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Abstract—Recent studies have shown that combinatorial
interaction testing (CIT) is an effective fault detection technique
and that early fault detection can be improved by ordering test
suites by interaction based prioritization approaches. Despite
research that has shown that higher strength CIT improves
fault detection, there have been fewer studies that aim to un-
derstand the impact of prioritization based on higher strength
criteria. In this paper, we aim to understand how interaction
based prioritization techniques perform, in terms of early fault
detection when we prioritize based on 3-way interactions. We
generalize prior work on prioritizing using 2-way interactions
to t-way prioritization, and empirically evaluate this on three
open source subjects, across multiple versions of each. We
examine techniques that prioritize both existing CIT suites as
well as generate new ones in prioritized order. We find that
early fault detection can be improved when prioritizing 3-way
CIT test suites by interactions that cover more code, and to a
lesser degree when generating tests in prioritized order. Our
techniques that work only from the specification, appear to
work best with 2-way generation.

I. INTRODUCTION

Regression testing is an expensive part of the software
process. As systems evolve, before new versions are re-
leased, software must be re-tested to ensure quality. One
concern in regression testing is the effectiveness of test suites
in finding new faults in successive program versions. A
second issue is the efficiency of running the test suites given
limited resources and time. Small test suites that retain high
fault detection ability are desirable. A focus of regression
testing research has been the reduction of test suite size
between versions, which can be accomplished through test
suite selection [1]. A further improvement, once tests are
selected, is to order or prioritize [2] test cases to increase the
likelihood of faults being discovered early in the test process.
Detecting faults early, means that work to repair faults can
begin sooner, and if resources are exhausted before all tests
complete, the consequences are less severe.

One specification based technique for generating test
suites is combinatorial interaction testing [3]–[6] or CIT. In
CIT the program is divided into partitions or factors, and a
test suite is generated from this: factors are tested together so
that all t-way combinations appear at least once (t is called
testing strength). This technique has been shown to produce

small test suites, with high code coverage, that exhibit good
fault detection ability [4], [6], [7].

Although CIT has shown to be an effective test generation
technique, it has mostly been examined in the context of
single version software systems. In recent work we examined
the ability to effectively utilize CIT in regression testing,
from both the test case [8] and configuration level [9] of
abstraction. Our results have shown that CIT is effective
when used in regression testing for multiple versions of a
program and that interaction based prioritization improves
early fault detection.

However, our results have also shown that 2-way CIT test
suites fail to detect all faults that can be detected by CIT test
suites with higher testing strengths. We saw this in seven of
ten versions [8]. This leaves us with several questions. We
would like to understand how to prioritize CIT test suites
with strength greater than 2, and we would like to understand
if higher strength oriented prioritization can improve the
effectiveness of these test suites. Finally, we would like to
understand if different techniques for prioritization impact
its effectiveness at higher strengths.

In this paper we address each of these issues. We have
conducted an empirical study on three software subjects,
each with multiple successive versions. We apply both (pure)
prioritization and regeneration1 [8], for both 2-way and
3-way CIT and compare their effectiveness. We examine
several different ways to control the prioritization. We use
methods that weight interactions based on branch coverage
from prior releases, as well as one that is specification
based (and does not require prior versions). Our results
show that the 3-way CIT test suites prioritized by weighting
interactions based on branch coverage can detect faults more
efficiently than their respective 2-way prioritized test suites.
Regeneration, while eventually more effective at 3-way, has
a slower growth rate at the start, suggesting that we should
use it only if time allows. Finally, when code coverage
information is unavailable, our 2-way specification based
regeneration approach may be the best choice.

1Pure prioritization and regeneration are different interaction based
prioritization approaches. In the rest of the paper, we just use prioritization
and regeneration for short.



The rest of this paper is organized as follows. Section
II presents background and related work on regression
testing, combinatorial interaction testing, the interaction
based regeneration approach, and the metric we developed
to evaluate the prioritization. Section III discusses work
on prioritization algorithms for CIT of different testing
strengths. Section IV introduces our empirical study. Sec-
tion V presents our results, and Section VI concludes and
presents future work.

II. BACKGROUND AND RELATED WORK

In this section we provide some background on regression
testing, combinatorial interaction testing, interaction based
prioritization, and the metric used for evaluating the effec-
tiveness of CIT-based prioritization techniques. We end with
some other related work on interaction based prioritization.

