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Abstract—In the context of software testing, generating com-
plex data inputs is frequently performed using a grammar-based
specification. For combinatorial reasons, an exhaustive generation
of the data – of a given size – is practically impossible, and
most approaches are either based on random techniques or on
coverage criteria. In this paper, we show how to combine these
two techniques by biasing the random generation in order to
optimise the probability of satisfying a coverage criterion.
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I. I NTRODUCTION

A. Motivation

Producing trusted software is a central issue in software
engineering. Testing remains an inescapable step to ensure
software quality. In reaction to the limitations of manual
testing, recent years have seen a rise in the research interest
for systematic testing frameworks grounded in theory. Random
testing is a natural approach, empirically known to detect
many kinds of bugs. However, by definition, low-probability
behaviours cannot be adequately tested in that way. Con-
versely, non-random testing tends to focus on a few edge
cases of particular interest to the tester, at the expense ofall
others. Indeed, it can cover various behaviours, but their choice
depends on tester’s priorities and, in general, each behaviour
is tested in a unique way.

In [1], it is explained how to bias a uniform random testing
approach using constraints given by a coverage criterion, in
order to optimise the probability of satisfying this criterion.
The technique is developed for path generation in a graph.
The contribution of the present paper consists in enrichingthis
approach with a coverage criterion on non-terminal symbolsof
the grammar, allowing the user to apply it to grammar-based
testing.

B. Related Work

Grammar-based testing is frequently used for generating
structured inputs, as in [2] for parser testing or in [3] to
test refactoring engines (program transformation software).
Systematic combinatorial approaches [4] lead to a huge num-
ber of sequences, and symbolic approaches are frequently
preferred [5], [6], [7]. In [8], a generic tool for generating
test data from grammars has been proposed. This tool does
not provide any random feature but is based on rule coverage
algorithms and techniques, as defined in [2], [9], [10], [11].

Random test generation techniques – initially proposed
in [12], [13] – are frequently used for practical reasons, as
in [14], [15], [1]. Combining random generation and grammar-
based testing is explored in [16], [17], [18], [19], [20], [21],
without exploiting any coverage criteria, or using an isotropic
random walk as in [22].

C. Layout

Section II presents the notions and notations used in this
paper. Section III explains how to optimise random testing to
satisfy a given coverage criterion. The theoretical contributions
are provided in Section IV, which shows how to use this
technique to optimise the coverage of non-terminal symbols
in a grammar-based testing context. An illustrating example is
developed in Section V. Finally, Section VI concludes.

II. FORMAL BACKGROUND

A. Context-free Grammars and Random Generation

In this paper, the cardinality of a finite setS is denoted|S|.
a) Context-free Grammars: A context-free grammar is

a tupleG = (Σ,Γ, S0, R), whereΣ andΓ are disjoint finite
alphabets,S0 ∈ Γ is the initial symbol, andR is a finite subset
of Γ×(Σ∪Γ)∗. The elements ofΣ are calledterminal symbols,
and the elements ofΓ are callednon-terminal symbols. An
element(X,u) of R is called a rule of the grammar and
is frequently denotedX → u. A word w ∈ (Σ ∪ Γ)∗ is a
successor of v ∈ (Σ ∪ Γ)∗ for the grammarG if there exist
v0 ∈ Σ∗, v1, v2 ∈ (Σ ∪ Γ)∗, S ∈ Γ such thatv = v0Sv1
andw = v0v2v1 andS → v2 ∈ R. A complete derivation1

of the grammarG is a finite sequencex0, . . . , xk of words of
(Σ∪Γ)∗ such thatx0 = S0, xk ∈ Σ∗ and for everyi, xi+1 is
a successor ofxi. A derivation tree of G is a finite tree whose
internal nodes are labelled by letters ofΓ, whose leaves are
labelled by elements ofΣ∪{ε}, whose root is labelled byS0

and satisfying: if a node is labelled byX ∈ Γ and its children
are labelled byα1, . . . , αk (in this order), then eitherα1 = ε
andk = 1, or all theαi’s are inΓ∪Σ and(X,α1 . . . αk) ∈ R.
The size of a derivation tree is given by the number of tree
nodes.

