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Abstract—Needs for mass customization and economies of
scale have pushed engineers to develop Software Product Lines
(SPLs). SPLs are families of products sharing commonalities
and exhibiting differences, built by reusing software assets
abstractly represented by features. Feature models describe the
constraints that link the features and allow the configuration of
tailored software products. Common SPLs involve hundreds,
even thousands of features, leading to billions of possible
software products. As a result, testing a product line is
challenging due to the enormous size of the possible products.
Existing techniques focus on testing based on the product line’s
feature model by selecting a limited set of products to test.
Being created manually or reverse-engineered, feature models
are prone to errors impacting the generated test suites. In this
paper, we examine ability of test suites to detect such errors.
In particular, we propose two mutation operators to derive
erroneous feature models (mutants) from an original feature
model and assess the capability of the generated original test
suite to kill the mutants. Experimentation on real feature
models demonstrate that dissimilar tests suites have a higher
mutant detection ability than similar ones, thus validating the
relevance of similarity-driven product line testing.

Keywords-Mutation, Testing, Feature Models, Software Prod-
uct Lines, Similarity

I. INTRODUCTION

Customer demands and market pressure forces software

engineers to derive a wide range of different products at a

low cost. Software Product Line [1], [2] (SPL) techniques

and tools allow engineering such families of related prod-

ucts. Such techniques offer to build products by reusing and

combining software assets in a systematic way. Some of

these assets appear in all products (commonalities) while

some do not (variabilities). To compactly represent an SPL,

Feature Models (FMs) were introduced [3], each product

being abstractly modeled as a combination of common

and variable features linked to software assets. FMs allow

visualization, reasoning [4] and configuration [5] of tailored

software products. They are also ideal candidates for sup-

porting model-based testing of SPLs [6].

Common SPLs involve hundreds or thousands of features,

leading to complex FMs and billions of possible software

products to configure. For instance, the Linux kernel FM
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has more than 6,000 features [7]. As a consequence, testing

a SPL and the underlying FM is a inherently difficult activity

[8]. Indeed, although testing all the products would be ideal,

it is rarely feasible in practice since the size of the test suites

have to be realistic enough to fit testing budget constraints.

Test engineers are thus seeking for solutions to reduce the

size of their test suites. In addition, checking manually the

validity of the constraints present in the FM is not feasible.

Mutation analysis is a technique which aims at evaluating

the quality of the testing process. Generally applied on pro-

grams, it involves the modification of the original software

artifact into altered versions, called mutants. Each modified

version contains a defect willingly introduced. The tests are

then evaluated on these mutants to establish whether or not

they are able to reveal the introduced problems. Model-

based testing uses a model of the system to perform software

testing. Its use is to guide the testing process. The underlying

idea of this paper is to use the information provided by FMs

to establish a mutation approach. In SPL context, mutants

can be used to either produce or evaluate test cases. It leads

to our first research question:

[RQ1] How mutation analysis can be performed on
model-based software product lines?

Mutation analysis has been applied to various models, but

not on FMs. The use of mutation in literature is twofold.

First, it has been used to generate tests [9], [10]. Second,

it has been used to evaluate other testing approaches [11],

[12]. We focus on the second part. In our context, a test

suite represents a set of software products and a mutant can

be considered as a fault. In model-based testing, it has been

found that dissimilar test suites have a higher fault detection

power than similar ones [13]. This similarity heuristic can be

used to reduce the size of the test suites by removing similar

products. This approach is particularly useful since for SPL,

the number of products to test is usually enormous, with

potentially billions of possible products to test [8]. Moreover,

the benefit of this heuristic has not been thoroughly assessed

in the context of SPL testing. It leads to our second research

question:

[RQ2] Do dissimilar test suites have a higher mutant
detection rate in the context of software product line and
feature model testing?
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To answer RQ1, we introduce a mutation analysis for

SPLs based on FMs. Thus, we produce different erroneous

variants of the original FM by introducing possible defects.