A. Regression Testing

Regression testing is performed each time a system is
modified. Given an an initial version of a program P ,
we need to test the new version P ′ to ensure that new
functionality works correctly and that old features are not
broken. Since new tests are often generated to cover new
functionality, regression test suites can grow prohibitively
large. Two directions of research aim to solve this problem.
In test case selection, given an initial version of a program
P and a set of test cases, T , select a subset of tests
from T , T ′ to test a new version of program P , P ′ [2].
Prioritization techniques [2], [10]–[12] (the focus of this
paper), complement the selection technique. Test cases are
ordered to improve the likelihood that faults will be detected
early in the testing process. Techniques for prioritization
include statement coverage, function coverage and fault
finding exposure, or interaction coverage [2], [8], [10]–[13].

B. Combinatorial Interaction Testing

The Test Specification Language (TSL) [14] is a specifi-
cation based method to define the combinations of program
parameters that should be tested together. TSL partitions the
system inputs into parameters and environments which make
up the categories. For each of the category, a set of choices
is defined based on equivalence classes of the input domain.

An exhaustive test suite generated by combining each of
the possible choices of categories is too large in practice.
One way to subset the test cases is combinatorial interaction
testing (CIT) [4]. In CIT the categories are called factors and
each factor has a set of values (choices in TSL). A CIT test
suite samples the input space so that it includes all t-way
combinations of values between factors, where t is called the
strength of testing. When t=2, we call this pair-wise testing.

CIT samples are defined by mathematical objects called
covering arrays. A covering array, CA(N ; t, k, v), is an N×
k array on v symbols with the property that every N×t sub-
array contains all ordered subsets from v symbols of size t

at least once [5]. Quite often in software testing the number
of values for each factor is not the same. Therefore, we use
the following expanded definition (often called a mixed level
covering array) that uses a vector of vs for the factors.

A mixed level covering array, CA(N ; t, k, (v1v2...vk)),
is an N × k array on v symbols, where v =

∑k
i=1 vi,

where each column i (1 ≤ i ≤ k) contains only elements
from a set Si of size vi and the rows of each N × t sub-
array cover all t-tuples of values from the t columns at least
once. We use a shorthand notation to describe these arrays
with superscripts to indicate the number of factors with a
particular number of values. For example, a covering array
with 5 factors, 3 of which are binary and 2 of which have
four values can be written as CA(N ; 2, 3224) (we remove
the k since it is implicit). Covering arrays (i.e., CIT suites)
have been shown to be effective test suites in a variety of
studies [3], [4], [6].

C. Interaction based Prioritization

Bryce and Colbourn [13] describe an algorithm for re-
generating prioritized test suites; each time a new test suite
is generated from scratch. They begin by defining a set of
weights for each value of each factor. Based on the defined
weights, their approach generates test suites that are a special
kind of a covering array, called a biased covering array. The
pseudo-code for their algorithm is presented in Algorithm 1
in Section III-A.

An alternative way to perform prioritization is to re-
order an existing CIT test suites (pure prioritization). One
advantage of this approach is that we can re-use concrete
test cases and artifacts from prior versions. We have seen
in our prior work that the regenerated test suites often find
faults sooner, however the overall test suite tends to be larger
requiring more resources to obtain full t-way coverage [8],
[9]. We believe there is a trade-off, therefore, in which of
these methods to use.

D. Prioritization Evaluation Metric: NAPFD

A metric that is commonly used for prioritization is the
Average Percentage of Faults Detected or APFD [2], [10].
APFD measures the area under the curve when the percent
of faults found is plotted on the y-axis and the percent
of the test cases run on the x-axis. We have modified
the APFD metric slightly to handle test suites of different
size/fault finding ability [8]. We call this metric NAPFD (for
normalized APFD) :

NAPFD = p− TF1 + TF2 + ...+ TFm

m× n
+

p

2n

where p = the number of faults detected by the prioritized
test suite divided by the number of faults detected in the
full test suite (y-axis). If a fault, i, is never detected we
set TFi = 0. In the example fault matrix shown in Table
I, there are 5 tests and 8 faults. The ordering of the test



cases is T3, T5, T2, T4, T1. The first test finds 3 faults. After
3 test cases, 5 faults have been found. Suppose in our
example, only three test cases (i.e., T3, T5, T2) are executed,
then only five faults are detected. Hence, p = 0.625, and
TF1 = TF3 = TF8 = 0. As a result, the NAPFD is 0.44.