Example 1 – Context-free grammar. Let us consider the
grammar G = ({a, b}, {S, T }, S, R), with R = {S →

1As v0 ∈ Σ
∗, this derivation is obviously a left-most derivation.
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Tb, S → aSb, T → ε}). The sequence S, aSb, aT bb, abb is a
complete derivation of the grammar. The associated derivation
tree is

S S

a

b b

T ε

Note that there is a bijection between the set of complete
derivations of a grammar and the set of derivation trees of this
grammar. For a context-free grammarG, En(G) denotes the
number of derivation trees ofG with n nodes. A derivation tree
covers an elementX of Γ if at least one of its nodes is labelled
by X . For instance, for the tree in Example 1, the elementsS
andT are covered since they appear in the derivation tree.

b) Uniform Random Generation: The present issue is,
given a positive integer and a context-free grammar, to com-
pute randomly with a uniform distribution a derivation tree
of size n of this grammar. We will briefly explain here
how to tackle this problem by using well-known counting
techniques [23]. Notice that more advanced techniques allow
a faster computation, like in [24].

As usual, the non-terminals symbols are denoted by capital
letters. Given a context-free grammarG = (Σ,Γ, S0, R), a
non-terminal symbolX in Γ, and a positive integeri, the num-
ber of derivation trees of sizei generated by(Σ,Γ, X,R) is
denoted byx(i), i.e., using the corresponding lowercase letter.

Given a positive integern, for each symbolS ∈ Γ, the
sequence of positive integerss(1), . . . , s(k), . . . is introduced.
The recursive computation of theses(i)’s is as follows. For
each strictly positive integerk and each ruler = (S,w1S1

. . . wnSnwn+1) ∈ R, with wj ∈ Σ∗ andSi ∈ Γ, let us set


























βr = 1 +
∑n+1

i=1 |wi|

αr(k) =
∑

i1+i2+...+in=k−βr

∏j=n
j=1 sj(ij) if n 6= 0

αr(k) = 0 if n = 0 andk 6= βr

αr(βr) = 1 if n = 0.

It is known [23, Theorem I.1] that s(k) =
∑

r∈R∩(S×(Σ∪Γ)∗) αr(k).
Since, by hypothesis, there is no rule of the form(S, T )

in R, with S, T ∈ Γ, all ij ’s involved in the definition
of βr are strictly less thank. This way, thes(i)’s can be
recursively computed. Consider for instance the grammar
({a, b}, {X}, X, {r1, r2, r3}) with r1 = (X,XX) r2 =
(X, a) andr3 = (X, b). One hasβr1 = 1+ 0 = 1, βr2 = 1+
1 = 2, βr3 = 1+1 = 2. Thereforex(k) =

∑

i+j=k−1 x(i)x(j)
if k 6= 2, andx(2) = 1 + 1 +

∑

i+j=2−1 x(i)x(j) = 2, other-
wise. It follows thatx(1) = 0, x(2) = 2, x(3) = x(1)x(1) =
0, x(4) = x(1)x(2) + x(2)x(1) = 0, x(5) = x(2)x(2) = 4,

etc. The two derivation trees of size 2 are
X
|
a

and
X
|
b
. The four

derivation trees of size 5 are the trees of the form
X
/\

Z1 Z2

where

bothZ1 andZ2 are derivation trees of size 2.
In order to generate derivation trees of sizen, all s(i)′s,

for S ∈ Γ and i ≤ n, have to be computed with the

Random Generation
Input: G = (Σ,Γ, X,R) a context-free grammar,n a strictly
positive integer.
Output: a derivation treet of G sizen.
Algorithm:

1. Let {r1, r2, . . . , rℓ} be set of the elements ofR whose
first element isX .

2. If
∑j=ℓ

j=1 αrj (n) = 0, then return “Exception”.
3. Pick i ∈ {1, . . . , ℓ} with probability Prob(i = j) =

αri
(n)

∑j=ℓ
j=1

αrj
(n)

.

