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Abstract—In the context of software testing, generating com- ~ Random test generation techniques — initially proposed
plex data inputs is frequently performed using a grammar-based in [12], [13] — are frequently used for practical reasons, as
specification. For combinatorial reasons, an exhaustive geration in [14], [15], [1]. Combining random generation and grammar

of the data — of a given size — is practically impossible, and S . ‘ \ )
most approaches are either based on random techniques or on based testing is explored in [16]. [17]. [18]. [19]. [20].1]2

coverage criteria. In this paper, we show how to combine thes Without exploiting any coverage criteria, or using an ieptc
two techniques by biasing the random generation in order to random walk as in[[22].
optimise the probability of satisfying a coverage criteria.

C. Layout
Keywords-Random testing, Grammar-based testing. y. . . . .
Section[l presents the notions and notations used in this
. INTRODUCTION paper. Sectiofll explains how to optimise random testmg t
A. Motivation satisfy a given coverage criterion. The theoretical cbotions

. . . . are provided in Sectiof IV, which shows how to use this
Producing trusted software is a central issue in software P! - .
: ; : : ) echnique to optimise the coverage of non-terminal symbols
engineering. Testing remains an inescapable step to ensure : ; . .
. . o iN d grammar-based testing context. An illustrating exanigpl
software quality. In reaction to the limitations of manual, = ooed in Sectiof]V. Finally, SectisilVl concludes
testing, recent years have seen a rise in the researchsintere P Y

for systematic testing frameworks grounded in theory. Ramd Il. FORMAL BACKGROUND

testing is a natural approach, empirically known to dete@l context-free Grammars and Random Generation
Lneina)\/vil:)llr}?ss :;nbnuoqtsb:ogrji\:qeurét?llydgls?gs)r}h Ict)\r/:/;r\?vg?bllcl%n_ln this paper, the cardinality of a finite s&tis denotedS].
' a) Context-free Grammars: A context-free grammar is

versely, non-random testing tends to focus on a few edgetupleG — (5,T, So, R), whereX andT are disjoint finite

cases of partlcglar Interest to _the tester, _at the expen_gdi OfaIphabetsSo € T' is the initial symbol, andr is a finite subset
others. Indeed, it can cover various behaviours, but theioe . .
s : .of I'x (XUI')*. The elements af are callederminal symbals,
depends on tester’s priorities and, in general, each betavi .
and the elements dof are callednon-terminal symbols. An

is tested in a unique way. :
In [1], it is explained how to bias a uniform random testingelement(X’ u) of R is calleda rule of the grammar and
s frequently denoted — w. Aword w € (X UT)* is a

approach using constraints given by a coverage criterion, I' "~ B . .
order to optimise the probability of satisfying this criter. SUC(;"": of v & E(E ; B)F)ffr;hz %ag?haﬁéz th_ere ZX'St
The technique is developed for path generation in a graéﬁid UL an(dS e e RA com Ietevde:ivgtziozrﬁ
The contribution of the present paper consists in enrictiirgy W= vovz2n Ao 7 U2 ' P

: o . of the grammali; is a finite sequencey, . . ., x; of words of
approach with a coverage criterion on non-terminal symbbls

: : UT)* such thatry = Sp, xz;, € ¥* and for everyi, z,4; is
the grammar, allowing the user to apply it to rammar-basé% 0 = 20, Tk X VS il
9 g PPy 9 a successor of;. A derivation tree of G is a finite tree whose

testing. internal nodes are labelled by letters Iof whose leaves are

B. Related Work labelled by elements of U {¢}, whose root is labelled by,
Grammar-based testing is frequently used for generatiffd satisfying: if a node is labelled by € I" and its children

structured inputs, as ii_J[2] for parser testing or in [3] t@re labelled byxy, ..., s (in this order), then either; = ¢

test refactoring engines (program transformation softjvarandk = 1, or all thea;’s are in[UY and (X, ay ... ) € R.
Systematic combinatorial approaches [4] lead to a huge nuffie size of a derivation tree is given by the number of tree
ber of sequences, and symbolic approaches are frequeR@ges.

preferred [[5], [[6], [17]. In [8], a generic tool for generayin gyample 1 — Context-free grammar. Let us consider the

test data from grammars has been proposed. This tool deeSnmar ¢ — ({a,b},{S,T},S,R), with R = {S —
not provide any random feature but is based on rule coverage R e

algorithms and techniques, as definedlin [2], [B]J[101)[11] !Aswy € ©*, this derivation is obviously a left-most derivation.
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Random Generation
Input: G = (3,T, X, R) a context-free gramman, a strictly
positive integer.

