
This is a repository copy of Probability-based semantic interpretation of mutants.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/81417/

Version: Accepted Version

Proceedings Paper:
Patrick, Matthew, Alexander, Rob orcid.org/0000-0003-3818-0310, Oriol, Manuel et al. (1
more author) (2014) Probability-based semantic interpretation of mutants. In: Proceedings
- IEEE Seventh International Conference on Software Testing, Verification and Validation
Workshops:ICSTW 2014. 7th IEEE International Conference on Software Testing,
Verification and Validation Workshops, ICSTW 2014, 31 Mar - 04 Apr 2014 IEEE Computer
Society , GBR , pp. 186-195.

https://doi.org/10.1109/ICSTW.2014.18

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Probability-Based Semantic Interpretation of Mutants

Matthew Patrick∗†, Rob Alexander†, Manuel Oriol†‡ and John A. Clark∗

∗Department of Plant Sciences

University of Cambridge

United Kingdom

mtp33@cs.york.ac.uk

†Department of Computer Science

University of York

United Kingdom

{mtp, rda, manuel, jac}@cs.york.ac.uk

‡Industrial Software Systems

ABB Corporate Research

Baden-Dättwil, Switzerland

manuel.oriol@ch.abb.com

Abstract—Mutation analysis is a stringent and powerful
technique for evaluating the ability of a test suite to find
faults. It generates a large number of mutants and applies
the test suite to them one at a time. As mutation analysis is
computationally expensive, it is usually performed on a subset
of mutants. The competent programmer hypothesis suggests that
experienced software developers are more likely to make small
mistakes. It is prudent therefore to focus on semantically small
mutants that represent mistakes developers are likely to make.
We previously introduced a technique to assess mutant semantics
using static analysis by comparing the numerical range of their
symbolic output expressions. This paper extends our previous
work by considering the probability the output of a mutant is the
same as the original program. We show how probability-based
semantic interpretation can be used to select mutants that are
semantically more similar than those selected by our previous
technique. In addition to numerical outputs, it also provides
support for modelling the semantics of Boolean variables, strings
and composite objects.

Keywords—mutation analysis; semantic interpretation; static
analysis; symbolic execution; mutant selection;

I. INTRODUCTION

Mutation analysis is more stringent than other testing tech-
niques and a good predictor of the real fault finding capability
of a test suite [1] [7]. Yet it is computationally expensive to
apply and requires significant human effort to interpret the
results [3]. Mutation analysis generates a large number of
mutants (each with a small syntactic change from the original
program), then executes the test suite against them one at a
time. It is computationally expensive to apply the test suite to
all the mutants that are generated [4]. Significant human effort
is required to discern the expected output for each test input
used to kill mutants (i.e. distinguish them from the original
program) and identify semantically equivalent mutants (that
cannot be killed by any test input) [5]. Mutation analysis may
be made less expensive (with a small reduction in capability)
by evaluating the test suite with a smaller set of mutants [4].

The veracity of mutation analysis depends upon the mu-
tants that are applied. It is important to select mutants that are
representative of mistakes programmers are likely to make and
cover the potential range of faults as completely as possible. A
mutant’s contribution to the coverage of potential faults can be
considered in terms of the test inputs that may be used to kill
it. Mutants that are killed by a superset of the input values that
kill another mutant (or group of mutants) can be considered
less valuable that those that require a unique combination of
test input values. In general, mutants that are more difficult
to kill contribute more to mutation analysis, as they are less
likely to be killed as a ‘side effect’ of killing other mutants.

Although there have only been a few investigations com-
paring mutants with actual faults, research suggests that mu-
tants do represent faults programmers are likely to make [6][7].
This helps to confirm the coupling and competent programmer
hypotheses that experienced programmers make small mistakes
and that complex failures are linked to simple failures [8][9].
Small mistakes in semantics result in programs with behaviour
that is close to being correct. These faults are less likely to be
repaired by the developer, as they are difficult to detect [7].
Although small mutations of the program code can be used to
represent small semantic mistakes, just because a mutation is
small syntactically does not mean it represents a semantically
small fault. Small changes in syntax can have a large effect
on semantics [10]. Many mutants are trivially easy to kill and
thus do not represent faults a programmer is likely to make.

This paper introduces a new technique for evaluating and
selecting mutants according to their semantic similarity to the
original program. This is useful for two reasons: firstly, be-
cause semantically similar mutants are more likely to represent
mistakes that a programmer might make; secondly, because
semantically similar mutants contribute more to the coverage
of potential faults (i.e. other mutants are likely to be killed
as a side effect of killing semantically similar mutants). Our
technique evaluates the semantics of each mutant using static
analysis, without reference to any particular test suite. This
allows for the independent selection of semantically small
mutations and forgoes the expense of evaluating all the mutants
against a test suite. Only the mutants most similar to the
original program are selected for use in mutation analysis.

Our technique evaluates mutants based on an approxima-
tion of the probability that (for a given range of inputs), they
will produce the same output as the original program. Mutants
that are predicted to have a high probability of producing the
same output as the original program are likely to be similar
in semantics. This work extends our previous technique [11]
by incorporating a more advanced model of mutant semantics.
Previously, we evaluated mutants according to the difference
between their output range and that of the original program.
Both our new and previous technique apply dynamic symbolic
execution to each path through the program and perform
semantic analysis on the resulting symbolic expressions.

The paper is organised as follows. Section II explores
some background ideas and Section III describes the general
principles of our technique. Section IV presents our model,
with an example in Section V. Section VI describes our exper-
iments, Section VII explains our methodology and Section VIII
analyses the results. Our conclusions are presented in Section
IX and Section X describes an opportunity for further work.

II. BACKGROUND

Semantic interpretation uses symbolic execution to perform
an abstract exploration of a program’s semantics. Instead of
executing the program with actual input values, symbolic
execution represents each input symbolically. As the program
is executed, a path condition and symbolic output expression
are constructed for each path. Path conditions describe the
requirements that must be met for each path to be executed
with actual inputs. Symbolic expressions represent the output
of each path symbolically in terms of the input variables.
Symbolic execution makes it possible to reason about all
possible executions of a program, not just those that have been
encountered using actual inputs.