4. Let ri = (X,Z1 . . . Zk), with Zj ∈ Σ ∪ Γ.
5. Root symbol oft is X .
6. Children oft areZ1, . . . , Zk in this order.
7. Let {i1, . . . , im} = {j | Zj ∈ Γ}.
8. Pick (x1, . . . , xm) ∈ N

m such thatx1 + . . . + xm =
n− βri with probability

Prob(x1 = ℓ1, . . . , xm = ℓm) =

∏j=m
j=1 zij (ℓj)

αri(n)
.

9. For eachij , the ij-th sub-tree ofT is obtained by
running theRandom Generationalgorithm on(Σ,Γ, Zij , R)
andℓj.

10. Return t.

Fig. 1. Random Generation algorithm

above method. This can be performed in polynomial time.
Afterwards, the random generation is done recursively using
the given algorithm in Fig. 1.

It is known [23] that this algorithm provides a uniform
generation of derivation trees of sizen, i.e. each derivation
tree occurs with the same probability. Note that an exception is
raised at Step 2 if there is no element of the given size. For the
example presented before, there is no element of size 3, then
it is impossible to generate a derivation tree of size 3. Running
the algorithm on this example withn = 2, one considers at
Step 1 the set{r1, r2, r3} since all these rules haveX as
left element. Sinceαr1(2) = 0, αr2(2) = 1, αr3(2) = 1,
at Step 3 the probability thati = 1 is 0, the probability
that i = 2 is 1/2 and the probability thati = 3 is 1/2. If
i = 2 is picked, the generated tree hasX as root symbol
anda as unique child. Running the algorithm on this example
with n = 3 stops at Step 2 since there is no tree of size3.
When running the algorithm on this example withn = 5, the
set {r1, r2, r3} is considered at Step 1. Sinceαr1(5) = 4,
αr2(5) = 0, αr3(5) = 0, i = 1 is picked with probability 1.
Therefore, the tree hasX as root symbol, and its two children
are both labelled byX . Therefore, at Step 7, the considered
set is{1, 2}. At Step 8, one hasn − βr1 = 5 − 1 = 4. The
probability that i1 = 1 and i2 = 3 is 0 sincex(1) = 0.
Similarly, the probability thati1 = 3 and i2 = 1 is 0 too.
Now the probability thati1 = 2 and i2 = 2 is 1. Afterwards
the algorithm is recursively executed on each child withn = 2:



each of the 4 trees is chosen with probability1/4.

III. M IXING RANDOM TESTING AND COVERAGE

CRITERIA

In a context of functional testing, the strength of random
testing is to quickly provide many different test data, for
each behaviour of the system. Moreover, these test data are
independent of the choices of the test designer, and con-
sequently they can catch problem (s)he did not anticipate.
For instance, fuzz testing is particularly relevant for testing
security requirements [7]. However, random testing can miss
an important behaviour occurring with a very small prob-
ability. To exploit the advantages of both random testing
and deterministic testing, a solution is to combine random
generation and coverage criteria.

The general schema for this combination, as described
in [1], is the following: considering a random generation
algorithm of test data of sizen and a coverage criteriaC
(each element ofC is or is not covered by each possible
test), the goal is to use the generation algorithmN times
in order to optimise the probability of covering all elements
of C. For each elemente ∈ C, we denote bype,n the
probability that a generated test of sizen coverse. One can
easily check that generatingN test data independently ofC
provides a probability of coveringC of 1−(1−pmin)

N , where
pmin = mine∈C{pe,n}. This probability is the way to measure
the quality of the testing approach, relatively toC. A better
way is to repeatN times the following procedure:

1) Pick at random an elemente ∈ C with a probabilityπe,
and

2) Generate uniformly a test of sizen coveringe.
This procedure requires to know how to uniformly generate
a test of sizen covering a given element, and to choose the
probabilitiesπe’s to optimise the probability of covering all
elements ofC.