Tb,S — aSb,T — £}). The sequence S, aSb, aTbb, abb is a
complete derivation of the grammar. The associated derivation

treeis o .
! Output: a derivation tree of G sizen.
¢ Algorithm:
S <5 <T — € 1. Let{ry,rs,...,r;} be set of the elements & whose

first element isX.

2.1If 27_1 ar, (n ) = 0, then return “Exception”.
Note that there is a bijection between the set of complete 3. pick’; ¢ {1 ., £} with probability Prob(i = j) =

derivations of a grammar and the set of derivation treesisf th oy (n)
grammar. For a context-free gramm@y £, (G) denotes the iian ) _
number of derivation trees @f with n nodes. A derivation tree % Letr; = (X, Z; - Zx), with Z; € S UT.
coversan elementX of I if at least one of its nodes is labelled 2+ R0Ot symbol oft is X. o
by X. For instance, for the tree in Examfile 1, the elemghts 8- Children oft are Zy, ..., Zy. in this order.
andT are covered since they appear in the derivation tree. 7. L?t liv, o vimy ={j 1 Z; €T}
b) Uniform Random Generation: The present issue is, 8. Pick (z1,...,m) € N™ such thatry + ... + zp, =
given a positive integer and a context-free grammar, to cof-— Pr: with probab|I|ty

pute randomly with a uniform distribution a derivation tree H 2 ()

of size n of this grammar. We will briefly explain here Prob(xy = l1,...,Tm =Lly) = v Mk ANCEd v Kl

how to tackle this problem by using well-known counting ar,(n)

technigues([23]. Notice that more advanced techniquesvallo _ _ _ i

a faster computation, like i [24]. 9. For eachi;, the i;-th sub-tree ofl" is obtained by
As usual, the non-terminals symbols are denoted by capifd"ning theRandom Generationalgorithm on(, T', Z;;, R)

letters. Given a context-free grammar = (X, T, So, R), a and{;.

non-terminal symboK in I, and a positive integer the num- 10. Return +.

ber of derivation trees of sizegenerated by>,T', X, R) is
denoted byx(7), i.e., using the corresponding lowercase letter.
Given a positive integen, for each symbolS € T, the
sequence of positive integesél), ..., s(k), ... is introduced.
The recursive computation of theséi)’s is as follows. For
each strictly positive integek and each ruler = (S, w151
. wpSpwpy1) € R, with w; € ¥* andS; € T, let us set

Fig. 1. Random Generation algorithm

above method. This can be performed in polynomial time.
Afterwards, the random generation is done recursivelygisin
the given algorithm in Fig.]1.

=1 +Z"+1 w;] It is known [23] that this algorithm provides a uniform
_ J=n N generation of derivation trees of sizg i.e. each derivation
ar(k) = Diitinttin=hp, Lj=1 8i(15) i 00 tree occurs with the same probability. Note that an excapsio
ar(k)y=0 if n=0andk # j, raised at Step 2 if there is no element of the given size. For th