T1 T2 T3 T4 T5

F1 x
F2 x x
F3 x
F4 x x
F5 x
F6 x
F7 x x
F8 x

Table I
FAULT MATRIX (TEST ORDER: T3 , T5 , T2 , T4 , T1)

E. Other Related Work

In other related work, Sampath et al. and Manchester
also describe a t-way prioritization technique and tool,
CPUT [15], [16], which prioritizes given test cases by their
coverage of (additional) t-way parameter-value interactions.
This has been applied to user-session-based test suite. This
differs from our work in that the prioritization is not linked
to any heuristic methods that weight one parameter-value
over another. It also does not aim to achieve complete CIT
coverage. Recently, Chen et al. [17] propose a new metric,
tuple density, for CIT suites. It considers the coverage of
tuples with higher dimensions and is used to drive test
selection and optimization. This metric may be used for
prioritization but their work has not addressed it.

III. PRIORITIZATION TECHNIQUES

In this section, we present our generalization of 2-way
prioritization and show how this is achieved on the specific
prioritization algorithms that are used in our study. We first
present our regeneration approach, followed by the pure
prioritization method. We then provide examples of how we
associate importance with the various values of the factors
and then use these to determine interaction weights. We
provide a running example, based on the original work of
Bryce and Colbourn [13] for consistency of explanation.

A. t-wise Regeneration

Algorithm 1 shows our regeneration algorithm, which
is modified slightly from [13]. In the original Algorithm
the interaction weight is fixed at the pair-wise level. In
the generalized algorithm (Algorithm 1), testing strength
t can be varied. This can be seen on lines 1, 3, and
9. It considers t-way interaction weights, while pair-wise
interaction weight is just one of its instances. The details of
calculating interaction weights for t-way interactions will be
introduced in Section III-C.

1: RemainingCombinations = AllCombinationst
2: while Remainingcombinations 6= ∅ do
3: Compute t-way interaction weights for factors
4: Order factors
5: Initialize a new test with all factors unfixed
6: for i = 1 to NumOfFactors do
7: Select HighestWeightUnfixedFactor (f )
8: for j = 1 to NumOfV aluesf do
9: Compute t-way interaction weights for values of f

10: Select value with highest weight to fix f
11: Add test case to test suite

Algorithm 1: General t-wise Regeneration Algorithm Mod-
ified from [13]

For each factor the weight of combining it with each other
t-1 factors is computed as a total interaction weight (line
3). The factors are sorted in decreasing order of interaction
weight and then each factor is filled/fixed with value for a
new test in order. To fix a factor, the individual interaction
weights for each of the factor’s values is computed (line 9,
see [13] for more details). Then it selects the value of the
factor that has the greatest value interaction weight (line
10). After all factors have been fixed, a single test has
been added (line 11), and the interaction weights for factors
are recomputed and the process starts again (line 3). The
algorithm is complete when all t-way combinations have
been covered.

B. t-wise Prioritization

We can also use interaction weights in a different way
from the regeneration algorithm. Rather than regenerate a
new test suite each time, we simply use the interaction
weights directly; we sort the test cases in decreasing order
of their test case level interaction weights. We show this as
Algorithm 2.

1: RemainingTCs = Alltestcasesinoriginaltestsuite
2: while RemainingTCs 6= ∅ do
3: Compute t-way interaction weights for test cases
4: Order test cases
5: Select test case with the highest interaction weight
6: Add test case to result test suite

Algorithm 2: General t-wise Prioritization Algorithm

C. Calculation of Interaction Weights

To utilize the algorithms presented we used interaction
weights calculated at three different levels: test case level
(Algorithm 2), factor level and value level (Algorithm 1).
In [13], they show how to calculate pair-wise interaction
weights for factors and values, we extend the computation
from “pair-wise” to “t-way”. We also add a third level, that
of the test case. We reuse the same example in [13] to
illustrate the procedure, as shown in Table II: three factors
are considered, the first factor (f0) has four values, the
second (f1) has three values, and the third (f2) has two



values. Each value is labeled in Table II with a unique ID,
and a weight for each is given in parentheses.

Their work does not provide a technique to find the
weights in this table, yet the weighting method may play an
important role in how well the algorithm performs. Before
we can prioritize in practice, we need to determine these
from somewhere. We call these base-value weights. They are
essential for associating elements of our software with the
values that should be tested first. We present two approaches
we have used in prior work (and re-use here) to find these
values [8].