Following [1], the optimisation requires solving the follow-
ing constraint system: maximisep satisfying

{

p ≤
∑

e∈C πe
pe,f,n

pe,n
for all f ∈ C

∑

e∈C πe = 1

wherepe,f,n is the probability that a randomly generated test
of size n covers bothe and f . This linear programming
problem can be solved in an efficient way, using simplex-like
approaches.

In summary, in order to combine random testing and a
coverage criterion, it is required to solve a constraint system
and to know 1) how to randomly generate a test of a given
size covering a given element, 2) how to compute thepe,n’s;
and 3) how to compute thepe,f,n’s.

The rest of the paper is dedicated to the problem of the
random generation of execution trees of a grammar, with the
coverage criterionAll non-terminal symbols. More precisely,
given a grammarG = (Σ,Γ, S0, R), the coverage criterion
beingΓ, a test of sizen being a derivation tree ofG of size
n, we say thatX ∈ Γ is covered by a test if the derivation
tree coversX .

IV. COMPUTING pX,n AND pX,Y,n

In this sectionG = (Σ,Γ, S0, R) is a context-free grammar.
We denote byEn(G) the set of derivation trees of sizen of
G. We respectively denote byEX,n(G) andEX,Y,n(G) the set
of derivation trees of sizen of G coveringX , and covering
bothX andY .

Let pX,n be the probability of a randomly generated deriva-
tion tree of sizen to coverX . Clearly, ifEn(G) is empty then
pX,n = 0 [resp. pX,Y,n = 0]. Otherwise,pX,n =

|EX,n(G)|
|En(G)|

[resp.pX,Y,n =
|EX,Y,n(G)|

|En(G)| ].
Therefore, computing the probability defined in Section III

– needed to solve the linear constraint program – reduces
to the computation of the cardinality of setsEX,n(G) and
EX,Y,n(G).

A. Computing |EX,n(G)| and |EX,Y,n(G)|

To compute|EX,n(G)|, we build a grammarGX such that
En(GX) andEX,n(G) are in bijection (and therefore have the
same number of elements).

For everyw ∈ (Γ ∪ Σ)∗, [w]0 is recursively defined by:
[ε]0 = ε, [Zw]0 = (Z, 0)[w]0 (with Z ∈ Γ) and[aw]0 = a[w]0
(with a ∈ Σ). Intuitively, [w]0 is obtained fromw by changing
each letter ofw in Γ by the corresponding pair with0 as
second element. For instance, with the grammar of Example 1,
one has[aSbbT ]0 = a(S, 0)bb(T, 0). For everyw ∈ (Γ∪Σ)∗,
[w]2 is defined exactly in the same way, changing all0’s by 2’s.

For everyw ∈ (Γ∪Σ)∗, {w}1,2 is defined as the set of words
w′ ∈ (Σ∪ Γ× {1, 2})∗ obtained fromw by replacing occur-
rence of each letterZ of Γ either by(Z, 1) or by (Z, 2), with
the restriction that at least one is replaced by(Z, 1). The letters
in Σ remain unchanged. For instance, ifw = aSbT , then
{w}1,2 = {a(S, 1)b(T, 1), a(S, 2)b(T, 1), a(S, 1)b(T, 2)}. No-
tice that if w ∈ Σ∗ then {w}1,2 = ∅ since the constraint is
not satisfied.

LetGX = (Σ,Γ×{0, 1, 2}, (S0, 1), RX) whereRX = R0∪
R1 ∪R′

1 ∪R2 with:

• R0 = {(Z, 0) → [w]0 | Z → w ∈ R},
• R1 = {(Z, 1) → w′ | Z 6= X and∃Z → w ∈

R such thatw′ ∈ {w}1,2},
• R′

1 = {(X, 1) → [w]0 | X → w ∈ R},
• R2 = {(Z, 2) → [w]2 | Z → w ∈ R andZ 6= X}.