example presented before, there is no element of size 3, then
it is impossible to generate a derivation tree of size 3. Runn
It is known [23, Theorem 1.1] that s(k) = the algorithm on this example with = 2, one considers at
> rern(sx (sur)-) ar(k). Step 1 the sef{r;,r2,r3} since all these rules hav& as
Since, by hypothesis, there is no rule of the fof®17) left element. Sincex,,(2) = 0, a,,(2) = 1, s (2) = 1,
in R, with S,7 € T, all i;’s involved in the definition at Step 3 the probability that = 1 is 0, the probability
of 3, are strictly less thark. This way, thes(i)’'s can be thati = 2 is 1/2 and the probability thai = 3 is 1/2. If
recursively computed. Consider for instance the grammar= 2 is picked, the generated tree haS as root symbol
({a,b},{X}, X, {r1,r2,73}) with r, = (X, XX) ro = anda as unique child. Running the algorithm on this example
(X,a) andrz = (X,b). One has,, =1+0=1, 8., =1+ with n = 3 stops at Step 2 since there is no tree of sjze
1 =2, 8, =1+1=2.Thereforez(k) = >_,, ;_, , z(9)z(j) When running the algorithm on this example with= 5, the
if k#2 andz(2) =1+1+3,, ., ; 2(i)z(j) = 2, other- set {ri,ry,r3} is considered at Step 1. Sineg, (5) = 4,
wise. It follows thatz(1) =0, z(2) =2, z(3) = z(1)z(1) = ar,(5) =0, a,,(5) = 0, i = 1 is picked with probability 1.
0, z(4) = z(1)z(2) + z(2)z(1) = 0, =z(5) = z(2)x(2) = 4, Therefore, the tree ha¥ as root symbol, and its two children
etc. The two derivation trees of size 2 a)\feand | . The four are both labelled byX. Therefore, at Step 7, the considered
a by set is{1,2}. At Step 8, one has — 3., =5—1 = 4. The
derivation trees of size 5 are the trees of the foZrmZ where probability thati; = 1 andi, = 3 is 0 sincez(1) = 0.
both Z, and Z, are derivation trees of size 2. b Similarly, the probability that; = 3 andi, = 1 is 0 too.
In order to generate derivation trees of sizeall s(i)’'s, Now the probability that; = 2 andi, = 2 is 1. Afterwards
for S € T' andi < n, have to be computed with thethe algorithm is recursively executed on each child witk 2:

ar(fr)=1 ifn=0.



each of the 4 trees is chosen with probabilifi4. V. COMPUTING px ,, AND px vn

I11. MIXING RANDOM TESTING AND COVERAGE In this sectionG = (%,T, Sy, R) is a context-free grammar.
CRITERIA We denote byE, (G) the set of derivation trees of size of
In a context of functional testing, the strength of randorfr- We respectively denote by, (G) andEx,y,»(G) the set
testing is to quickly provide many different test data, fopf derivation trees of size. of G covering X, and covering
each behaviour of the system. Moreover, these test data hpth X andY” .
independent of the choices of the test designer, and conl-etpx.» be the probability of a randomly generated deriva-
sequently they can catch problem (s)he did not anticipatdn tree of sizex to coverX. Clearly, if £, (G) is empty then

. . . . . 1 E n G
For instance, fuzz testing is particularly relevant fortitgs Px,n = 0 [resp.px y,,» = 0]. Otherwise,px , = %
security requirements [7]. However, random testing carsMifesp.py. vy, = %]

an important behaviour occurring with a very small prob- Therefore, computing the probability defined in Secfioh Il
ability. To exploit the advantages of both random testing needed to solve the linear constraint program — reduces
and deterministic testing, a solution is to combine randof§ the computation of the cardinality of sef8y ,(G) and
generation and coverage criteria. Exyn(Q).

The general schema for this combination, as described
in [1], is the following: considering a random generatio®. Computing |Ex ,,(G)| and |Ex y.n(G)]

algorithm of test data of size and a coverage criterig' To compute|Ex..(G)|, we build a gramma6x such that

(each element of” is or is not covered by each possibleg () andEx ,(G) are in bijection (and therefore have the
test), the goal is to use the generation algorithmtimes o, .« number of elements).

in order to optimise the probability of covering all element For everyw € (I' U )", [wlo is recursively defined by:
of C. I_:pr each element ¢ C, we denote byp., the lelo = &, [Zw]o = (Z,0)[w]o (with Z € T) and[awl]o = a[wlo
propablhty that a generat(_ed test of sizecoverse. One can (with a € %). Intuitively, [w], is obtained froms by changing
easily check that generatiny test data |ndepend]$ntly @ each letter ofw in T by the corresponding pair with as
provides a probability of covering' of 1 —(1—pmin)™, Where  go.qnd element. For instance, with the grammar of Exafiple 1,
DPmin = II_nneec{peyn}. Thls probability is the way to measure, o hagaSbbT]o = a($S, 0)bb(T, 0). For everyw € ([ US)*,
the q_uahty of the tgstlng approach, relatively @ A better [w]» is defined exactly in the same way, changing)alby 2's.
way 1S .to repeatV times the following procedure: . For everyw € (TUX)*, {w} 2 is defined as the set of words