Figure II demonstrates an example of symbolic execution,
as applied to the remainder algorithm. The input variables
x and y are represented symbolically as X and Y. A new
variable (div) is assigned the symbolic expression X/Y and
subsequently used in the program. Elsewhere in the diagram,
this variable is replaced by its symbolic expression (X/Y).
Symbolic execution reveals that the output is ((X/Y)*Y)-X if
X/Y is less than zero, otherwise it is X-((X/Y)*Y). The second
expression is equal to the first multiplied by -1. This means that
the output range (cardinality) is the same for both paths, but
the signs and therefore the minimum and maximum values are
swapped around. Symbolic execution can be used to analyse
the output of each path through a program and all its mutants.

We use Java Pathfinder (JPF) to perform symbolic execu-
tion. JPF is an open source model checker and Java virtual
machine, originally developed by NASA to find concurrency
faults [12]. Extensions have been written for JPF to handle
a variety of testing and verification tasks. JPF-symbc [13] is
a symbolic execution extension for JPF. It performs symbolic
execution by storing symbolic attributes along with each vari-
able on the stack. JPF-symbc is capable of processing integer
and real numeric values, Booleans, references and strings. A
number of constraint solving packages are also included for
finding input values to exercise each path. JPF-symbc has been
used by Fujitsu to test web applications [14] and has helped
find a bug in the Onboard Abort Executive for the NASA Crew
Exploration Vehicle [13].

Fig. 1. An Example of Symbolic Execution

Symbolic output expressions and path conditions contain a
number of entries for each input variable, connected together
by operations that describe program behaviour. They can
be processed to provide information about mutants and the
original program. For example, the calculations in Table I are
used to find the minimum and maximum numerical output
values for each path from the range of the input variables. This
particular model of arithmetic is used in both our difference
and probability-based semantic interpretation techniques as
part of their assessment of mutant similarity.

We use muJava to generate mutants for the programs under
evaluation. muJava includes twelve method-level operators and
twenty nine class-level operators [15]. We only use the method
level operators, as the interaction between classes is outside the
scope of this paper. The method-level operators are based on
research into selective mutation started by Wong and Mathur
[16] and continued by Offutt et. al. [17]. Mutation operators
that alter or replace expressions were found to be the most
effective in terms of cost reduction and mutation score. MuJava
method-level mutation operators modify arithmetic, relational,
logical and conditional expressions in the program code [15].
We use all the method level operators in our research.

TABLE I. THE MINIMUM AND MAXIMUM RESULTS OF EACH NUMERICAL OPERATION [11]

Min(D) Max(D)

L + R Min(L) + Min(R) Max(L) + Max(R)

L - R Min(L) − Max(R) Max(L) − Min(R)

L * R

if((Min(L) ≥ 0) && (Min(R) ≥ 0)) if((Min(L) ≥ 0) && (Max(R) ≤ 0))
return Min(L) ∗ Min(R) return Min(L) ∗ Max(R)

else if ((Max(L) ≤ 0) && (Max(R) ≤ 0)) else if ((Max(L) ≤ 0) && (Min(R) ≥ 0))
return Max(L) ∗ Max(R) return Max(L) ∗ Min(R)

else return Smallest(Min(L) ∗ Max(R), else return Biggest(Max(L) ∗ Max(R),
Max(L) ∗ Min(R)) Min(L) ∗ Min(R))

L / R

if((Min(L) ≥ 0) && (Min(R) ≥ 0)) if((Min(L) ≥ 0) && (Max(R) ≤ 0))
return Min(L) / Max(R) return Min(L) / Min(R)

else if ((Max(L) ≤ 0) && (Max(R) ≤ 0)) else if ((Max(L) ≤ 0) && (Min(R) ≥ 0))
return Max(L) / Min(R) return Max(L) / Max(R)

else return Smallest(Max(L) / Smallest(Max(R), -1)), else return Biggest(Max(L) / Biggest(Min(R), 1)),
Min(L) / Biggest(Min(R), 1)) Min(L) / Smallest(Max(R), -1))

L % R
if(Min(R) ≥ 0) return 0 if(Max(R) ≤ 0) return 0
else return Max(-Max(L), Min(R) + 1) else return Min(Max(L), Max(R) - 1)

-L -Max(L) -Min(L)

III. PROBABILITY-BASED SEMANTIC INTERPRETATION

Probability-based interpretation estimates the probability
that (for a value sampled uniformly at random from a given
range of inputs) a mutant will have the same behaviour
as the original program. This is calculated in terms of the
probability that the mutant will follow the same path as the
original program and produce the same output. To simplify
this calculation and make the model computationally feasible,
we do not consider the probability that a mutant will produce
the same output as the original program if it follows a different
path. Instead, we assume mutants that deviate from the path
followed by the original program have a different output. The
probability that a mutant behaves differently is therefore equal
to the probability it follows a different path or it follows the
same path but produces a different output (see Equation 1).

P (m = o) =
∑

p∈Paths

P (op)− P (mp&&op)
+ P (mp&&op) ∗ P (mp = op)

(1)

(P (op) is the probability the original program executes path p,

P (m = o) the mutant has the same output as the original program)

Probability-based interpretation is more accurate than
difference-based interpretation [11]. Take for example two
mutants, one with an output range of [1,10] and the other
[1,100]. If the output range of the original program is [11,20],
the sum of differences for the first mutant is 20 and the second
90. Our previous, difference-based, metric incorrectly assumed
the first mutant is more similar to the original program because
its minimum and maximum values are numerically closer. Yet,
it is actually impossible for the first mutant to produce the same
output as the original program. Our new, probability-based,
metric reveals the second mutant is more similar because it has
0.1 probability of producing the same output as the original
program, compared to the zero probability of the first mutant.