Intuitively, adding the value0 to a symbol inΓ means that
if this rule is used, there exists an occurrence ofX at an
upper position in the derivation tree. Adding the value1 to
a symbol inΓ means that there is no occurrence ofX at an
upper position, but there exists an occurrence ofX at this or a
lower position in the derivation tree. The value2 means there
is no occurrence ofX appearing in the tree at an upper or
lower position.

Example 2 – GX . Consider the grammar
G = ({a, b}, {S, T,X}, S, R) with R = {S →
SS, S → aT, S → Xb, T → aa,X → TX,X → b}.
The grammar GX has the set of rules as follows:
{(S, 0) → (S, 0)(S, 0), (S, 0) → a(T, 0), (S, 0) →



(X, 0)b, (T, 0) → aa, (X, 0) → b, (X, 0) → (T, 0)(X, 0)} ∪
{(S, 1) → (S, 1)(S, 1), (S, 1) → (S, 1)(S, 2), (S, 1) →
(S, 2)(S, 1), (S, 1) → a(T, 1), (S, 1) → (X, 1)b} ∪ {(X, 1) →
b, (X, 1) → (T, 0)(X, 0)} ∪ {(S, 2) → (S, 2)(S, 2), (S, 2) →
a(T, 2), (S, 2) → (X, 2)b, (T, 2) → aa}.

Proposition 1 – Bijection. There exists a bijection between
En(GX) and EX,n(G).

Example 3 illustrates several elements of the following proof.
Proof: Let ϕ be the function from(Γ × {0, 1, 2} ∪ Σ)∗

into (Γ ∪ Σ) inductively defined by:ϕ(ε) = ε andϕ(aw) =
aϕ(w) if a ∈ Σ ∪ Γ and ϕ((Z, α)w) = Zϕ(w) if Z ∈ Γ
andα ∈ {0, 1, 2}. Intuitively, ϕ is a projection deleting the
components in{0, 1, 2}.

By construction ofGX , if (Z, α) → w is a rule ofGX then
ϕ((Z, α)) → ϕ(w) is a rule ofG. Therefore, ifx0, . . . , xk

is complete derivation ofGX , then ϕ(x0), . . . , ϕ(xk) is a
complete derivation ofG. Moreover, the initial symbol of
GX is (S, 1) and all rules ofRX with a left hand side in
(Γ \ {X})× {1} have a right hand side where an element of
Γ × {1} occurs. Therefore, sincexk ∈ Σ∗, the only way to
destroy the component1 is to use a rule with the left hand
side (X, 1). It follows that the derivation tree associated to
ϕ(x0), . . . , ϕ(xk) coversX .

Consequently,ϕ induces a function fromEn(GX) into
EX,n(G). Let x0, . . . , xk andx′

0, . . . , x
′
k be complete deriva-

tions ofGX , such thatϕ(x0), . . . , ϕ(xk) = ϕ(x′
0), . . . , ϕ(x

′
k).

Assuming thatx0, . . . , xk 6= x′
0, . . . , x

′
k, there exists a minimal

indexi0 such thatxi0 6= x′
i0

. Sincex0 = (S0, 1) = x′
0, i0 ≥ 1.

Thereforexi0−1 = x′
i0−1 exists. Setxi0−1 = v0(Z, α)v1, with

Z ∈ Γ andα ∈ {0, 1, 2}. One of the following cases arises:
• If α = 0, then there existZ → w and Z → w′ in R

such thatxi0 = v0[w]0v1 and x′
i0 = v0[w

′]0v1. Since
ϕ(xi0 ) = ϕ(x′

i0
), it follows thatϕ([w]0) = ϕ([w′]0). But

ϕ([w]0) = w andϕ([w′]0) = w′, proving thatxi0 = x′
i0

,
a contradiction.