1) Base-value Weights: When we have existing test ar-
tifacts from prior versions of a system, we can use code-
based weightings. For code-based weightings our aim is
to associate higher weights with those values that cover
larger amounts of code. In [8] we tried three different code
coverage based weighting schemes, from which the third
one gave us the most consistent results. We use that for this
study and describe it briefly next.

We begin by ordering our test suite (from the prior
version of software) by greedily increasing additional branch
coverage. We begin with the test case that provides the
greatest stand-alone coverage and then add to this to increase
our coverage as much as possible at each stage. This is com-
monly known as additional branch coverage prioritization
[2]. Based on this order, we select a small set of test cases
(important test cases) that contribute to a large percentage
of the coverage (in our study, we consider test cases that
provide more than 90% of the total coverage obtained in
the full test suite). The size of the selected set is m.

Because at each stage of the greedy algorithm, more
than one test case may be selected, we strengthen the set
of important test cases by identifying all other test cases
with equivalent additional coverage at each step and add
these to our set. We now have m distinct groups ordered by
importance, each with a set of test cases. We then count up
the occurrences of each value within the set of test cases
for each group and divide by the number of test cases in
that group. We then normalize the weights of values by
the contribution of its groups importance (we heuristically
assigned a higher importance to the first group, and reduced
this slightly for each successive group). Finally, we sum
these numbers by value after normalization.

When code coverage does not exist, we use a TSL based
approach. We have assigned higher weights to the values of
a feature (such as turning a feature on rather than turning it
off) that we believe should execute more code (see [8] for
details of our TSL scheme).

Once we have the base weights, we use them to calculate
the t-way interaction weights in Algorithms 1 and 2.

2) t-way Factor Level Interaction Weights: We use three
steps to compute a t-way interaction weights of a given
factor, f . First, for each value of the factor, find out its t-way
combinations with all the values of other factors. Second,

Factor v0 v1 v2 v3
f0 0 (.2) 1 (.1) 2 (.1) 3 (.1)
f1 4 (.2) 5 (.3) 6 (.3)
f2 7 (.1) 8 (.9)

Table II
INPUT OF THREE FACTORS AND THEIR LEVELS AND WEIGHTS [13]

for each of the t-way combination identified in the previous
step, multiply the weight of each value that composes the
combination. Finally, add up the products calculated in the
previous step. For example, for f0 with t = 2, there are
20 combinations (pairs) in total,including (0,4), (0,5), (0,6),
(0,7), (0,8), (1,4), . . ., (3,7), and (3,8). The weight of each
pair is 0.2×0.2, 0.2×0.3, . . ., and 0.1×0.9, as a result, the
interaction weight of f0 is 0.04 + 0.06 + . . .+ 0.09 = 0.9.
Following the same procedure, the interaction weights of f1
and f2 are 1.2 and 1.3, respectively. The maximum value
among them is denoted as wmax, which is used in the
calculation of value level interaction weights in the next
section. In this case, wmax = 1.3.

If using t = 3, there will be 24 3-way combinations
in total, including (0,4,7), (0,4,8), (0,5,7), (0,5,8), (0,6,7),
(0,6,8), . . ., (3,6,7), and (3,6,8). In this case, the interaction
weight of f0 is equal to 0.2× 0.2× 0.2+ 0.2× 0.2× 0.9+
. . .+0.1×0.3×0.9 = 0.4. Similarly, the interaction weights
of f1 and f2 are 0.4 and 0.4, respectively, and wmax = 0.4.

3) t-way Value Level Interaction Weights: The process
of calculating value level interaction weights is similar to
that of factor level interaction weights, for a given factor, f ,
and its value v. First, find out all of v’s t-way combinations
with all the values of other factors. Second, for each of the
t-way combination identified in the previous step, multiply
the weight of each value that composes the combination, and
divide it by the maximum value of the factor level interaction
weight (i.e., wmax ). Finally, add up the products calculated
in the previous step. For example, for f2, v1 (i.e., value 8)
with t = 2, there are seven pairs, which are (0,8), (1,8), (2,8),
. . ., (5,8), and (6,8). The weight of each pair is 0.2×0.9÷1.3,
0.1× 0.9÷ 1.3, . . ., 0.3× 0.9÷ 1.3, and 0.3× 0.9÷ 1.3. As
a result, the interaction weight of value 8 is 0.18 ÷ 1.3 +
0.09÷ 1.3 + . . .+ 0.27÷ 1.3 = 0.1.