Our new metric also takes into account the likelihood that
paths through a program are exercised. This is important for
two reasons: firstly, the effect of a mutation may have an
impact on one or more branch conditions, thus causing the
mutant to follow a different path to the original program;
secondly, semantic differences have a greater effect on the
output if they occur on frequently exercised paths. A path
through the program may guarantee that the mutant produces
a different output, but unless it can be executed that path will
have no effect. Modelling a program’s control flow therefore
allows more accurate semantic interpretation of its mutants.

We estimate the likelihood that a path is exercised by
examining its branch conditions one at a time. A mutation
can affect the control flow in one of two ways: directly, by
changing the operations or values applied within a branch
condition; or indirectly, by changing the value of a variable
that is later used by a branch condition. The probability of
satisfying each branch condition is estimated in the same way
symbolic outputs are compared. For example, branch condition
x == 1 has probability 0.01 of being exercised if the input
domain of x is [0, 99]. We calculate the probability of satis-
fying each branch condition assuming independent probability
distributions and a fixed input domain. The resulting metric is
not completely accurate, but it is computationally feasible and
allows reasonable approximations to be made.

IV. MODELLING SEMANTIC PROBABILITIES

We model semantics by assuming that values are selected
uniformly at random from a fixed input range, or (in the
case of Boolean inputs) from a fixed probability of being
true. Dynamic symbolic execution produces a symbolic output
expression and path condition for each path through the
program. From this, it is possible to predict the probability that
a mutant will produce the same output as the original program
by modelling the approximate effect of each operation in turn.

A. Numerical Expressions

Numerical expressions are compared according to their
potential output range for a given range of input. We model the
output range of a numerical operation using the calculations
from Table I. Each operation affects the output range differ-
ently, but it is assumed (by approximation) that the distribution
of output values is always uniform. Under this assumption, the
probability that the output of a path through a mutant will be
the same as the original program can be calculated in terms
of the intersection of their output range (see Equation 2).

P (mp = op) =
|m∗

p ∩ o∗p|

|m∗
p| ∗ |o

∗
p|

(2)

(m∗

p is the range of outputs from mutant m along path p)

Numerical expressions are used within a Boolean expres-
sion, as part of an equality (e.g. x == y) or an inequality (e.g.
x > 5). The probability that an equality is true can be predicted
using Equation 2. Inequalities are evaluated by considering
the range of values that appear in one output but not the
other. Equation 3 describes the calculation for a greater-than
operation (it is trivial to rearrange it for a less-than operation).

P (ap > bp) =

max(max(a∗p)−max(b∗p), 0) ∗ |b
∗
p|+ |a∗p ∩ b∗p|

∗min(max(a∗p),max(b∗p))−min(b∗p)− k)/2

|m∗
p| ∗ |o

∗
p|

(3)

(k = 1 for discrete comparisons, k = 0 for continuous)

Numerical inequality satisfactions are typically dependent
events. The probability that one of the inequalities is satisfied
influences the probability that other inequalities in the expres-
sion are satisfied. In the simplest case, dependencies can be
identified as overlapping regions (e.g. x > 5&&x > 10 →
x > 10). More complex dependencies require the inequalities
to be rewritten (e.g. x+ y > 3&&x+ 2y > 6 → y > 3).

We handle dependencies between inequalities with the
simplex algorithm for linear algebra [18]. Inequalities are
simplified and removed through a process of Gaussian elim-
ination. Linear approximation is applied for any non-linear
expressions. We prepare Boolean expressions for the simplex
algorithm by rewriting them in canonical form (disjunction
of conjunctions) using the Quine-McCluskey algorithm [19].
The simplex algorithm is applied to simplify each conjunction
separately, before simplifying the disjunction as a whole using
the rule P (x || y) = P (x) + P (y)− P (x&&y).

B. Boolean Expressions

Although Boolean expressions can be represented with 1
(for true) or 0 (for false), limiting their range to just two
values restricts the depth of semantic information they express;
only operations involving tautologies or contradictions have
any effect on the comparison of their outputs. We therefore
represent Boolean expressions in terms of their probability of
being true (see Table II). This allows more accurate estimation
of the effect of each mutation in semantic output comparisons.

TABLE II. SEMANTIC INTERPRETATION OF BOOLEAN OPERATIONS

Operation Probability Output True

P (L&&R = T) (conjunction) P (L = T) ∗ P (R = T)
P (L || R = T) (disjunction) P (L = T) + P (R = T) − P (L&&R = T)
P (L ∧ R = T) (exclusive-or) P (L || R = T) − P (L&&R = T)

It is not possible to apply this model directly to expressions
that contain repeated terms, such as x&&x, x || ¬x and x∧x.
If x has a 50% chance of being true, our model predicts
probabilities of 0.25, 0.75 and 0.5. The correct probabilities for
these expressions are 0.5, 1.0 and 0.0. To avoid this problem,
we first simplify the expressions into canonical form. For
Boolean expressions to have the same output value, they must
both be true or false (see Equation 4).

P (mp = op) =
P (mp = T) ∗ P (op = T)+

P (mp = F) ∗ P (op = F)
(4)

C. Bitwise Expressions

Although bit vectors are stored in numerical data types,
bit operations act upon the value of each individual bit (1
or 0), rather than the numerical value as a whole. For the
highest level of accuracy, it is important to consider the effect
these operations have at the bit level. The probability of a
bit value being 1 in the output of a conjunction, disjunction
or exclusive-or can be determined by the same model as was
used for Boolean values (where 1 = true and 0 = false).
Equation 5 gives the probability of two bit vector expressions
returning the same output value.

P (mp = op) =

n
∏

i=0

P (mp,i = op,i) (5)

(n is the most significant bit set in o or m)

Bit vectors can also be included as terms of numerical
operations (plus, minus, multiply etc.). These operations are
modelled by transforming the probability of each bit being true
into a minimum and maximum value for the bit vector (see
Equation 6). The minimum value of a bit vector is determined
by the bits fixed at 1 and the maximum value by the largest
significant bit and the bits fixed at 0.