• If α = 2, then the same proof holds, replacing0 by 2.
• If α = 1 andZ = X , then, again, the same proof holds.
• If α = 1 andZ 6= X , then there existZ → w andZ →

w′ in R such thatxi = v0w1v1 andx′
i = v0w2v1, with

w1 ∈ {w}1,2 andw2 ∈ {w′}1,2. Sinceϕ(xi0 ) = ϕ(x′
i0 ),

one hasw = w′. Therefore,w1, w2 ∈ {w}1,2. Since
w1 6= w2, let j be the first letter ofw1 which is different
from the corresponding letter inw2. By construction of
{w}1,2, this letter must be inΓ × {1, 2} in both w1

and w2, for instance(T, β1) and (H, β2). Now, since
ϕ((T, β1)) = ϕ((H, β2)), one hasT = H . Therefore,
without loss of generality we may assume thatβ1 = 1
and β2 = 2. Consequently,xi0 has a prefix of the
form v0(T, 1): in the derivation tree corresponding to
x0, . . . , xk, the subtree rooted in this(T, 1) contains an
X (by construction ofR1). Conversely,x′

i0 has a prefix
of the formv0(T, 2): in the derivation tree corresponding
to x′

0, . . . , x
′
k, the subtree rooted in this(T, 2) does not

contain anyX (by construction ofR2). It follows that
the two corresponding derivations cannot have the same

S

S S

S S

a T

a a

X b

b

bX

T X

a a b

Fig. 2. Derivation tree ofG - Example 3

image byϕ, a contradiction.

It follows thatϕ induces an injective function fromEn(GX)
into EX,n(G).

Now let y0, . . . , yk be complete derivations ofG whose
corresponding treet is in EX,n(G). We consider the treet′

labelled in Γ × {0, 1, 2} ∪ Σ which has exactly the same
structure (the same set of positions) thant and such that:

• If a node of t is labelled by a letter ofΣ, then the
corresponding node int′ has the same label.

• If a nodeρ of t is labelled by a letterT ∈ Γ, then the
nodeρ in t′ is labelled by(T, 1) if there is noX on the
path from the root toρ (excludingρ), and if the subtree
rooted inρ (including ρ) contains oneρ, at least. It is
labelled by(T, 0) if there is at least oneX on the path
from the root toρ. Otherwise, it is labelled by(T, 2).

One can check thatt′ corresponds to a complete derivation
tree of GX whose image byϕ is exactly the complete
execution corresponding tot, proving thatϕ is surjective,
which concludes the proof.

Example 3 – Illustration of the proof of Prop. 1. Consider
the grammar G = ({a, b}, {S, T,X}, S, R) with R =
{S → SS, S → aT, S → Xb, T → aa,X,→ T,X → b}
of Example 2. Consider the derivation tree of EX,19(G)
depicted in Fig. 2, corresponding to the complete derivation
S, SS, SSS, aTSS, aaaSS, aaaXbS, aaabbS, aaabbXb,
aaabbTXb, aaabbaaXb, aaabbaabb. The associated
derivation in GX is (S, 1), (S, 1)(S, 1), (S, 2)(S, 1)(S, 1),
a(T, 2)(S, 1)(S, 1), aaa(S, 1)(S, 1), aaa(X, 1)b(S, 1),
aaabb(S, 1), aaabb(X, 1)b, aaabb(T, 0)(X, 0)b, aaabbaa(X, 0)b,
aaabbaabb, whose derivation tree from E19(GX) is depicted
in Fig. 3.

Using Proposition 1 and the results described in Section I,
it is possible to compute|EX,n(G)|. If we denote byℓ the
maximal number of elements ofΓ (with multiplicity) occurring
in a right hand side ofG, thenGX hasO(2ℓ|R|) rules, whose
sizes are bounded by the maximal size of the rules ofG.
Therefore if ℓ is reasonable, the computation of|EX,n(G)|
is tractable in practice, even for a quite large value ofn. As
mentioned above, the computation of|EX,n(G)| immediately
providespX,n. It is also important to point out thatGX allows



(S, 1)

(S, 1) (S, 1)

(S, 2) (S, 1)

a (T, 2)

a a

(X, 1) b

b

b(X, 1)

(T, 0) (X, 0)

a a b

Fig. 3. Derivation tree ofGX - Example 3

the uniform random computation of execution trees ofG of a
given size and coveringX .

