CVC3

SMT Solver3. In this case, our approach is limited to the
types supported by this solver such as Boolean, integer, real,
arrays, records, etc. All operations related to zones used in
Algorithm 1 are provided by UPPAAL DBM Library4. The
same library is used to verify the state inclusion w.r.t. zones.

Furthermore, a test architecture based on the FreeRTOS
environment is being developed [16], [17]. As future work,
we plan to integrate the test case generation tool with this
test architecture in order to provide a complete environment
to generate and execute test cases.

ACKNOWLEDGMENT

This work is part of an international cooperation supported
by the INRIA (Equipe Associée TReaTiES). This work
was supported by the National Institute of Science and
Technology for Software Engineering (INES5), funded by
CNPq, grant 573964/2008-4.

REFERENCES

[1] J. Tretmans, “Testing concurrent systems: A formal ap-
proach,” in CONCUR’99: Proc. of the 10th Int. Conf. on
Concurrency Theory. Springer, 1999, pp. 46–65.

[2] A. Hessel, K. G. Larsen, B. Nielsen, P. Pettersson, and
A. Skou, “Time-optimal real-time test case generation using
UPPAAL,” in FATES’03, ser. LNCS. Springer, 2004, vol.
2931, pp. 114–130.

[3] K. Larsen, M. Mikucionis, and B. Nielsen, “Online testing of
real-time systems using UPPAAL,” in FATES’04, ser. LNCS,
vol. 3395. Springer, 2005, pp. 79–94.

[4] M. Krichen and S. Tripakis, “Conformance testing for real-
time systems,” Form. Methods Syst. Des., vol. 34, no. 3, pp.
238–304, 2009.

[5] S. Li, J. Wang, W. Dong, and Z.-C. Qi, “Property-oriented
testing of real-time systems,” in APSEC’04: Proc. of the
11th Asia-Pacific Software Engineering Conference. IEEE
Computer Society, 2004, pp. 358–365.

[6] N. Bertrand, T. Jéron, A. Stainer, and M. Krichen, “Off-line
test selection with test purposes for non-deterministic timed
automata,” in TACAS 2011, march 2011, to appear.

[7] A. En-Nouaary, R. Dssouli, and F. Khendek, “Timed wp-
method: Testing real-time systems,” IEEE Trans. Softw. Eng.,
vol. 28, no. 11, pp. 1023–1038, 2002.

[8] M. Merayo, M. Núñez, and I. Rodrı́guez, “Extending EFSMs
to specify and test timed systems with action durations and
time-outs,” IEEE Trans. Comput., vol. 57, no. 6, pp. 835–844,
2008.

[9] V. Rusu, L. du Bousquet, and T. Jéron, “An approach to
symbolic test generation,” in IFM’00: Proc. of the Second
Int. Conf. on Integrated Formal Methods. Springer, 2000,
pp. 338–357.

[10] G. Lestiennes and M.-C. Gaudel, “Testing processes from
formal specifications with inputs, outputs and data types,” in
ISSRE’02. IEEE Computer Society, 2002, p. 3.

3http://www.cs.nyu.edu/acsys/cvc3
4http://www.cs.aau.dk/˜adavid/UDBM
5http://www.ines.org.br

[11] B. Jeannet, T. Jéron, V. Rusu, and E. Zinovieva, “Symbolic
test selection based on approximate analysis,” in TACAS’05,
ser. LNCS, vol. 3440, 2005, pp. 349–364.

[12] L. Frantzen, J. Tretmans, and T. Willemse, “A Symbolic
Framework for Model-Based Testing,” in FATES/RV 2006,
ser. LNCS, no. 4262. Springer, 2006, pp. 40–54.

[13] R. Cardell-Oliver, “Conformance tests for real-time systems
with timed automata specifications,” Formal Aspects of Com-
puting, vol. 12, no. 5, pp. 350–371, Dec. 2000.

[14] K. G. Larsen, P. Pettersson, and W. Yi, “UPPAAL in a
nutshell,” Int. J. Softw. Tools Technol. Transfer, vol. 1, no. 1,
pp. 134–152, 1997.

[15] A. Khoumsi, “Complete test graph synthesis for symbolic
real-time systems,” ENTCS, vol. 130, pp. 79–100, 2005.

[16] W. L. Andrade, P. D. L. Machado, E. L. G. Alves, and
D. R. Almeida, “Test case generation of embedded real-time
systems with interruptions for freertos,” in Formal Meth-
ods: Foundations and Applications, ser. LNCS, vol. 5902.
Springer, 2009, pp. 54–69.

[17] A. Q. Macedo, W. L. Andrade, D. R. Almeida, and P. D. L.
Machado, “Automating test case execution for real-time em-
bedded systems,” in ICTSS’10, 2010, pp. 37–42, Short Paper.

[18] The FreeRTOS.org Project, “FreeRTOS,”
http://www.freertos.org.

[19] O. N. Timo, H. Marchand, and A. Rollet, “Automatic test gen-
eration for data-flow reactive systems with time constraints,”
in ICTSS’10, 2010, pp. 25–30, Short Paper.

[20] R. Alur and D. L. Dill, “A theory of timed automata,” Theor.
Comput. Sci., vol. 126, no. 2, pp. 183–235, 1994.

[21] S. Bornot, J. Sifakis, and S. Tripakis, “Modeling urgency in
timed systems,” in Compositionality: The Significant Differ-
ence, ser. LNCS. Springer, 1998, vol. 1536, pp. 264–279.

[22] T. Jéron, H. Marchand, and V. Rusu, “Symbolic determini-
sation of extended automata,” in Proc. of the 4th IFIP Int.
Conf. on Theor. Comput. Sci., ser. IFIP. Springer, 2006, vol.
209, pp. 197–212.

[23] J. C. King, “A new approach to program testing,” in Proc. of
the Int. Conf. on Reliable software. ACM, 1975, pp. 228–
233.

[24] L. A. Clarke, “A system to generate test data and symbolically
execute programs,” IEEE Trans. Softw. Eng., vol. 2, no. 3, pp.
215–222, 1976.

[25] C. Gaston, P. Le Gall, N. Rapin, and A. Touil, “Symbolic
execution techniques for test purpose definition,” in Testing
of Communicating Systems, ser. LNCS. Springer, 2006, vol.
3964, pp. 1–18.

[26] E. Jöbstl, M. Weiglhofer, B. K. Aichernig, and F. Wotawa,
“When BDDs Fail: Conformance Testing with Symbolic
Execution and SMT Solving,” in ICST’10. IEEE Computer
Society, 2010, pp. 479–488.

[27] C. Jard and T. Jéron, “TGV: theory, principles and algorithms:
A tool for the automatic synthesis of conformance test cases
for non-deterministic reactive systems,” Int. J. Softw. Tools
Technol. Transfer, vol. 7, no. 4, pp. 297–315, 2005.