Min(x) =

n
∑

i=0

[P (xi = 1) = 1] ∗ 2i

Max(x) = 2n+1 − 1−

n
∑

i=0

[P (xi = 1) = 0] ∗ 2i
(6)

Iverson bracket notation: [P] =

{

1
0

if P is true
otherwise

D. String Processing

We model strings on a character-by-character basis. A char-
acter is either concrete (it has a known value) or symbolic (its
actual value is unknown, but it is assumed to be within a given
set e.g the Latin alphabet). Each input string is represented
as an array of 5 symbolic characters. As well as extracting
and reordering symbolic characters, string operations can also
introduce new concrete characters. By keeping track of the
individual characters, it is straightforward to determine the
effect of each string operation on the output (see Table III).

TABLE III. SEMANTIC INTERPRETATION OF STRING OPERATIONS

Operation Output

concat(a, b) a1a2a3a4a5..a|a|b1b2b3b4b5..b|b|
equals(a, b) [|a| = |b|]

∏
i∈|a| ([ai ≡ bi] + [ai 6≡ bi&(ai ∈ S‖bi ∈ S)]/N)

length(a) |a|
substring(a, b, c) ab..ac

startsWith(a, b) [|a| >= |b|]
∏

i∈|b| ([ai ≡ bi] + [ai 6≡ bi&(ai ∈ S‖bi ∈ S)]/N)
(S is the set of symbolic inputs, N is the number of values assigned to each input (a..z

would be 26) and a ≡ b is true if a and b are identical symbolic or concrete values)

Table III describes the output of the 5 most commonly used
string operations. In a survey of 38 Java applications, they were
shown to be responsible for 90% of all string processing [20].
Many of the operations in the remaining 10% can be rewritten
in terms of these operations. The probability of a symbolic and
concrete character or two symbolic characters having the same
value is 1/N , where N is the size of the character set. If there
are different symbolic or concrete characters at any point, or
the length of the input strings is incompatible, these operations
have a zero probability of being true. Otherwise probabilities
are estimated under the assumption of their independence.

E. Objects

Ciupa et al. [21] describe a metric for measuring the
distance between two objects according to their type, their field
values and the field values of any other objects they reference.
We have adapted this metric for static semantic analysis to
calculate the probability that a mutant and the original program
have the same output value (see Equation 7).

P (mp = op) =

{

∏

i∈F (o) P (m.ip = o.ip) if type(m) = type(o),

0 otherwise

(7)

(F (o) is the set of field values and objects referenced by o)

We calculate the probability that two objects output from
a program have the same value by recursively comparing their
types. Each object contains a collection of fields, which in turn
may have primitive types or references to other objects. Two
objects cannot have the same value if their primitive fields
have a different type or they refer to differently typed objects.
In this case, the probability of their equivalence is zero.

Pairs of objects that have the same type are compared
recursively to assess the semantic similarity of their field
values. We compare all the primitive field values inside these
objects along with those contained in objects they refer to.
Primitive values are compared symbolically, using symbolic
expressions expressed in terms of the program input values.

Algorithm 1 Example ISBN class written in Java

p u b l i c c l a s s ISBN {
p u b l i c S t r i n g code = ” ” ; p u b l i c boolean v a l i d = f a l s e ;

p u b l i c i n t g e t (i n t pos)

{ re turn I n t e g e r . p a r s e I n t (code . s u b s t r i n g (pos , pos)) ; }
p u b l i c ISBN (i n t p r e f i x , i n t group , i n t p u b l i s h e r , i n t book)

{
i f ((p r e f i x<∗ 978) | | (p r e f i x >979) | | (group <0) | | (group >99999) | | * M1 changes < into >

(p u b l i s h e r <0) | | (p u b l i s h e r >9999999) | | (book<0) | | (book >999999))

{ v a l i d = f a l s e ; }
e l s e

{
code += p r e f i x + group + ((p u b l i s h e r<10†) ? ” 0 ” : ” ”) + p u b l i s h e r +book ; † M2 changes 10 into 5
v a l i d = (code . l e n g t h () == 12) ;

i f (v a l i d)

{
i n t sum =(g e t (0) +3∗ g e t (1) + g e t (2) +3∗ g e t (3) + g e t (4) +3∗ g e t (5) +

g e t (6) +3∗ g e t (7) + g e t (8) +3∗ g e t (9) + g e t (1 0) +3∗ g e t (1 1)) ;

code += ((sum%10==0) ? ” 0 ” : (1 0−‡sum%10)) ; ‡ M3 changes − into +
}

}
}

}

V. AN EXAMPLE OF SEMANTIC ANALYSIS

As an example of probability-based semantic interpre-
tation, Algorithm 1 describes a Java class for constructing
ISBN (International Standard Book Number) codes. The class
constructor inputs a prefix, along with the group, publisher and
book code. It then checks they are within the range of the ISBN
standard, then sets the value of the ISBN code accordingly.

Mutants produce a different output to the original program
if they change the validation conditions, alter the circumstances
under which a zero is added to the publisher code or calculate
the check digit differently. Three mutations are annotated on
the program code: M1 replaces a less-than sign with a greater-
than sign in the validation conditions; M2 moves the zero
addition threshold from 10 to 5; M3 replaces a minus sign
in the check digit calculation with a plus. These mutations
demonstrate various semantic changes that probability-based
interpretation must take into account.

The probability that M1 has an effect on the output can
be calculated as per the steps in Table IV. It produces a
different output if the mutated branch condition evaluates
true in the mutant, but not the original program, or vice
versa (Step 1). This can be rewritten (Step 2) and simplified
(Step 3) to show these events are independent. All other
inequalities cancel out (Step 4), leaving only the one that has

changed. Domain reduction reveals the mutant has an effect if
prefix is not equal to 978 (Step 5). Assuming an input range
of [0,999], the probability that the mutant has an effect is
977/1000 + 22/1000 = 0.999.