Since EX,X,n(G) = EX,n(G), computing |EX,X,n(G)|
is a direct application of the above techniques. Computing
|EX,Y,n(G)|, with Y 6= X , can almost be done by a similar
construction: the difference is that the construction of the rules
of the grammarGXY , from the grammarGX , must take into
account that bothX andY have to appear in the derivation.
Let GXY = (Σ,Γ × {0, 1, 2} × {0, 1, 2}, ((S0, 1), 1), RXY )
whereRXY = R0 ∪R1 ∪R′

1 ∪R2 with:

• R0 = {((Z, i), 0) → [w]0 | (Z, i) → w ∈ RX},
• R1 = {((Z, i), 1) → w′ | Z 6= Y and∃(Z, i) → w ∈

RX such thatw′ ∈ {w}1,2},
• R′

1 = {((Y, i), 1) → [w]0 | (Y, i) → w ∈ RX},
• R2 = {((Z, i), 2) → [w]2 | (Z, i) → w ∈ RX andZ 6=

Y }.

A proof similar to the one of Proposition 1 allows showing
that there is a computable bijection betweenEn(GXY ) and
EX,Y,n(G). Note that the size ofGXY is approximatively4ℓ

times greater than the size ofG.

V. EXPERIMENTS

The approach has been evaluated on a simplified version of
the grammar of JSON2 (for JavaScript Object Notation) – a
language independent common format for declaring objects.
Formally, let us consider the grammarG = (Σ,Γ, Object, R)
with Σ having the eight following elementsΣ = {, , {, :
, }, letter, digit, [, ]}. The setΓ of non-terminal symbols3 is
composed of the elements′′Object′′, ′′Members′′, ′′Pair′′,
′′Array′′, ′′Elements′′ and ′′V alue′′. Finally, the setR
contains the following rules:

• Object → {} | {Members}
• Members → Pair | Pair,Members
• Pair → letter : V alue
• Array → [ ] | [Elements]
• Elements → V alue | V alue, Elements
• V alue → letter | Object | digit | Array

2http://www.json.org/
3To provide a more readable specification, the convention consisting in

using capital letters for non-terminal symbols is not entirely respected here.

In order to optimise the coverage criterion, we have to solve
the following system while maximisingp satisfying






































































































































































