Then, we evaluate test suites generated from the original

FM towards the modified FMs. To answer RQ2, we use

a similarity heuristic [14] to compare two products and

to evaluate the similarity degree of a given test suite. An

experiment conducted on both similar and dissimilar test

suites towards FMs of different size demonstrate the higher

ability of dissimilar test suites to detect the defect embodied

in the modified FMs. Further, the validity of a similarity-

driven prioritization technique [14] is also evaluated.

In brief, the contributions of the present paper are:

• A mutation analysis approach for SPLs based on FMs,

• An experimentation performed on real FMs from small

to large scale ones, which (a) confirm the hypothesis

that dissimilar test suites have a higher mutant detection

rate than similar ones and (b) assess a similarity-driven

prioritization technique.

The remainder of this paper is organized as follows:

Section II and III respectively present the challenges of

SPL testing and introduce the concepts underlying the pro-

posed approach. Section IV details the mutation testing and

similarity approaches. Section V reports on the conducted

experiments. Finally, Section VI discusses related work and

Section VII concludes the paper.

II. CHALLENGES OF SOFTWARE PRODUCT LINE

TESTING

Testing a SPL is challenging due to the combinatorial

explosion of the number of products to consider [8]. Indeed,

even relatively small FMs might allow configuring billions

of possible products. For instance, the FM of a video

player [15] of less than 200 features allows deriving around

4.5 × 1013 different variants of this player. In that context,

testing all the possible products is infeasible since in a real

world industrial environment, the resources are limited. It

thus becomes necessary to reduce the number of products

to test to a reasonable value while trying to maximize the

level of confidence in the products that are tested.

Mutation analysis has been applied effectively on different

kind of models, e.g. [16], [17], [18]. However, in the context

of SPLs, it has not yet been introduced. FMs are the standard

models used for describing and testing a SPL [3]. Hence, we

apply mutation on the constraints embodied in a FM. Doing

so enables targeting at possible errors contained in inherent

constraints of a product line as modeled by FMs. In other

words, mutation analysis simulates possible defects in the

logic constraints of the FM representing the SPL.

Scalability forms an open issue for testing large SPLs

[8]. Recently, similarity was shown to be a simple, scalable

and effective approach, capable of both reducing the number

of products to test and to prioritize them [14]. The idea

introduced in this paper is to use mutation testing as a way

to assess the similarity method [13], [14]. Since mutants

represent possible defects of the model, they can be used

to evaluate the quality of the similarity-driven selected tests.

The benefit of this practice is that it becomes possible to

measure the appropriateness of the generated products at the

model level. Additionally, the usefulness of the similarity-

driven prioritization can also be assessed.

III. BACKGROUND

A. Feature Models (FMs)

Feature Models (FMs) represent the features and con-

straints between the features of the product line. A feature

represent an abstraction of a software asset, like a func-

tionality. FMs allow constructing tailored software products

by selecting the features to be present in the final prod-

ucts. A FM is generally represented by a Feature Diagram

(FD), which graphically represents the hierarchy and the

constraints linking the features or by a propositional formula,

which includes all the constraints linking the features and

translates the graphical representation of the diagram into

propositional logic.

Figure 1 illustrates an example of a FD with 10 features

[4]. It represents the different features and constraints that

hold among them. The translation of a FM to logic [5] allows

ensuring the configuration semantic is preserved. Indeed,

the formula of a FM defines the valid configurations1, i.e.

configurations which fulfill the constraints of the FM. In the

following, we will refer to configurations as products.

Definition: A product is said to be valid if it satisfies the

boolean formula of the FM, and invalid if the product does

not satisfy the formula of the FM.

The formula of a FM can be expressed in Conjunctive

Normal Form (CNF), i.e. with a conjunction of n clauses

C1, ..., Cn, where a clause is a disjunction of m literals:

FM =
n∧

i=1

Ci.

1A configuration represents the selected and unselected features of the
product.