The probability that M2 has an effect on the output can be
calculated in a similar way. The probability that publisher is
less than 10 but not less than 5 is equal to (10− 5)/1000 or
0.005. The probability that publisher is less than 5 but not
less than 10 is equal to zero. M2 will only be exercised if the
first branch condition evaluates false. The probability of this is
(21 ∗ 980)/(10002), assuming an input range of [1,1000] for
each parameter. The probability that M2 has an effect on the
output is therefore 0.02058 ∗ 0.005 = 1.029e− 4.

The probability that M3 has an effect on the output can
be calculated by considering the likelihood that it is executed
and changes the value of code. M3 is exercised if the first
branch evaluates false (P = 0.02058), the length of code is 12
(P = 0.94) and sum%10 is not equal to zero (P = 0.9). M3
just affects the check digit. In the original program, its output
range is [10, 10]− [0, 9] = [1, 10]. In the mutant, this becomes
[10, 10] + [0, 9] = [10, 19]. These ranges only overlap once
(with 10). The probability that M3 has an effect on the output
is therefore 0.02058∗0.95 ∗0.99 = 0.012031. Assuming every
input parameter has the range [0, 999], M1 is predicted to have
the greatest semantic effect and M2 the smallest.

TABLE IV. CALCULATING PROBABILITY OF DIFFERENTLY EXERCISING FIRST BRANCH

Probability Rule

1 P(m&&!o ||!m&&o) Statement extraction

2 P(m&&!o)+P(!m&&o)-P(m&&!o&&!m&&o) Equivalent expression

3 P(m&&!o)+P(!m&&o) Contradiction

4
P((prefix < 978)&&!(prefix > 978)) Rewrite and

+P(!(prefix < 978)&&(prefix > 978)) contradiction

5 P(prefix < 978)+P(prefix > 978) Domain reduction
(m and o are path conditions of the mutant and original program respectively)

VI. EXPERIMENTS

Experiments were set up to answer the following two
research questions regarding the potential for probability-
based static semantic interpretation to be used as a metric for
deciding which mutants to include in mutation analysis:

RQ1: Can our new approach to probability-based se-
mantic interpretation be used to select mutants
that are more semantically similar to the original
program than our previous approach?

Previously, we interpreted mutant semantics in terms of the
differences between their output range and that of the original
program [11]. In general, we found there to be a positive corre-
lation between the number of mutants selected using our previ-
ous metric and the mutation score / killing frequency achieved
by random testing. There were however some exceptions in
that smaller selections of mutants are not always on average
more difficult to kill. Our new technique for probability-based
selection aims to model mutant semantics more accurately.
We consider whether the correlations achieved by our new
technique are stronger than those previously observed.

We address this research question by selecting mutants that
are predicted to be similar to the original program in different
set sizes. We make two separate selections for each set size,
one according to predictions made by difference-based seman-
tic interpretation and the other according to predictions made
by probability-based semantic interpretation. Probability-based
interpretation is likely to be more effective than difference-
based interpretation because it applies a more detailed model of
semantics. We will consider probability-based interpretation to
be more effective if it identifies mutants that are more difficult
to kill on average than difference-based interpretation.

RQ2: Is probability-based interpretation capable of
comparing the semantic similarity of more
complex programs with greater accuracy than
difference-based semantic interpretation?

We define a program to be complex if it has more lines of
code and produces a greater number of mutants. Although our
previous technique (for difference-based interpretation) was
evaluated on real methods from the Java Standard Library, the
largest of these methods had only 18 lines of code and the
most number of mutants generated for a method was 70 [11].
It is likely that the effort required to perform unit testing and
evaluate the output of each test case for these programs will
not be overwhelming, since they are object-oriented [22]. It is
therefore also useful to compare the accuracy of difference-
based and probability-based interpretation on procedural pro-
grams that are slightly larger and produce more mutants.

We address this research question by applying difference-
based and probability-based interpretation to three programs
that are often used in unit testing research: FourBalls, TriTyp
and Tcas (see Table IX). Our new probability-based metric
can be used to interpret the semantic similarity of mutants that
involve Booleans, bit vectors, strings and objects. Difference-
based interpretation can only be used on numerical data types
(i.e. integers or floating point values). We chose programs
that make use of some other data types (Booleans and array
objects), but output must be numerical and well-formed (i.e.
object structure is not changed by mutation).

VII. METHODOLOGY

We applied our techniques to 19 methods from the Java
Standard Library (see Table V) and three programs that are of-
ten used in research (see Table IX). The Java Standard Library
methods were also used in our previous research [11]. They
come from six different classes and process numerical values.
The other three programs are slightly larger and more complex.
This should help make semantic analysis more challenging.
TriTyp only processes numerical values, but Tcas also works
with Booleans and FourBalls outputs an array.

TABLE V. METHODS FROM THE JAVA STANDARD LIBRARY [23]

LOC Mutants

java.math.BigDecimal

int checkScale(long) 16 60
int longCompareMagnitude(long,long) 18 44
long longMultiplyPowerTen(long,int) 18 98

java.math.BigInteger

int getInt(int) 18 46

javax.swing.JTable

int limit(int,int,int) 5 36

javax.swing.plaf.basic.BasicTabbedPanelUI

int calculateMaxTabHeight(int) 8 42
int calculateMaxTabWidth(int) 8 42
int calculateTabAreaHeight(int,int,int) 8 51
int calculateTabAreaWidth(int,int,int) 8 51
int getNextTabIndex(int) 4 17
int getNextTabIndexInRun(int,int) 12 63
int getPreviousTabIndex(int) 4 50
int getPreviousTabIndexInRun(int,int) 12 91
int getRunForTab(int,int) 9 43
int lastTabInRun(int,int) 11 81

javax.swing.plaf.basic.BasicTreeUI

int findCenteredX(int,int) 5 49
int getRowX(int,int) 3 25

javax.swing.text.AsyncBoxView

float getInsetSpan(int) 5 27
float getSpanOnAxis(int) 7 17

TABLE VI. BENCHMARK PROGRAMS FROM TESTING RESEARCH

Program Mutants LOC Function

FourBalls 189 40 Ratio calculation [24]
TriTyp 310 61 Triangle classification [24]
Tcas 267 120 Air traffic control [25]

We select 10%, 25%, 50% and 100% of the mutants
according to their predicted semantic similarity (the 10%
selection should be most similar to the original program), then
generate one million random test cases and count the number
of times each mutant is killed. Mutants that are similar to the
original program are likely to be killed less often. We evaluate
our techniques using two metrics: mutation score (see Equation
8) represents the proportion of mutants killed at least once;
killing frequency (see Equation 9) the proportion of tests that
kill each mutant. If our techniques are effective, there should
be a high correlation between these metrics and selection size.