1) Pick at random an elemeatc C' with a probabilityr., /. (SUT x {1,2})* obtained fromw by replacing occur-

and ) ) , rence of each lettef of I either by(Z, 1) or by (Z, 2), with

2) Generate uniformly a test of sizecoveringe. the restriction that at least one is replaced By1). The letters
This procedure requires to know how to uniformly generaig s» remain unchanged. For instance,«f = aSbT, then
a test of sizen covering a given element, and to choose thfw}1 o = {a(S, 1)b(T,1),a(S,2)b(T, 1),a(S,1)b(T,2)}. No-
probabilitiesw.’s to optimise the probability of covering all tice that if w € 2* then {w}1» = 0 since the constraint is

elements ofC. o _ _ not satisfied.
Following [1], the optimisation requires solving the folle LetGx = (2,T'x{0,1,2}, (So, 1), Rx) whereRy = RoU
ing constraint system: maximigesatisfying RiUR|UR, V\’Iithi T
P <Y comerete forall fel e« Ry ={(Z,0)— [w]o | Z — w € R},
o 7 -R1:{(Z,l)—>w'|Z7éXandEZ—>w€
Zeec Te = 1

R such thatw’ € {w}i2},

wherep, ., is the probability that a randomly generated test , Ry ={(X,1) = [w]o | X = w € R},

of size n covers bothe and f. This linear programming , R, — {(Z,2) > [w]z | Z > we RandZ # X}.
problem can be solved in an efficient way, using simplex-like Intuitively, adding the valu® to a symbol inT’ means that

approaches. if this rule is used, there exists an occurrence’dfat an

In summzlatry,. n (?trQer to .co;n?me lrandom tetstlng;t and L?pper position in the derivation tree. Adding the valu¢o
coverage criterion, 1L 1S required to solve a constraintays symbol inT" means that there is no occurrenceXfat an

and to know 1) how to randomly generate a test of a giv per position, but there exists an occurrenc&ddt this or a

size covering a given element, ,2) how to computeghe's; lower position in the derivation tree. The valdaneans there
and 3) how to compute thg. ,’s. .

The rest of the paper is dedicated to the problem of tf']se no occurrence ofX" appearing in the tree at an upper or
. ) .. lower position.

random generation of execution trees of a grammar, with the

coverage criteriorAll non-terminal symbols. More precisely, Example 2 — Gx. Consder the grammar

given a grammaG = (X,T', Sy, R), the coverage criterion G = ({a,0},{S,7,X},S,R) with R = {S —

beingT, a test of sizen being a derivation tree off of size SS,5 — aT,S — Xb,T — aa, X — TX,X — b}

n, we say thatX € I' is covered by a test if the derivationThe grammar Gx has the set of rules as follows:

tree coversX. {(5,0) —= (S,0)(5,0),(S,00 — a(T,0),(5,0) —



b, (X,1) — (T,0)(X,0)}
a(T,2),(5,2) = (X,2)b,(T,2) — aa}.

Proposition 1 — Bijection. There exists a bijection between
En(Gx) and EXJZ(G)

Exampld 3 illustrates several elements of the followinggpro
Proof: Let ¢ be the function fromT x {0,1,2} U X)*
into (' U X) inductively defined byip(e) = ¢ and p(aw)
ap(w) if a € SUT and p((Z, v)w) = Ze(w) if Z € T
and a € {0,1,2}. Intuitively, ¢ is a projection deleting the
components inf0, 1, 2}.
By construction oGy, if (Z,a) — w is a rule of Gx then
o((Z,a)) = ¢(w) is a rule of G. Therefore, ifzg,...,z
is complete derivation ofGx, then o(xg),...,p(zk) is

/

S/
N

S/ S X/j
0 T D
a/ \a b a/a b

Fig. 2. Derivation tree of7 - Example[3

image byy, a contradiction.

a It follows that ¢ induces an injective function from,, (Gx)

complete derivation ofG. Moreover, the initial symbol of N0 Ex n(G).

Gx is (S,1) and all rules ofRx with a left hand side in

Now let yo,...,yr be complete derivations off whose

(T'\ {X1) x {1} have a right hand side where an element @orresponding tre¢ is in Ex ,(G). We consider the tre¢
I x {1} occurs. Therefore, since; € X%, the only way to 1abelled inI" x {0,1,2} U ¥ which has exactly the same
destroy the componerit is to use a rule with the left handStructure (the same set of positions) thaand such that:

side (X, 1). It follows that the derivation tree associated to « If a node of¢ is labelled by a letter o, then the

o(x0), ..., p(x) coversX.