Figure 1. A Simple Feature Diagram of a Mobile Phone Product Line
[4].
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As a result, a clause represent a constraint that has to

be satisfied by a given product. A literal represent either a

selected or an unselected feature. Thus, the general form of

a clause Ci is:

Ci =
m∨
j=1

fj , where fj is a feature or its negation.

For instance, the boolean formula in CNF of the mobile

phone product line depicted by Figure 1 is:

FM = (mobile phone) ∧ (¬calls ∨mobile phone)

∧ (¬mobile phone ∨ calls) ∧ (¬gps ∨mobile phone)

∧ (¬screen ∨mobile phone)

∧ (¬mobile phone ∨ screen)

∧ (¬media ∨mobile phone) ∧ (¬basic ∨ screen)

∧ (¬color ∨ screen) ∧ (¬high resolution ∨ screen)

∧ (¬screen ∨ basic ∨ color ∨ high resolution)

∧ (¬basic ∨ ¬color) ∧ (¬basic ∨ ¬high resolution)

∧ (¬color ∨ ¬high resolution)

∧ (¬camera ∨media) ∧ (¬mp3 ∨media)

∧ (¬media ∨ camera ∨mp3) ∧ (¬camera ∨ ¬mp3)

∧ (¬gps ∨ basic) ∧ (¬basic ∨ gps)

∧ (¬camera ∨ high resolution).

It contains 21 clauses represented here between brackets.

A valid assignment of the variables of this formula repre-

sents a valid product that can be derived from the FM. For

instance, the product

P = mobile phone, calls,¬gps, screen,media,

¬basic, color,¬high resolution,¬camera,mp3

is valid since it satisfies the formula of the FM. This

product has 6 features selected and 4 features not selected.

B. Mutation Testing and Analyis

Mutation analysis forms a powerful technique with var-

ious applications like software testing [19], [16] and de-

bugging [20]. It is applied by creating altered (mutant)

versions of the various programs artifacts like source code,

specification models, etc. [19], [16]. The main idea behind

this approach is to evaluate the power of test cases to reveal

behavior differences between the original (unaltered) and

the mutated (altered) artifact versions. The mutated versions

represent possible defects of the artifact under test and

they are produced based on a set of well defined rules

called mutant operators [16]. Mutant operators are defined

on “syntactic descriptions to make syntactic changes to the

syntax or objects developed from the syntax” [16]. The

process of introducing mutants is called mutation analysis.

The ability of the utilized test cases to reveal the introduced

mutants is examined in order to use this approach for testing

purposes (mutation testing). If a mutant can be detected by

a test, the mutant is called killed. Otherwise, it is called live.

Therefore, measuring the ratio of the killed mutants to the

totally introduced ones results in a quality measure of the

testing process. This measure is called mutation score and

demonstrates the ability of the tests to detect errors.

In the context of this paper, mutants are produced by

applying a set of mutant operators to the original FM. The

test evaluation is performed by checking whether the tests

satisfy the boolean formula of the modified FMs, i.e. whether

the formula is evaluated to true. Since the examined tests

are produced based on the original FM, they always satisfy

their respective boolean formulas. Consequently, a mutant

is said to be killed if its formula is not satisfied, i.e. if the

formula is evaluated to false.

C. Similarity

Similarity is an heuristic which is used here to compare

valid software products (i.e. the test cases) and to evaluate

the similarity degree of a given test suite. Previous work

on model-based testing, such as [13], [21] have shown that

dissimilar test suites bestow a higher fault detection power

than similar ones. The experiment’s results presented in

this paper (see Section V) show that dissimilar test suites

kill more mutants than similar ones. Similarity involves the

definition of a distance metric d between any two products

Pi and Pi, where 1 ≤ i, j ≤ n. This metric is used to

evaluate the degree of similarity between two given products:

the higher the resulting distance is, more different the two

products are.

IV. APPROACH

A. Mutation Analysis for Software Product Lines Based on
Feature Models

In this paper, we introduce a mutation testing approach

for SPLs based on FMs. The approach works as follows.