Mutation score =
number of mutants killed

|M |
(8)

Killing frequency =

∑

m∈M
number of test cases that kill m

total number of test cases ∗ |M |
(9)

(M is the set of non-equivalent mutants, i.e. those that can be killed)

VIII. RESULTS AND ANALYSES

A. Results for RQ1

RQ1 applies semantic interpretation to mutants generated
from the Java Standard Library. We compare the mutation
score and killing frequency for each selection size. The mean
results for these measurements are presented in Tables VII and
VIII respectively. Figures 2 and 3 are frequency density graphs
of the Pearson correlation coefficients between selection size
and mutation score / killing frequency. Examining these results
will help us to anticipate the accuracy of our techniques in
modelling mutant semantics for other similar programs.

Probability and difference based semantic interpretation
were both able to select difficult to kill mutants (as determined
by random testing) for most methods evaluated from the
Java standard library. The mutants selected by probability-
based interpretation were slightly harder to kill on average.
Of the first ten percent of mutants selected by this technique,
42.3% were killed, compared to 42.6% for those selected by
difference-based interpretation. This result is confirmed by the
frequency curves in Figure 2, which have a lower density
for small coefficients of probability-based interpretation and a
slightly larger density for high correlations. The curve is also
smoother, with smaller deviations from the trend, but overall
there is little difference between the two techniques.

The results for killing frequency are similar. Both prob-
ability and difference-based interpretation select mutants that
are more difficult to kill than average (see Table VIII). The
killing frequency for mutants in the first quarter is 21.4%
for difference-based interpretation and 20.8% for probability-
based interpretation, compared to 38.4% for the complete set.
This means the average mutant in the top quarter of those
selected is less than half as likely to be killed by a random
test case than the average mutant in the remaining three
quarters. Probability-based interpretation also has a slightly
higher density for high correlation coefficients and a lower
density for small correlation coefficients (see Figure 3).

TABLE VII. MEAN RESULTS FOR MUTATION SCORE

Difference-Based Probability-Based

10% 0.426 0.423

25% 0.455 0.435

50% 0.541 0.548

100% 0.694 0.694

Fig. 2. Correlation Between Selection Size and Mutation Score

TABLE VIII. MEAN RESULTS FOR KILLING FREQUENCY

Difference-Based Probability-Based

10% 0.219 0.215

25% 0.214 0.208

50% 0.267 0.282

100% 0.384 0.384

Fig. 3. Correlation Between Selection Size and Killing Frequency

One of the reasons why there is little difference in the
results for probability and difference-based interpretation is
that none of the methods evaluated in this research question
are overly complicated. They have little branching structure
and only process numerical values. This means that significant
parts of our new semantic model are not needed for these
programs. The effective difference between our new and old
model is therefore very small. The main difference is that, in-
stead of comparing output ranges by their numerical difference,
we consider the probability that the same value occurs in both.
In Section III we showed that this has a significant difference
in some case, but this is not always the case. Probability-
based interpretation is therefore only slightly more effective
that difference-based interpretation on simple programs.

There are mutants for which difference-based and
probability-based interpretation both fail to successfully com-
pare semantic similarity. This is sometimes an artefact of
the way we have conducted our experiments. For example,
no decrease in mutation score is observed for any selection
size of the calculateMaxTabHeight, because all of its mutants
are killed by the random test suite (in this case, the killing
frequency is a more effective metric). In other cases, there is
a weakness in our techniques. For example, the lowest killing
frequency for lastTabInRun occurred when using the complete
set of mutants - all selections resulted in a significantly higher
killing frequency. One significant weakness of our techniques
is that we assume each output of a program is uniformly
distributed. If outputs have a significantly different distribution,
then our techniques become less accurate. It can therefore
be said that, although difference-based and probability-based
interpretation do identify more difficult to kill mutants, there
are specific instances where they fail to achieve this goal.

Summary for RQ1: Difference and probability-based
interpretation can both be used to select mutants that are
semantically similar to the original program. Probability-based
interpretation was slightly more effective on the simple meth-
ods we evaluated from the Java Standard Library, but both
techniques can be used to good effect on these methods.

B. Results for RQ2

RQ2 applies semantic interpretation to programs that are
often used in software testing research (FourBalls, TriTyp and
Tcas). Table IX shows the mutation score for each selection
made by difference and probability-based interpretation; Table
X shows the killing frequency. Figures 4, 5, 7 and 8 present the
mutation score and killing frequency of each selection relative
to the complete set of mutants. Finally, Figures 6 and 9 shows
the Pearson correlation coefficients between mutation score
/ killing frequency and selection size for each program. By
considering these results, we will be able to make conclusions
about the effectiveness of difference and probability-based se-
mantic interpretation on these slightly more complex programs.

Both techniques can both be used to select mutants that
have a lower mutation score (and are hence considered more
difficult to kill), but with different degrees of success (see Table
IX). The 25% selection for difference-based interpretation had
a mean mutation score of 25.4% (compared to 27.6% for the
complete set), whereas it was 19.7% for probability-based
interpretation. The mutation score for the probability-based
technique decreased further to 18.5% for the 10% selection,
whereas it actually increased to 26.7% for difference-based
interpretation. This distinction between the two techniques
is significantly greater than that seen in results for the Java
Standard Library. This suggests the choice of interpretation
technique is more important for these programs.