4) t-way Test Level Interaction Weights: Interaction
weights at the test case level is unique to pure prioritization.
First, for each test case, find out all t-way combinations. Sec-
ond, for each combination, multiply the associated weight of
each value of this combination. Finally, add up all products.

Calculations at these three levels have one thing in com-
mon, which is very important. Each time a test case is
selected or re-generated, the interaction weight associated
with each t-way combination covered in that test case will
be considered zero it doesn’t need to be covered in later
iterations. Accordingly, the factor level and value level
interaction weights will change in each iteration as the
process continues.



IV. EMPIRICAL STUDY

In this section, we present an empirical study to eval-
uate the effectiveness of higher strength interaction based
prioritization. We have designed experiments to answer the
following three research questions:
RQ1: Does prioritization with a higher testing strength
provide more benefit, in terms of early fault detection?
RQ1.1: Does the selection of different algorithms/techniques
(i.e., regeneration or prioritization) impact the results?
RQ1.2: Does the selection of different weighting methods
(i.e., coverage based or TSL based) affect the results?

The rest of this section describes our objects of analysis,
our metrics, and our methodology.

A. Objects of Analysis

We have used three C subjects, each with multiple succes-
sive versions. The subjects were obtained from the software
infrastructure repository (SIR) [18]. The first subject, flex
is a lexical analyzer. The second subject, make is used to
compile programs. The third subject, grep is a text search
utility. Table III shows the uncommented lines of code for
each version of the program, the number of functions and the
number of changed or added functions between versions. We
used the SLOCCount tool to count the uncommented lines
of code and the adiff utility from the SIR to determine
changed methods. These were manually verified for the
purposes of seeding new faults. Each subject came with
a TSL test suite and between 5-20 hand seeded faults.
Hand seeding allows us to turn faults on and off during
experimentation. The number of seeded faults are also shown
in Table III.

To increase our ability to reason about the final results,
we seeded an additional 30 faults into each subject, using
a C mutation test case generator written by Andrews et al.
[19]. Their research indicates that mutation faults produce
similar results in empirical studies as hand seeded faults. We
first generated all mutants for each program. To simulate
a regression environment, we then identified the changed
and added functions between consecutive versions of the
programs and selected only mutants contained in those
areas of the code. Finally we randomly selected 30 that
successfully compiled.

We reused the TSL files in our previous study for flex
and make [8], and created new reduced TSL files for grep,
which were unconstrained. We have retained the most widely
used features in each subject (based on the man pages)
and ran some experiments using the original set of hand-
seeded faults. We removed constraints (such as error and
single) from the TSL; our objective was to obtain exhaustive
suites that retain the fault detection ability that is close to
the original test suite provided by the SIR. We wanted the
exhaustive test suites so that we have the ground truth about
the detectable faults in our study.

Subject uLoC Function # Changed Seeded
Count Functions Faults

flex
V0 7,972 138 NA NA
V1 8,426 147 40 49
V2 9,932 162 104 50
V3 9,965 162 24 47
V4 10,055 162 16 46
V5 10,060 162 13 39
make
V0 12,612 188 NA NA
V1 13,484 190 80 38
V2 14,014 206 88 36
V3 14,596 239 158 35
V4 17,155 270 145 35
grep
V0 7,987 132 NA NA
V1 9,421 138 51 48
V2 9,998 144 24 38
V3 10,087 146 29 48
V4 10,128 146 18 42
V5 10,128 146 2 31

Table III
TEST SUBJECTS STUDIED

B. Independent and Dependent Variables

Our independent variables are the various test suites that
are prioritized by different techniques.

First, we generated 50 2-way and 3-way CIT test suites
for each subject, using simulated annealing [5]. The sizes of
these arrays are shown in table IV. We then use each indi-
vidual CIT test suite for program P , and apply the different
techniques introduced in Section III to either regenerate or
prioritize for version P+1.

For the code coverage based weighting method, we call
these p-t=n, r-t=n, where p stands for prioritization and r
stands for regeneration. The value of n is the testing strength
of the CIT test suite that was used, that is, the strength of
the interaction we are considering in prioritization. Using
the same notations, for the TSL based weighting method,
we call these test suites r-tsl-t=n and p-tsl-t=n.