From a FM represented as a boolean formula, we produce

several erroneous versions of this model by applying mutant

operators on the clauses of the formula. These erroneous

versions of the original FM are the mutants. Then, using

a SAT solver [22], we generate products from the original

FM and we check their validity towards the mutants. This

evaluation is performed by checking whether the generated

products satisfy or not the boolean formula of the mutants.

This process allows evaluating the quality of the test suite

through the computation of the mutation score. The approach

is depicted by Figure 2.

We propose two mutation operators which perform at the

clause level of the boolean formula of the FM. These two

operators are summarized in Table I. The first operator takes

a clause Ci and randomly change a literal of this clause

into its negation. As a result, this operator alters an existing
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Figure 2. Mutation Analysis Approach.

clause of the FM formula. The second operator aims at

creating two clauses from a given one by replacing one

of the disjunction operator in this clause by a conjunction

operator. Thus, this second operator creates two clauses from

an existing one, increasing the total number of clauses of the

boolean formula by one.

B. Test Suite Generation

In our context, a test represents one valid product that

can be configured from a FM. As a result, a test suite is

composed of the products to test. Usually, the number of

products that can be generated from a FM explodes with the

number of features, leading quickly to billions of possible

products to test, even for FM with less than 200 features

(see Table II).

We use a SAT solver [22] to generate products randomly

from the space of all the valid products. The random gen-

eration of products is performed via the method described

in [14]. Products randomly generated were found to be

dissimilar due to the large size of the search space. Besides,

to generate similar products, one product is randomly se-

lected from the search space of all the valid products. Then,

adjacent products to the randomly selected one are retrieved.

These are products sharing many selected or unselected

features in common. Section IV-C1 gives more details about

similar and dissimilar products.

C. Evaluation of the Quality of the Test Suite

Here, we try to link the mutation score of the examined

test suites with the quality of the test suite in terms of

dissimilarity between the products. To this end, we first

present a similarity-based distance between two products and

a prioritization technique which makes use of this distance

to order the products [14].
1) A Similarity-based Distance: We consider products

represented as a set of selected and unselected features. In

this context, one product is represented as a set of n features

of a FM as P = {±f1, ...,±fn}, where +fi indicates

a feature which is selected by this product, and −fi an

unselected one. The distance d between two products is

given by [14]:

d :
P × P −→ [0, 1.0]

(Pi, Pj) �−→ 1− #Pi ∩ Pj

#Pi ∪ Pj
, where Pi, Pj ∈ P.

The resulting distance varies between 0 and 1. More

particularly, a distance equal to 1 indicates that the two

considered products are completely different. A distance

equals to 0 denotes that the two products are the same

(redundant). It is noted that an unselected feature is also

an element of the set representing a product.
2) A Similarity-driven Prioritization: Here, we use the

above-mentioned distance d to prioritize a test suite S of m
products [14]. The objective is to order the products such as

the first products selected are the most distant the one from

the others. Formally, the prioritization is defined as [23]:
Given: a set of products, S, the set of all the permutations

of S, PS and a function f from PS to the real numbers,

f : PS −→ R+.
Problem: finding S′ ∈ PS such as (∀S′′ ∈ PS | S′′ �=

S′)[f(S′) ≥ f(S′′)]. In this context, f is the dissimilar-

ity achieved by S. The experimental study (see Section

V) demonstrates the correlation between the dissimilarity

between products and the mutation score.
The approach used in this paper is presented in Algorithm

1 [14]. Informally, this prioritization approach selects at each

step the product which is the most distant to all the products

already selected during the previous steps. To this end, the

two products belonging to S and sharing the highest distance

are first added to L (lines 4 to 7). These two products are

then removed from S (line 8). The next step consists in

adding to L and removing from S the product sharing the

maximum distance to all the products already added to L
(lines 9 to 14): for each product of S, we sum the individual

distances with the other products of L, thus giving a value

for the set. Then the maximum is obtained by comparing

these set values (line 11). This process is repeated until S
is empty.