At first sight, the difference in killing frequency between
the two selection techniques seems quite small by compari-
son. Difference-based interpretation achieves a mean killing
frequency of 14.5% for the 10% selection size (compared to
17.2% for the complete set), whereas probability-based inter-
pretation achieves 12.5%. Yet, the probability-based technique
is much more consistent with regards to reducing the mutation
score as the selection size gets smaller. When a quarter of the
mutants are selected, probability-based interpretation achieves
a mean killing frequency of 12.6%, whereas the difference-
based technique actually increases the killing frequency to
18.0%. Overall, it is clear for the programs under evaluation
that probability-based interpretation selects more difficult to
kill mutants on average than difference-based interpretation.

Figures 4 and 5, 7 and 8 corroborate this finding with
a stronger trend for probability-based interpretation than
difference-based interpretation - selecting fewer (more se-
mantically similar) mutants produces a lower mutation score.
Probability-based interpretation reduces the mutation score and
killing frequency for all three programs, whereas difference-
based interpretation actually increases the frequency for cer-
tain selection sizes. Probability-based interpretation provides
stronger correlations between selection size and mutation
score/killing frequency. This indicates that it is more effective
at determining which mutants are difficult to kill.

Probability-based interpretation achieves success partly due
to its superior handling of branch conditions. Rather than
assuming paths contribute equally towards a program’s se-
mantics, probability-based interpretation weights each path
according to how likely it is to be exercised. Most paths
through FourBalls have the same probability, whereas triangle
types in TriTyp have different probabilities of occurrence. Tcas
contains paths that are only exercised when action needs to be
taken to avoid a collision. As a result, the difference between
Pearson correlation coefficients in Figure 6 and 9 is much
higher for Tcas than TriTyp or FourBalls.

Probability-based interpretation has six times the correla-
tion coefficient for Tcas (between mutation score and selec-
tion size) than difference based-interpretation (see Figure 6).
Difference-based interpretation has a negative correlation (be-
tween killing frequency and selection size) for Tcas, whereas
probability-based interpretation has a strong positive correla-
tion (see Figure 9). Probability-based interpretation performs
better than difference-based interpretation on programs that
rely heavily on branch conditions.

Summary for RQ2: Probability-based interpretation has
been shown to be a more reliable metric of the difficulty
involved with killing mutants generated from more complex
programs than difference-based interpretation. It can can be
used to select mutants, such that random testing achieves a
lower mutation score on average than with difference-based
interpretation and it is effective for all sizes of selection.
Probability-based selection is particularly effective for pro-
grams that have complex branch structure (e.g. Tcas) because
it takes into account the probability of executing each branch.

TABLE IX. MUTATION SCORE RESULTS

Programs
Difference-based metric Probability-based metric

10% 25% 50% 100% 10% 25% 50% 100%

FourBalls 0.434 0.423 0.492 0.463 0.345 0.321 0.324 0.463
TriTyp 0.274 0.225 0.235 0.267 0.155 0.206 0.223 0.267

Tcas 0.094 0.115 0.093 0.097 0.054 0.063 0.105 0.097
Mean 0.267 0.254 0.273 0.276 0.185 0.197 0.217 0.276

TABLE X. KILLING FREQUENCY RESULTS

Programs
Difference-based metric Probability-based metric

10% 25% 50% 100% 10% 25% 50% 100%

FourBalls 0.243 0.318 0.363 0.317 0.210 0.207 0.226 0.317
TriTyp 0.157 0.190 0.135 0.168 0.147 0.151 0.162 0.168

Tcas 0.037 0.033 0.032 0.031 0.017 0.020 0.031 0.031
Mean 0.145 0.180 0.177 0.172 0.125 0.126 0.140 0.172

Fig. 4. Mutation Score Achieved by Difference-Based Selection

Fig. 5. Mutation Score Achieved by Probability-Based Selection

Fig. 6. Mutation Score Correlations for Each Selection Technique

Fig. 7. Killing Frequency Achieved by Difference-Based Selection

Fig. 8. Killing Frequency Achieved by Probability-Based Selection

Fig. 9. Killing Frequency Correlations for Each Selection Technique

IX. CONCLUSIONS

Semantic interpretation uses static analysis to select mu-
tants that are difficult to kill. It executes the program under
test symbolically in order to determine the effect that mutations
of the program code have on the relationship between inputs
and outputs. The competent programmer hypothesis suggests
these mutants are particularly useful for testing because they
resemble faults that a programmer is more likely to make.

In our previous research, we predicted semantic similarity
in terms of the differences between the range of outputs from
each mutant and the original program. Our difference-based
technique does not take path conditions into account and
can only be applied to numerical values. In this paper, we
introduced a new technique for probability-based interpretation
that works by predicting the likelihood the output from a
mutant is the same as the original program. Probability-based
interpretation can be used on strings, Booleans, bitwise values
and compound objects. It is more effective than our previous
technique, particularly for more complex programs.

Difference and probability-based interpretation were both
capable of selecting difficult to kill mutants for most (not all)
methods evaluated from the Java standard library. Mutants in
the top quarter of those selected were less than half as likely
to be killed than the average mutant in the remaining three
quarters. Probability-based interpretation was slightly more
effective on these methods, but the difference is very small
since they do not require many features from the new model.

Probability-based interpretation was much more effective at
selecting difficult to kill mutants from the three slightly more
complex Java programs that are used in research. For example,
probability-based interpretation achieved an average 0.78 cor-
relation between selection size and mutation score (compared
to 0.13 for difference-based interpretation). Probability-based
interpretation is therefore a suitable technique for selecting se-
mantically similar mutants from programs with more complex
branching structure or non-numerical types.