Consequentlyp induces a function fromE, (Gx) into
Ex . (G). Letzo,...,z; andzy,. .., x}, be complete deriva-
tions of Gx, such thatp(zo), . .., p(zr) = ©(p), - . ., p(z},)-
Assuming thaty, . ..,z # zy, . . . , ), there exists a minimal
indexig such thate;, # ;. Sincexg = (So, 1) = g, 40 > 1.
Thereforer;, 1 = xj,_, exists. Setr;, 1 = vo(Z, a)vy, with

corresponding node iff has the same label.

« If a nodep of ¢ is labelled by a lettel” € T', then the
nodep in ¢’ is labelled by(T, 1) if there is noX on the
path from the root t (excludingp), and if the subtree
rooted inp (including p) contains onep, at least. It is
labelled by(7’,0) if there is at least on& on the path
from the root top. Otherwise, it is labelled byT', 2).

Z eT anda € {0,1,2}. One of the following cases arises: One can check that corresponds to a complete derivation

e If « = 0, then there exis/ — w andZ — w' in R

tree of Gx whose image byy is exactly the complete

such thatz;, = wvo[w|ov: andzj, = vo[w'lov;. Since execution corresponding t6, proving thaty is surjective,

([w]o). But

p(zi,) = p(x7,), it follows thate([w]o)
o([w]o) = w andp([w']y) = w', proving thatz;, = x
a contradiction.

o If =2, then the same proof holds, replacitdy 2.

e If «a =1andZ = X, then, again, the same proof holds

e If a=1andZ # X, then there exis — w andZ —
w’ in R such thatr; = vowv1 andz} = vowavq, With
wy € {w}y2 andwy € {w'} 2. Sincep(x;,) = (),
one hasw = w'. Therefore,w;,wy € {w}; 2. Since
w1 # wa, let j be the first letter ofv; which is different
from the corresponding letter im,. By construction of
{w}1,2, this letter must be i x {1,2} in both w,
and w., for instance(T,51) and (H, 82). Now, since
o((T, 1)) = ¢((H,B=2)), one hasl' = H. Therefore,
without loss of generality we may assume tiigt= 1

which concludes the proof.

the grammar G

Example 3 — lllustration of the proof of Prop. [I. Consider
({a,b},{S,T,X},S,R) with R =
{§ —» 85,5 = aT,S —» Xb,T = aa,X,— T,X — b}
of Example Consider the derivation tree of Ex 19(G)
depicted in Fig. [2, corresponding to the complete derivation
S,85,55S,aTSS, aaaSS, aaaXbS, aaabbS, aaabbXb,
aaabbT X b, aaabbaa X b, aaabbaabb. The associated
derivation in Gx is (S,1),(S,1)(S,1), (S,2)(S,1)(S, 1),
a(T,2)(S,1)(S,1),aaa(S,1)(S, 1), aaa(X,1)b(S,1),
aaabb(S, 1), aaabb(X, 1)b, aaabb(T, 0)(X,0)b, aaabbaa(X, 0)b,
aaabbaabb, whose derivation tree from E19(Gx) is depicted
in Fig. @

Using Propositio ]l and the results described in Se¢tion 1,

and g2 = 2. Consequently,z;, has a prefix of the it is possible to computéEx ,(G)|. If we denote by¢ the
form vo(7T,1): in the derivation tree corresponding tomaximal number of elements &f(with multiplicity) occurring
To, ..., Tk, the subtree rooted in thig’, 1) contains an in a right hand side oy, thenGx hasO(2¢|R|) rules, whose
X (by construction ofR;). Conversely; has a prefix sizes are bounded by the maximal size of the ruleszof
of the formuy (T, 2): in the derivation tree correspondingTherefore if ¢ is reasonable, the computation @ x ,,(G)|

to z(, ..., z}, the subtree rooted in thig’, 2) does not is tractable in practice, even for a quite large valuenofis

contain anyX (by construction ofR,). It follows that mentioned above, the computation|&fy ,,(G)| immediately
the two corresponding derivations cannot have the samevidespx ,. It is also important to point out that x allows