Table I
MUTATION OPERATORS FOR FEATURE MODELS

Input Applies on Result

A clause: Ci = f1 ∨ ... ∨ fk ∨ ... ∨ fm a literal of the clause: fk, k ∈ [1,m] A modified clause: C′
i = f1 ∨ ... ∨ ¬fk ∨ ... ∨ fm

A clause: Ci = f1 ∨ ... ∨ fk ∨ ... ∨ fm a disjunction operator in the clause 2 clauses: C′
i = f1 ∨ ... ∨ fk and C′′

i = fk+1 ∨ ... ∨ fm
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Algorithm 1 Similarity-driven Prioritization(S)

1: input: S = {P1, ..., Pm} � Unordered set of m products

2: output: L � Prioritized list of m products

3: L← []
4: Select Pi, Pj from S where max (d(Pi, Pj))
5: � Take the first ones in case of equality

6: L.add(Pi)
7: L.add(Pj)
8: S ← S \ {Pi, Pj}
9: while #S > 0 do

10: s← size(L)

11: Select Pi ∈ S where max
(∑s

j=1 d(Pi, L.get(j)
)

12: � Take the first one in case of equality

13: L.add(Pi)
14: S ← S \ {Pi}
15: end while
16: return L

V. EXPERIMENTS

In this section, the mutation testing approach of FMs and

the evaluation of the quality of the generated test suites are

assessed. The experimental study employs 12 real FMs from

two common repositories [15], [24]. These FMs are recorded

in Table II. It presents, for each FM, the number of features

it contains and the total number of products that can be

configured from the model.

A. Evaluation of The Mutation Score Depending on the Type
of Tests

The first experiment aims at evaluating the impact of the

quality of the test suite on the mutation score. In other words,

the objective is to evaluate whether dissimilar test suites kill

more mutants than similar ones.

1) Setup: We generated 100 mutants for each of the 12

FMs used in this case study. The chance to produce a mutant

with one of the two mutation operators was set to 0.5. We

generated three type of test suites: test suites containing only

dissimilar products, test suites containing half similar and

dissimilar products, and test suites containing only similar

products. Different size of tests suites were generated for

each of these types: test suites of 2, 10 and 50 products. We

evaluated the test suites towards the 100 mutants to compute

the mutation score. The generation of the test suites and

the evaluation of the mutation score has been repeated 100

times.

2) Results: The results are recorded in Table III. It

presents, for each FM, the average, minimum and maximum

mutation score achieved for the different size and types

of test suites. Following this table, one may observe that

the mutation score for the test suites of dissimilar products

is higher than the tests suites, containing both similar and

dissimilar products, and the latter is higher than similar test

suites. In some cases, like for the Linux kernel 2.6.28.6 FM

with test suites of 50 products, the mutation score achieved

by dissimilar test suites is more than three time bigger than

the mutation score reached by similar test suites.

To evaluate whether these differences are statistically

significant, we followed the guidelines suggested by Arcuri

and Briand in [25] by performing a Mann-Whitney U Test. It

is a non-parametric statistical hypothesis test for assessing

whether one of two samples of independent observations

tends to have larger values than the other. We obtain from

this test a probability called p-value which represents the

probability that the two samples are equal. It is conventional

in statistics to consider that the difference is not significant

if the p-value is higher than the 5% level.

For each size of test suites and for each of the 100

executions, we took the mutation score achieved by the

dissimilar and similar test suites for each feature model. We

thus have on the one hand the 12 mutation scores for the

similar test suites, and on the other hand the 12 mutation

scores of the dissimilar test suites. It leads to 100 p-values

corresponding to the number of executions performed. The

results are presented in Figure 3. It represents via a box

plot the distribution of the 100 p-values resulting of the

Mann-Whitney U test between the mutation score achieved

by similar and dissimilar test suites for the 100 executions.

From this figure, it can be observed that the difference is

statistically significant for test suites of 10 and 50 products

since all the p-values are lower to the significance level of

5%.
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Table III
MUTATION SCORE ACHIEVED WITH DIFFERENT TYPES OF TEST SUITES (%).