X. FURTHER WORK

If the output distribution for a program is sparse (as in
multiplication) or skewed (as in division), semantic interpreta-
tion will underestimate the likelihood that a mutant outputs the
same value as the original program. This is because there are
less distinct values in the output domain, so it is more likely
that two values sampled at random will be the same. This may
be addressed by taking into account the shape and sparsity of
the output distribution in semantic interpretation.

It is difficult to estimate the proportion of distinct outputs
for a given multiplication due to its relationship with prime
numbers. The best we can do is to use statistical trials and
curve fitting to construct an approximate model over a partic-
ular range of input. We conducted a preliminary experiment by
multiplying all pairs of numbers from ranges chosen randomly
between 1 and 100. We found that the proportion of distinct
outputs can be curve-fit using a logarithmic equation. The
resulting model only works for the ranges included in our
experiments. As it is not possible to know the range of
outputs from a mutant until semantic interpretation is applied,
a distribution-based approach would be expensive.

REFERENCES

[1] P. G. Frankl et al., “All-uses versus mutation testing: an experimental
comparison of effectiveness,” J. Syst. Softw., vol. 38, no. 3, pp. 235-253,
June 1996.

[2] J. H. Andrews et al., “Is mutation an appropriate tool for testing
experiments?” in Proc. 27th Int. Conf. Softw. Eng., St. Louis, MO, 2005,
pp. 402-411.

[3] Y. Jia and H. Harman, “An analysis and survey of the development of
mutation testing,” IEEE Trans. Softw. Eng., vol. 37, no. 5, pp. 649-678,
Sept. 2011.

[4] A. J Offutt and R. H Untch, “Mutation 2000: Uniting the orthogonal,” in
Proc. 1st Int. Works. Mutation Analysis, San Jose, CA, 2000, pp. 34-44.

[5] D. Schuler and A. Zeller, “(Un-)Covering Equivalent Mutants,” in Proc.

3rd IEEE Int. Conf. Softw. Testing, Paris, France, 2010, pp. 45-54.

[6] M. Daran and P. Thévenod-Fosse, “Software error analysis: a real case
study involving real faults and mutations”, in Proc. 1st Int. Symp. Softw.

Testing Analysis, San Diego, CA, 1996, pp. 158-171.

[7] J. H. Andrews et al., “Is mutation an appropriate tool for testing
experiments?”, in Proc. 27th Int. Conf. Softw. Eng., St. Louis, MO, 2005,
pp. 402-411.

[8] R. A. DeMillo et al., “Hints on Test Data Selection: Help for the
Practicing Programmer”, IEEE Computer, vol. 11, no.4, pp. 34-41, Apr.
1978.

[9] T. A Budd, “Mutation analysis of program test data”, Ph.D. dissertation,
Dept. Comp. Sci., Yale Univ., New Haven, CT, 1980.

[10] A. J. Offutt and J. H. Hayes, “A Semantic Model of Program Faults”,
in Proc. 1st Int. Symp. Softw. Testing Analysis, San Diego, CA, 1996,
pp. 195-200.

[11] M. Patrick et al., “MESSI: Mutant Evaluation by Static Semantic
Interpretation”, in Proc. 7th Int. Works. Mutation Analysis, Montreal,
Canada, 2012, pp. 711-719.

[12] W. Visser et al., “Model checking programs”, J. Aut. Softw. Eng., vol.
10, no. 2, pp. 3-12, Apr. 2003.

[13] C. S. Păsăreanu and N. Rungta, “Symbolic PathFinder: symbolic exe-
cution of Java bytecode”, in Proc. 25th IEEE/ACM Int. Conf. Automated

Softw. Eng., Antwerp, Belgium, 2010, pp. 179-180.

[14] (2010, Jan.) Fujitsu Develops Technology to Enhance Comprehensive
Testing of Java Programs. [Online]. Available: http://www.fujitsu.com/
global/news/pr/archives/month/2010/20100112-02.html.

[15] Y.-S. Ma et al., “MuJava : an automated class mutation system”, J.

Softw. Test. Verif. Rel., vol. 15, no. 2, pp. 97-133, Nov. 2004.

[16] W. E. Wong and A. P. Mathur, “Reducing the cost of mutation testing:
an empirical study”, J. Syst. Softw., vol. 31, no. 3, pp. 185-196, Dec.
1995.

[17] A. J. Offutt et al., “An experimental determination of sufficient mutant
operators”, ACM Trans. Softw. Eng. Methodology, vol. 5, no. 2, pp. 99-
118, Apr. 1996.

[18] S. B. Dantzig, “Maximization of a linear function of variables subject
to linear inequalities”, in Activity Analysis of Production and Allocation.
T. C. Koopman, Ed. New York, NY: Wiley, 1951, pp. 339-347.

[19] E. J. McCluskey, “Minimization of Boolean Functions”, Bell Syst. Tech.

J., vol. 35, no. 6, pp. 1417-1444, June 1956.

[20] G. Redelinghuys, “Symbolic string Execution”, M.S. thesis, Dept.
Comp. Sci., Stellenbosch Univ., Matieland, South Africa, 2012.

[21] I. Ciupa et al., “ARTOO: Adaptive Random Testing for Object-Oriented
Software”, in Proc. 30th Int. Conf. Softw. Eng., Leipzig, Germany, 2008,
pp. 71-80.

[22] A. Orso, “Integration testing of object-oriented software”, Ph.D. dis-
sertation, Scuola di Ingegneria dell’Informazione, Politecnico di Milano,
Milan, Italy 1998.

[23] (2013) JavaTMPlatform, Standard Edition 7 API Specification. [Online].
Available: http://docs.oracle.com/javase/7/docs/api/.

[24] M. P. Usaola et al., “Reduction of test suites using mutation”, in Proc.

15th Int. Conf. Fundamental Approaches Softw. Eng., Tallinn, Estonia,
2012, pp. 425-438.

[25] M. Papadakis and N. Malevris, “Automatic Mutation Test Case Gener-
ation via Dynamic Symbolic Execution”, in Proc. 19th Int. Symp. Softw.

Testing Analysis, Trento, Italy, 2010, pp. 121-130.