CIT Specification Size Size
t=2 t=3

flex
CA(N ; t, 243116161) 96 288
make
CA(N ; t, 312251322141) 20 60
grep
CA(N ; t, 413121312112141) 48 192

Table IV
SIZE OF CIT TEST SUITES

In total we have two different prioritization techniques,
two different weighting methods, and two different testing
strengths, so there are four prioritization and four regenera-
tion techniques as follows:

• p-t=2: pair-wise coverage based prioritization



• r-t=2: pair-wise coverage based regeneration
• p-t=3: 3-way coverage based prioritization
• r-t=3: 3-way coverage based regeneration
• p-tsl-t=2: pair-wise TSL based prioritization
• r-tsl-t=2: pair-wise TSL based regeneration
• p-tsl-t=3: 3-way TSL based prioritization
• r-tsl-t=3: 3-way TSL based regeneration
We use NAPFD (introduced in II-D) as our evaluation

metric, i.e., the dependent variable. To make a fair compar-
ison between 2-way and 3-way CIT test suites, we assume
that for each subject, the testing resource is available for
running a test suite of the 2-way CIT size. For example, in
flex, we only measure the fault detection of the first 96
test cases in each test suite.

C. Study Methodology
We first run all tests on each subject without any faults

as an oracle and then turn on each fault individually. We
collect branch coverage on the fault free version using the
Aristotle coverage tool [20]. We only include faults in our
results that occur between 0 and 50% of the time in the
exhaustive test suite. Our rationale is that faults occurring
more than 50 percent of the time will be very easy to find
and would be eliminated during unit testing.

For data using CIT test suites, we take the average of
50 arrays to prevent biases due to chance. For all of our
prioritization experiments we use program P to prioritize
program P + 1. For each of our subjects we have a base
version, V0, with no faults. We use this only to generate the
prioritization for V1.

D. Threats to Validity
Empirical experiments suffer from threats to validity. We

have made attempts to reduce these, however, we outline the
major threats here. With respect to external validity (or the
threat of generalizing to other subjects) we acknowledge that
we have only examined three software subjects, all of which
were written in the C language. We have tried to select three
different subjects, of different sizes and for each have used
multiple versions of the program. But results obtained from
other subjects may not match these. With respect to internal
validity (or the threat that our experiments themselves suffer
from mistakes) we have tried to manually cross-validate our
analysis programs on small examples and have manually
validated random selections from the real results. We have
made every effort to ensure that these are correct. As far as
construct validity, (or the threat that we may not have fairly
conducted these studies) we acknowledge that there may be
other metrics which are more pertinent to this study. We also
note that we may have developed different unconstrained
TSL definitions.

V. RESULTS

In this section, we present the results regarding each
research question, and provide a discussion on the results.

A. 2-way vs. 3-way Prioritization

1) Cumulative Fault Coverage: To address RQ1, which
asks if 3-way prioritized or regenerated CIT test suites
exhibit earlier fault detection than 2-way, we first look at the
cumulative fault coverage for test suites produced by each
prioritization technique, for each version of each subject
program. As a baseline, we show Table V with the total
average fault detection in each test suite 2.

Except for the TSL based regeneration, i.e., r-tsl-t=2 and
r-tsl-t=3, which resulted in only one single CIT test suite,
all other techniques produce 50 instances of CIT test suites;
we show their average results. Except for flex, all of the
3-way test suites have higher average fault detection.

Subject Max Min Avg
flex
V4 (t = 2) 1.00 1.00 1.00
V4 (t = 3) 1.00 1.00 1.00
make
V1 (t = 2) 1.00 0.60 0.76
V1 (t = 3) 1.00 0.80 0.85
grep
V2 (t = 2) 1.00 0.60 0.68
V2 (t = 3) 1.00 0.60 0.90

Table V
PERCENTAGE OF FAULTS DETECTED BY CIT TEST SUITES WITH

DIFFERENT STRENGTHS

Figure 1 shows the cumulative fault coverage of flex
(version 4) for different testing strengths, grouped by various
techniques. As described in Section IV-B, for comparison,
we use a test budget equal to the smallest 2-way test suite,
so we only examine the first 96 test cases (the size of the
2-way CIT suite) in flex.