Number of products 2 10 50

Type of products Dissim. Sim. Dissim. Half Sim./Dissim. Sim. Dissim. Half Sim./Dissim. Sim.

avg 69.50 53.02 82.29 80.09 64.40 84.83 84.44 76.86

Counter Strike Simple FM min 54 31 77 75 45 83 83 63

max 77 71 85 84 75 85 85 84

avg 50.64 35.91 69.26 64.71 52.72 88.67 86 77.07

DS Sample min 46 22 60 56 39 81 76 66

max 58 50 81 75 63 90 90 90

avg 63.59 45.92 81.31 78.99 60.04 83 83 80.05

Electronic Drum min 55 33 75 73 45 83 83 76

max 69 58 83 83 69 83 83 83

avg 78.18 58.83 93.13 91.71 66.49 94 93.86 77.62

Smart Home v2.2 min 62 34 89 85 46 94 93 63

max 90 76 94 94 79 94 94 86

avg 69.16 53.64 82.50 80.70 58.36 84.02 83.64 67.68

Video Player min 31 25 77 57 29 83 77 34

max 81 72 85 84 73 86 85 77

avg 68.69 52.33 83.17 80.24 54.21 84 83.99 58.94

Model Transformation min 60 39 80 66 41 84 83 45

max 74 65 84 84 66 84 84 73

avg 72.66 59.21 83.93 80.40 60.90 88.94 88.32 66.46

Coche Ecologico min 67 49 79 71 47 87 85 55

max 78 68 88 86 69 89 89 74

avg 59.58 45.13 76.45 72.68 47.47 82.50 80.95 56.48

Printers min 38 21 72 60 31 80 77 38

max 70 60 81 77 63 84 83 66

avg 66.27 48.33 86.42 82.80 49.09 89.23 88.70 54.18

Electronic Shopping min 55 38 80 76 38 88 85 40

max 77 60 90 89 63 90 90 67

avg 60.35 48.32 77.83 73.22 48.41 83.49 81.13 49.64

eCos 3.0 i386pc min 49 38 74 65 38 77 76 40

max 68 65 86 83 56 87 87 57

avg 26.82 18.62 40.91 36.55 18.89 46.89 45.28 19.14

FreeBSD kernel 8.0.0 min 10 5 32 25 5 45 40 7

max 37 32 46 43 29 48 48 32

avg 10.14 7.14 15.72 13.97 7.40 23.21 21.40 7.29

Linux kernel 2.6.28.6 min 7 3 11 10 4 14 14 4

max 17 16 24 22 16 35 34 10

B. Evaluation of the Mutation Score Towards the Similarity-
driven Prioritization

Here, the objective is to assess whether the similarity-

driven prioritization [14] is effective. In other words, we

want to evaluate whether k products selected according to

the prioritization technique presented in Section IV kill more

mutants than k products randomly prioritized.

1) Setup: For each FM, we generated tests suites of 100

products containing both similar and dissimilar products.

We executed the similarity-driven prioritization technique

to prioritize each test suite. Then, we applied 100 times

a random prioritization of the products in order establish

a random ordering of them. Finally, for each number of

k products selected between 0 and 100, we evaluated the

mutation score achieved with these k products.

To compare the prioritization approaches, the area under

curve is evaluated [14], [26]. This area is the numerical

approximation of the integral of the coverage curve and is
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Figure 3. Distribution of the 100 p-values Resulting of the Mann-Whitney
U Test between the Mutation Score Achieved by Similar and Dissimilar Test
Suites for the 100 Executions.

computed using the trapezoidal rule:
∫ b

a

g(x)dx ≈ (b− a)
g(a) + g(b)

2
.

Thus, for each prioritization method, if cov(x) denotes the

mutation score achieved with the x-th product, then the area

value is given by:

99∑
i=1

∫ i+1

i

cov(x)dx =
99∑
i=1

cov(i) + cov(i+ 1)

2
.