(5,1) In order to optimise the coverage criterion, we have to solve

/ \ the following system while maximising satisfying
(Sa 1) (57 1) PObject,Object,n PMembers,Object,n
/ \ / p S TrObJECt PObject,n + TMembers PMembers,n
. PPair,Object,n PArray,Object,n
(S, 2) (S, 1) ()(7 1) b +7TP(“T PPair,n + ﬂ-ATTu'y PArray,n
PElements,Object,n DPValue,Object,n
/ ‘ ‘ \ ‘ \ +7TElementS ElpElmfler(L)tZ]nt + TV alue V;Val(ibejnt
PObject, Members,n PMembers, Members,n
a (T7 2) (Xa 1) b (T7 O) (Xv O) p< TObject Ob]pot;:[ect; + TMembers M p;[emgimj
PPair,Members,n PArray,Members,n
/ \ ‘ / ‘ +TPair = p;:i” :— +7TArray 4 Pii\fayz
a a b a a b p ewllen s embers,n P Ya ue embers,n
T Bloments PR Mentesi g Pt Mot
. PObject,Pair,n PMembers,Pair,n
Fig. 3. Derivation tree of7 x - Example[B P < TObject PObject,n + Tarembers PMembers,n
PPair,Pair,n PArray,Pair,n
T Pair T Tarray e
) . A PElements,Pair,n Pvalue,Pair,n
the uniform random computation of execution treesz06f a TRBlements —ppcpenten T TV alue —pu o
given size and covering . P < Tobject POZO;AZ:y T embers pM;ﬂbf;Zﬁ:T:y'n
. Slnce EXyX”(G) i = EXyn(G)’ Compuung |EX7X71(G)| i +7TP . DPPair,Array,n +7TA PArray,Array,n
is a direct application of the above techniques. Computing W PPaira TTAY - parray,n
|Ex yn(G)|, with Y # X, can almost be done by a similar +wElement5w + WVazueW
construction: the difference is that the construction efrthles D < Topjoey POMELELEmentam |z PMembers Blementa.n
. — ec . emoers
of the grammal xy, from the grammar~ x, must take into J PObject.n PMembers,n
. - - PPair,Elements,n PArray,Elements,n
account that bothX andY have to appear in the derivation. LT L T e pyAf:ay —
Let GXY = (E, F X {O, 17 2} X {O7 ]:, 2}7 ((SO, 1), 1), RXY) +7TElements PElements,Elements,n + TV alue PValue,Elements,n
where Rxy = Ry U Ry U R} U Ry with: Prlements.n Pvalue,n
) ] P < TObs tpObjcct,Valuc,n + T Members PMembers,Value,n
° RO = {((Z’ Z)’O) — [w]o | (Z’ 7,) — W €& Rx}' - jec PObject,n PMembers,n
o« Ri = {((Z,i),1) »w' | Z # Y and3(Z,i) - w € B L
Rx such thatw’ € {w}1,2}1 NI . PElements,Value,n + TVal DValue,Value,n
o R ={((V,i),1) = [w]o | (Vi) = w € Rx}, e T ——— alue ™ py e
o« Ry = {((Z,’L), 2) — [’LU]Q | (Z, Z) — w € Rx and Z 7£ TObject + Taembers + TPair + T Array + TElements + TValue = 1
Y}.

o N _ Using a slightly modified version of the Hoa tool ([25]),

A proof similar to the one of Propositidn 1 allows showingpe computation of the probabilitiesy , and px y-» for all
that there is a computable bijection betweBn(Gxy) and  x y < T andn = 20 has been performed efficiently (a few
Exy.n(G). Note that the size ofixy is approximativelyl‘ seconds). The system becomes as below, and we have then to
times greater than the size 6f solve it while maximising satisfying

V. EXPERIMENTS %1

p < T Object % + TMembers % + 71'Pair% + T Array 17

The approach has been evaluated on a simplified version of
the grammar of JS(ﬂ\I(for JavaScript Object Notation) — a 19 12 12 .
language independent common format for declaring objects| S TObject T3 T TMembers 13 + TPair 13 + TArray 1

8 12
+T Elements g + TV alue 12

—

qumally, Ie_t us consi_der the grgmm@r: (3,T, Object, R) +¢Elemem5§ + TV alue 12

with ¥ having the eight following element& = {, ,{, : 12 12 12 1
' 17 i i p < Tobject 75 + TMembers 75 + TPair 175 + TArray 17