If we examine each sub-figure in Figure 1, we find that p-
t=3 exhibits constantly earlier fault detection than p-t=2. For
other techniques, the results are more complex. Specifically,
r-t=2 detects less faults than r-t=3 in the first couple of
test cases, but its fault detection grows faster than r-t=3.
After test case 25, both reach their maximum fault coverage.
Similarly, p-tsl-t=3 detects more faults in the starting area
than p-tsl-t=2, but the latter grows faster in the later stage.
Please note that in this figure, p-tsl-t=3 has a long tail and
does not reach a 100% fault coverage until test case 96, but
the actual 3-way CIT test suite has detected all faults (shown
in Table V). Finally, technique r-tsl-t=2 detects faults faster
than r-tsl-t=3, but after about the 25th test case, both detect
all faults.

If we compare between the best techniques from each sub-
figure, r-tsl-t=2 is the best. However, as described before,
the r-tsl-t=2 generates only one single test suite, while
other lines show the average results of 50 test suites. In

2Due to space limitation, we show one example version for each subject,
which represents the results of other versions.



other words, although r-tsl-t=2 performs better than others’
average results, if a test suite is randomly selected from the
50 test suites produced by other techniques, r-tsl-t=2 may
lose its winning status. This is confirmed by the NAPFD
measurement discussed later.
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Figure 1. Cumulative Fault Coverage: flex, V4

In make (Figure 2), the result is similar to flex, except
for the fact that p-tsl-t=3 outperforms p-tsl-t=2 not only in
the first few test cases, but lasting almost to the cutting point
(cut at the size of its 2-way CIT suite, which is 20).

In grep (Figure 3), all 3-way techniques exhibit benefits
over pair-wise techniques, particularly after 30 test cases
(the cutting point is 48 test cases). One interesting note is
that r-tsl-t=3 reaches full fault coverage while the average
of other 3-way techniques do not. This may due to certain
higher level (higher than 3-way) interaction related faults. As
shown in Table V, the full 3-way CIT test suites can detect
90% faults on average, while the minimum fault detection
is only 60%.

2) NAPFD: We examine the data next using box plots
for the NAPFD (Figures 4, 5 and 6). In general, the results
of NAPFD are consistent with the cumulative fault coverage
information, that the 3-way performs better than pair-wise,
for code coverage based prioritization.

In flex, as described in Section V-A1, technique r-tsl-
t=2 shows the best result among all eight techniques in
Figure 1. But if we examine the NAPFD values in this
version, many test suites produced by r-t=2, r-t=3, and p-
t=3 can achieve the same value. Moreover, if we examine
other versions, we can see that NAPFD value of r-tsl-
t=2 is usually lower than the highest NAPFD of the other
techniques. This confirms that r-tsl-t=2 is only better than
the average performance of other techniques, that is, it is
not always the single champion.

In Figure 1, it is hard to tell which is better between r-t=2

  

 

                      

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of test cases

P
er

ce
nt

ag
e 

of
 fa

ul
ts

 d
et

ec
te

d

 

 
  

  
                   

r−t=2
r−t=3

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of test cases

●

● ●

● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ● ●

●

r−tsl−t=2
r−tsl−t=3

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of test cases

P
er

ce
nt

ag
e 

of
 fa

ul
ts

 d
et

ec
te

d

●

●

●
●

●

●

●
● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

p−t=2
p−t=3

  
  

  

          

    

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of test cases

 

 

 
 

 
 

  
             

p−tsl−t=2
p−tsl−t=3

Figure 2. Cumulative Fault Coverage: make, V1
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Figure 3. Cumulative Fault Coverage: grep, V2

and r-t=3 since neither exhibits a constant advantage over
the other. The NAPFD values clarify this by showing that
r-t=2 achieve similar early fault detection to r-t=3. Finally,
given the TSL based techniques, the pair-wise prioritization
or regeneration usually performs better than corresponding
3-way ones.

In make, our results are similar to flex, despite the fact
that p-tsl-t=3 outperforms p-tsl-t=2. This result is consistent
with what we observe in Figure 2. In grep our results are
more close to the results of flex and are consistent with
what we observe in Figure 3.

B. RQ1.1 Impact of prioritization techniques

If we only examine the regeneration technique (Algorithm
1), we see that the three subject programs share the same
results in most versions, that r-tsl-t=3 is not better than r-
tsl-t=2, and r-t=3 is not better than r-t=2 either. Hence we
conclude that, for regeneration techniques, 3-way techniques
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Figure 4. NAPFD for flex of different prioritization strength
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Figure 5. NAPFD for make of different prioritization strength

do not perform better than pair-wise ones, it may due to bias
placed on certain 2-way interactions. More analysis will be
discussed in Section V-D.