p ≤ πObject
pObject,Object,n

pObject,n
+ πMembers

pMembers,Object,n

pMembers,n

+πPair
pPair,Object,n

pPair,n
+ πArray

pArray,Object,n

pArray,n

+πElements
pElements,Object,n

pElements,n
+ πV alue

pV alue,Object,n

pV alue,n

p ≤ πObject
pObject,Members,n

pObject,n
+ πMembers

pMembers,Members,n

pMembers,n

+πPair
pPair,Members,n

pPair,n
+ πArray

pArray,Members,n

pArray,n

+πElements
pElements,Members,n

pElements,n
+ πV alue

pV alue,Members,n

pV alue,n

p ≤ πObject
pObject,P air,n

pObject,n
+ πMembers

pMembers,Pair,n

pMembers,n

+πPair
pPair,Pair,n

pPair,n
+ πArray

pArray,Pair,n

pArray,n

+πElements
pElements,Pair,n

pElements,n
+ πV alue

pV alue,Pair,n

pV alue,n

p ≤ πObject
pObject,Array,n

pObject,n
+ πMembers

pMembers,Array,n

pMembers,n

+πPair
pPair,Array,n

pPair,n
+ πArray

pArray,Array,n

pArray,n

+πElements
pElements,Array,n

pElements,n
+ πV alue

pV alue,Array,n

pV alue,n

p ≤ πObject
pObject,Elements,n

pObject,n
+ πMembers

pMembers,Elements,n

pMembers,n

+πPair
pPair,Elements,n

pPair,n
+ πArray

pArray,Elements,n

pArray,n

+πElements
pElements,Elements,n

pElements,n
+ πV alue

pV alue,Elements,n

pV alue,n

p ≤ πObject
pObject,V alue,n

pObject,n
+ πMembers

pMembers,V alue,n

pMembers,n

+πPair
pPair,V alue,n

pPair,n
+ πArray

pArray,V alue,n

pArray,n

+πElements
pElements,V alue,n

pElements,n
+ πV alue

pV alue,V alue,n

pV alue,n

πObject + πMembers + πPair + πArray + πElements + πV alue = 1

Using a slightly modified version of the Hoa tool ([25]),
the computation of the probabilitiespX,n and pX,Y,n for all
X,Y ∈ Γ andn = 20 has been performed efficiently (a few
seconds). The system becomes as below, and we have then to
solve it while maximisingp satisfying














































































































































p ≤ πObject
12
12 + πMembers

12
12 + πPair

12
12 + πArray

11
11

+πElements
8
8 + πV alue

12
12

p ≤ πObject
12
12 + πMembers

12
12 + πPair

12
12 + πArray

11
11

+πElements
8
8 + πV alue

12
12

p ≤ πObject
12
12 + πMembers

12
12 + πPair

12
12 + πArray

11
11

+πElements
8
8 + πV alue

12
12

p ≤ πObject
11
12 + πMembers

11
12 + πPair

11
12 + πArray

11
11

+πElements
8
8 + πV alue

11
12

p ≤ πObject
8
12 + πMembers

8
12 + πPair

8
12 + πArray

8
11

+πElements
8
8 + πV alue

8
12

p ≤ πObject
12
12 + πMembers

12
12 + πPair

12
12 + πArray

11
11

+πElements
8
8 + πV alue

12
12

πObject + πMembers + πPair + πArray

+πElements + πV alue = 1

http://www.json.org/


This linear programming problem can be solved in an
efficient way, using simplex-like approaches. We have used
the tool lp solve4 to solve it, and the result is thatp = 1
if πObject = 0, πMembers = 0, πPair = 0, πArray = 0,
πElements = 1, and πV alue = 0. It means that, for this
simple example, the optimised approach to cover all the non-
terminals symbols, consists in generating derivation trees cov-
ering Elements. Indeed, in this grammar, the generation of
a derivation tree covering the non-terminal symbolElements
provides a tree covering all the other non-terminal symbols.

VI. CONCLUSION

In this paper, we have presented a method for exploiting a
coverage criterion together with random testing in the context
of grammar-based testing. This automatic method lies in
building a grammar and then in resolving a linear constraint
system, which can be done by adapted tools, even for large
values. In the future, we plan to extend the approach to other
coverage criteria such as rules coverage, and also to handle
attribute grammars with constraints formalising the semantics
of context-free languages.
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[5] R. Lämmel and W. Schulte, “Controllable combinatorialcoverage in
grammar-based testing,” inTestCom, ser. LNCS, M. Uyar, A. Duale,
and M. Fecko, Eds., vol. 3964. Springer, 2006, pp. 19–38.

[6] R. Majumdar and R.-G. Xu, “Directed test generation using symbolic
grammars,” inASE, R. E. K. Stirewalt, A. Egyed, and B. F. 0002, Eds.
ACM, 2007, pp. 134–143.

[7] P. Godefroid, A. Kiezun, and M. Levin, “Grammar-based whitebox
fuzzing,” in PLDI, R. Gupta and S. P. Amarasinghe, Eds. ACM, 2008,
pp. 206–215.

[8] Z. Xu, L. Zheng, and H. Chen, “A toolkit for generating sentences from
context-free grammars.” inSoftware Engineering and Formal Methods,
ser. IEEE, 2010, pp. 118–122.
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