A higher area under curve value expresses a more effective

prioritization.

2) Results: Table IV presents the area under curve for

the similarity and random prioritizations for each FM. From

this table, one can see that the similarity-driven technique

bestow a higher area under curve value than the random

one, fact which demonstrates its effectiveness. Indeed, in

Figure 4. Mutation Score Achieved for the Prioritization Techniques
Averaged on the 12 FMs. The Random Technique Is the Average of 100
Executions per FM.

any cases, the similarity-driven prioritization achieves the

highest area under curve value. Figure 4 depicts the curve

of the mutation score achieved for different number of

products selected, averaged on the 12 FMs. This figure also

shows the benefit of the similarity-driven prioritization. For

instance, a mutation score of around 80% can be achieved

with the similarity-driven prioritization with only around 5

products while the random one requires around 20 products.

In addition, only around 30 similarity prioritized products

are needed to achieve the maximum score of around 85%

where the random prioritization requires 100 products.

To evaluate whether the differences between the

similarity-driven prioritization technique and the random

one are significant, we performed a Mann-Whitney U Test.

For each FM, we compared the results of the similarity

Table IV
AREA UNDER CURVE OBSERVED FOR THE TWO PRIORITIZATION TECHNIQUES.
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Random prioritization (avg) 8,187 8,118.5 331,776 9,175 8,142.5 8,183 8,514 7,802 8,535.0 7,7728 4,239.5 1,883
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Figure 5. Distribution of the 100 p-values Resulting of the Mann-Whitney
U Test between the Mutation Score Achieved by Products Prioritized with
the Similarity Technique and the 100 Random Prioritization.

prioritzation with each of the 100 random executions. It thus

leads to 100 p-values per FM, which are represented with

box plot in Figure 5. From this figure, one can see that the

results are not significantly significant for the small FMs.

One explanation is that only a small number of products,

e.g. 5 or 10 allows killing most of the mutants, and thus

the remaining products don’t kill any new mutants, leading

to two samples which are almost the same. However, for

the largest FMs, the difference is significant, with median

values greatly below the significance level of 5%.

C. RQ1 and RQ2

The mutation testing approach proposed in this paper

aims at evaluating the quality of the tests. We produced 100

erroneous FMs and we evaluated the fault detection power

of different type of test suites generated from the correct

FM. The approach uses mutation operators which perform

on the boolean formula of the FM by altering clauses. The

results obtained show that the tests are able to kill some

mutants, which makes the approach interesting for testing

FMs.

The impact of dissimilar and similar test suites on the

mutation score is clear. The results obtained in this paper

show that dissimilar test suites bestow a higher mutant

detection rate than similar ones. Indeed, both the evaluation

of the mutation score depending on the type of tests and

the similarity-driven prioritization showed that dissimilar

products kill more mutants than similar ones. In addition,

we observed a significant statistical difference between the

mutation score achieved by the different type of test suites,

fact which confirm the similarity hypothesis.

D. Threats to Validity

First, there is an external validity threat. Indeed, we

cannot ensure that the mutation analysis and prioritization

approaches will output analogous results on different sets of

FMs, e.g. larger or more constrained. To reduce this threat,

we used 12 FMs of different sizes, from 24 to almost 7,000

features. Each of these FM bestow a different number and

complexity regarding their constraints.

Besides, an internal validity threat could be due to po-

tential errors in our implementation which could affect the

presented results. To overcome these threats, we divided the

implementation into sub stages. This practice allowed having

a better control on each of the steps composing the proposed

approaches. Besides, to avoid any risk due to random effects

like coincidental selection of mutants or tests, we repeated

the experiments 100 times.

Finally, whether the defects introduced in the mutants

reflects real faults form a construct validity threat. Mutation

has proven to be effective and the mutation operators used

performs on the logical constraints of the feature model.

These constraints linking the features represent a potential

source of errors in the model’s construction stage.