As for the prioritization techniques (Algorithm 2), in all
three programs, p-t=3 outperforms p-t=2, but the results of

p-tsl-t=2 and p-tsl-t=3 are mixed: in flex and grep, p-
tsl-t=2 is better, while in make, p-tsl-t=3 is better.

C. RQ1.2 Impact of weighting methods
If we examine the branch coverage based weighting, we

see that the three subject programs share the same results,
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Figure 6. NAPFD for grep of different prioritization strength

that p-t=3 outperforms p-t=2, and r-t=2 exhibits similar
cumulative fault detection to r-t=3.

In general, in the TSL based weighting, the 3-way tech-
niques do not outperform pair-wise techniques, either for
prioritization or regeneration (the only exception is p-tsl-t=3
and p-tsl-t=2 in make). It may due to how we set weights
to the specification.

D. Analysis and Discussion

In this section, we first analyze the factors that may impact
the results of 3-way prioritization vs. 2-way prioritization,
we then provide some suggestions to practitioners, and
finally we provide some insights in how we can improve
in the future.

First, we believe that the additional benefits of 3-way is
dependent on the percentage of 3-way interaction related
faults. If we examine the three subject programs in our
study (fault detection results in [8]), among all the faults
that can be detected by an exhaustive CIT test suite, the
2-way interaction faults make up over 80% of the faults,
while 3-way faults only contribute to about 15% of the total.
This indicates that if the test suites are generated based
on 3-way interactions, bias may be placed on certain 2-
way interactions, and other 2-way interaction faults may be
missed in early test cases. In general the biased covering
arrays are larger than the prioritized arrays meaning that
we may miss important pairs early on. We believe that this
may explain why the 3-way regenerated suites detect faults
slower than the 2-way suites in the beginning.

Second, the poor performance of 3-way TSL based tech-
niques may be due to how we set weights for the specifica-
tion. We may need different weighting methods for different

testing strengths. We are going to address this in future work.
We are unable to predict the type of faults (i.e., the

strength of interactions that causes the fault) before we
prioritize and test, therefore, we give suggestions to the prac-
titioners based on previous studies of faults ( [8], [9], [21],
[22]). Since the literature shows that the 2-way interaction
related faults are of higher prevalence than higher strength
interaction faults: when code coverage is available, 3-way
prioritization (p-t=3) may be preferred; if code coverage
is unavailable, pair-wise TSL based regeneration (r-tsl-t=2)
may be the best choice.

Finally, we think there may be some ways to improve
the performance of 3-way prioritization. In the current
algorithms (Algorithms 1 and 2), the tie breaker of selection
is random selection. In the future, when we encounter a tie of
3-way interaction weights, we may break this by considering
2-way interaction weights; i.e. the factor/value/test with
higher 2-way interaction weight will be selected.

VI. CONCLUSIONS

In this paper we have studied several CIT oriented priori-
tization techniques, with two different testing strengths. Our
findings suggest that the prioritization with higher testing
strength may lead to earlier fault detection, but the prioriti-
zation techniques and weighting method must be considered.

Specifically, if given coverage based weighting, 3-way
prioritization (p-t=3) is always among the best set of tech-
niques, and it is more effective than pair-wise prioritization
(p-t=2), in all versions across all three subject programs.
However, the result of regeneration is slightly different. 3-
way regeneration (r-t=3) does not always perform better than
pair-wise regeneration (r-t=2). It may be due to bias placed



on certain 2-way interactions. If TSL based weighting is
considered, we find no 3-way technique that outperforms
pair-wise technique, either for prioritization or regeneration.
But r-tsl-t=2 is always among the best techniques.

Therefore, if code coverage is available, 3-way coverage
based prioritization should be considered. If we can afford
to spend a bit more time, then 3-way regeneration is also
effective, but it may not be as good as 2-way in the first
few test cases. When we lack code coverage pair-wise TSL
based regeneration should be our first choice.

In future work, we are going to analyze the study results
from other perspectives, such as Tuple Density [17]. We are
also going to understand why the TSL based weighting fails
to meet our expectation for higher strength prioritization
techniques. We will examine different weighting methods for
different testing strengths. We are also going to try a smarter
tie breaker for t-way (t > 2) prioritization techniques.
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