, }, letter, digit,[,]}. The setl’ of non-terminal symbaisis = "OMect 13 12 12 Y11

composed of the element®©bject”, " Members”, " Pair”, + T Blements 3 + TValue 12

"Array”, "Elements” and "Value”. Finally, the setR
contains the following rules:

8 11
o Object — {} | {Members} +TBlements s + TV alue 13
e Members — Pair | Pair, Members p < WObject% 4 7TMembers% 4 me.r% + WArmy%
o Pair — letter : Value
o Array — [ ]| [Elements]
o Elements — Value | Value, Elements p < TObject 12 + ThMembers 13 + TPair s + TArray 13
o Value — letter | Object | digit | Array

11 11 11 1
p < T Object T3 + TMembers v + Tpair 2 + TArray 17

—

8 8
+TElements g + TV alue 12

=

8 12
+ T Elements B + Tvalue 12

2http://www.json.org/ o L . TObject + TMembers + TPair + T Array
3To provide a more readable specification, the conventiorsisting in
using capital letters for non-terminal symbols is not etyirespected here. +TElements + TValue = 1
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This linear programming problem can be solved in ans] C. Oriat, “Jartege: A tool for random generation of umétsts for
efficient way, using simplex-like approaches. We have used 1ava classes,” irQOSASOQUA, ser. Lecture Notes in Computer Sci-

. . ence, R. Reussner, J. Mayer, J. Stafford, S. Overhage, %eBend
the tool lpsolvél to solve it, and the result is that = 1 P. Schroeder, Eds., vol. 3712. Springer, 2005, pp. 242-256.
if Tobject = 0, Tatembers = 0, Tpair = 0, Tarray = 0, [16] B. McKenzie, “Generating string at random from a cottege gram-
TElements = 1, and myawe = 0. It means that, for this mar,” Univ ersity of Canterbury, Tech. Rep. TR-COSC 10/9997

. | | h imised h Il th Jl?] T. J. Hickey and J. Cohen, “Uniform random generatiorsiings in a
simple example, the optimised approach to cover all the non- context-free language 3AM J. Comput., vol. 12, no. 4, pp. 645-655,

terminals symbols, consists in generating derivationstiesy/- 1983.

ering Elements. Indeed, in this grammarr, the generation oft8] P. Maurer, “The design and implementation of a grambesed data

L . . generator,"Softw., Pract. Exper., vol. 22, no. 3, pp. 223-244, 1992.
a de_r'vat'on tree covering the non-terminal SymEﬁkments [19] P.-C. Héam and C. Nicaud, “Seed: An easy-to-use rangenerator of
provides a tree covering all the other non-terminal symbols  recursive data structures for testing,”li@ST. IEEE Computer Society,

2011, pp. 60-69.

VI. CONCLUSION [20] F. Dadeau, J. Levrey, and P.-C. Héam, “On the use ofotmifrandom

. .. generation of automata for testingzlectr. Notes Theor. Comput. Sci.,

In this paper, we have presented a method for exploiting a o, 253, no. 2, pp. 37-51, 2009.

coverage criterion together with random testing in the erint [21] P.-C. Héam and C. Masson, “A random testing approadtgysushdown

_ ; ; ; ; ; automata,” inTAP, ser. Lecture Notes in Computer Science, M. Gogolla
of grammar-based testing. This automatic method lies in and B. Wolff, Eds. vol. 6706, Springer. 2011, pp. 119-133.

building a grammar and then in resolving a linear constrai[)tg] . Enderlin, F. Dadeau, A. Giorgetti, and F. Bouquet, rABimar-
system, which can be done by adapted tools, even for large based testing using realistic domains in php,”IBST, G. Antoniol,
values. In the future, we plan to extend the approach to otzfée;de A. Bertolino, and Y. Labiche, Eds. IEEE, 2012, pp. 509-518.

L P. Flajolet and R. Sedgewickinalytic Combinatorics.  Cambridge
coverage criteria such as rules coverage, and also to ha University Press, 2008.

attribute grammars with constraints formalising the setinan [24] A. Denise and P. Zimmermann, “Uniform random generaiié decom-
_ posable structures using floating-point arithmetitheor. Comput. Sci.,
of context-free languages. vol. 218, no. 2, pp. 233.248, 1999,
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