VI. RELATED WORK

Generally, the application of mutation testing and analysis

to test specifications or models has been widely used [19].

For instance, Li et al. applied mutation analysis on Finite

State Machines [17]. Other models include Petri nets [18]

or security policies metamodels [27]. In this paper, we focus

on FMs, the boolean model of SPLs.

With respect to mutation, several work are related to

the present one. In [28], [29], Kaminski et al. use a logic

mutation approach to generate only subsuming higher order

logic mutants. This approach works in the context of logic-

based testing which aims at designing tests depending on

logical expressions. In this paper, mutation operators are

applied on the logic representing the FM. A similar approach

is used in [30] to fix the formula of re-engineered FMs. In

[11], Andrew et al. use mutation analysis to create mutants.

They show that generated mutants can be used to predict

the detection effectiveness of real fault. They investigate the

relative cost and effectiveness of different testing coverage

criteria. Here, we do not focus on whether or not the

generated mutants are representative of real defects. Finally,

Gargantini and Fraser propose a method that generate tests

for the possible faults of boolean expressions [31]. Here,
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we do not focus on test generation. We alter the boolean

formula representing the FM.

In the context of similarity and model-based testing,

Cartaxo et al. [32], [21] present a strategy for automatic

test case selection based on the use of a similarity function.

Labeled transition systems are the model from which test

cases are generated. Hemmati et al. [33], [13] investigates

and compares possible similarity functions that can be used

for test cases selection in the context of state machine

testing. The underlying model are UML state machines. In

[14], Henard et al. use similarity to generate and prioritize

t-wise test suites in the context of SPLs. The difference with

this paper is that here similarity is used to assess the quality

of the tests in terms of mutation score. Similarity is only

used to compare two tests and is not used as a guide to

generate the tests beforehand. Here, we generate the tests

from the underlying FM using a SAT solver.

Most of the work on SPL testing was focused on providing

scalable and efficient test generation techniques but less

attention has been devoted to the evaluation of the bug

detection ability of generated test suites, motivating this

research. In [34], Steffens et al. provide an industrial account

on the actual detection ability of t-wise techniques, showing

that they actually detect bugs. Johansen et al. [35] applied

such techniques on the Eclipse IDE and exhibited some

interaction problems. Both did not consider issues occurring

in the FM itself. Ensan et al. [36] developed an fault

injection tool which associate errors to construct of the

FM such as individual features, groups or constraints. This

fault injection tool aims at simulating actual issues found in

practice. To the best of our knowledge, our approach is the

first to evaluate the ability of dissimilar test suites to detect

FMs errors.

VII. CONCLUSION AND FUTURE WORK

SPLs testing is difficult due to the large number of

products that can be configured, number which can reach

billions of billions with moderate size FMs. In this paper,

we presented a mutation analysis approach for software

product lines based on feature models. To the best of our

knowledge, it is the first mutation analysis approach applied

in the context of software product lines. In addition, this

approach has been evaluated towards similar and dissimilar

test suites to evaluate whether dissimilar test suites bestow a

higher mutant detection rate than similar ones. The benefit of

dissimilar test suite is that they allow to drastically decrease

the number of products to test.

Our experiments, performed on 12 real feature models of

different size demonstrate the effectiveness of the approach.

In particular, the higher ability of dissimilar test suites to kill

mutants has been proven with both the mutation score and

prioritization evaluations. Indeed, dissimilar test suites are in

some case able to kill two or three times more mutants than

similar products. The prioritization results emphasized the

benefit of this heuristic, showing that testing first dissimilar

products rather than similar ones allow killing more mutants.

In future, further experiments based on additional and of

various sizes FMs and mutant operators are scheduled. This

will give more confidence on the findings of the present

paper. We also plan to use mutation analysis as a guide

towards generating test suites. By doing so, the testing

process will be improved since the utilized tests will be

capable of killing all the introduced mutants. Finally, an

empirical comparison between the similarity-based and other

approaches, e.g. t-wise [14] is also planned.
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