
Coverage-based Test Cases Selection for XACML Policies

Antonia Bertolino∗, Yves Le Traon†, Francesca Lonetti∗, Eda Marchetti∗, Tejeddine Mouelhi†
∗Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”, CNR

Pisa, Italy
{firstname.lastname}@isti.cnr.it

†Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg
Luxembourg

{firstname.lastname}@uni.lu

Abstract—XACML is the de facto standard for implementing
access control policies. Testing the correctness of policies is a
critical task. The test of XACML policies involves running
requests and checking manually the correct response. It is
therefore important to reduce the manual test effort by au-
tomatically selecting the most important requests to be tested.
This paper introduces the XACML smart coverage selection
approach, based on a proposed XACML policy coverage
criterion. The approach is evaluated using mutation analysis
and is compared on the one side with a not-reduced test suite,
on the other with random and greedy optimal test selection
approaches. We performed the evaluation on a set of six real
world policies. The results show that our selection approach
can reach good mutation scores, while significantly reducing
the number of tests to be run.

I. INTRODUCTION

In modern dynamic distributed systems, where resources
and data are continuously exchanged and shared, security is
a primary concern. Thus appropriate mechanisms that guar-
antee the data confidentiality, integrity and availability must
be put in place. Among them, one of the most important
components is the access control system that: mediates all
requests of access to protected data and resources; ensures
that only the intended (i.e., authorized) users are given
access; and provides them with the level of access that is
required to accomplish their tasks (and not higher).

In this context, XACML [1] is the de facto standard
for defining and implementing access control systems. In
particular, an XACML policy specifies the constraints and
conditions that a subject needs to comply with for accessing
a resource and doing an action in a given environment.
XACML specifies also the access control system architec-
ture: incoming access requests are transmitted to the Policy
Decision Point (PDP) that grants or denies the access based
on the defined XACML policies. Due to the complexity of
the XACML language, the process of writing the policies
and implementing them can be error-prone. Faults could lead
to security flaws, by either denying accesses that should be
allowed or even worse allowing accesses to non authorized
users. It is hence important to perform a careful testing
activity both of the policy and its implementation. However,
most of the test cases generation approaches available in

literature for XACML policies are based on combinatorial
methodologies [2], [3], thus the generated number of test
cases can rapidly grow to cope with the policy complexity.
Executing a huge number of test cases can drastically
increase the cost of the testing phase, mainly due to the
effort required to check the test results and decide whether
they are correct or not. As a matter of fact, in the context
of access control systems this step is usually performed
manually, because the complexity of the XACML language
prevents the use of automated support. Considering the
strict constraints on testing budget, it is extremely important
to reduce as much as possible the number of tests to be
executed while trying at the same time to maximize the fault
detection effectiveness of the reduced test suite. This papers
addresses this specific issue, by proposing a test selection
approach, called XACML smart coverage, based on a cov-
erage criterion, specifically conceived on the peculiarities
of the XACML language. In software testing, white-box
approaches based on the coverage of specified entities are
considered a valuable complement to black-box ones [4],
as coverage information can provide an indication of the
thoroughness of the executed test cases, and can help to
maintain an effective test suite. However, as demonstrated by
some empirical results [5], the performance of the reduced
test suite could vary according to the considered program,
and the adopted coverage criterion. Therefore, we investigate
in this paper the loss of fault detection effectiveness due
to the execution of the reduced test suite. By means of
mutation analysis we inject faults into the XACML policy
and challenge the tests to detect these seeded faults. The
goal is to end up with a reduced test suite able to minimize
the loss in mutation score.

There have been a few proposals in literature close to the
one of this paper. In particular, Martin et al. [6] proposed
the definition of some policy coverage metrics and a greedy
algorithm for test case selection able to increase the overall
coverage measure. Hwang et al. [7] focused on regression
testing and used some monitoring facilities, directly inte-
grated on the program code, to establish correlation between
executed test cases and the entities covered in an XACML
policy. XACML smart coverage differs from these works



in several aspects: it integrates and extends the coverage
criteria proposed in [6] by including additional constraints
and XACML elements; it is not specifically conceived
for regression testing, therefore it does not rely on some
coverage information obtained from a previous execution of
test cases; it does not require any instrumentation of program
code nor any monitoring facility for coverage measurement,
because it exploits only the XACML policy information and
the test case specification. In addition, we improve on the
trustworthiness of the experimental analyses presented in
[6] and [7] by: using a set of XACML policies, that is
larger and includes policies of varying structural complexity;
adopting a test generation strategy that has been proven to
be more effective than existing ones; considerably increasing
the set of mutation operators for the evaluation of test suite
effectiveness.

Summarizing, the contributions of this paper include: the
introduction of a new more complete coverage criterion for
XACML policies; the definition of a strategy to select the
test cases based on the proposed coverage criterion; an em-
pirical study that compares the performance of the selected
test cases with that of both the whole test suite without
reduction, and other selection strategies (i.e., random and
a greedy optimal solution) in terms of mutation score. The
experimental results show that the XACML smart coverage
selection approach substantially reduces the test suite size
with a negligible loss of fault detection effectiveness.

The remainder of this paper is organized as follows. Sec-
tion II introduces the XACML language. Section III presents
the proposed coverage criterion and the selection algorithm.
Then, Section IV shows the empirical evaluation of the
proposed approach, and Section V discusses its validity.
Finally, Section VI presents related work and Section VII
concludes the paper, also hinting at future work.

II. XACML LANGUAGE

XACML [1] is a de facto standard specification language
that defines access control policies and access control de-
cision requests/responses in an XML format. An XACML
policy defines the access control requirements of a protected
system. An access control request triggers a policy evalua-
tion and aims at accessing a protected resource in a given
system whose access is regulated by a security policy. At the
evaluation time, the request is evaluated against the policy
and the access is granted or denied.

An XACML policy can contain one or more policy set
or policy elements. A policy set contains one or more
policy sets or one or more policies. It includes a target to
be matched from a request before considering the policies
(policy sets) in that policy set to be applicable. A target
contains four parameters, a set of subjects, a set of resources,
a set of actions and finally a set of environments. A request
is matching a target, when the subject, resource, action and
environment of the request are included in the corresponding

target sets. A policy contains one or more rules. A rule
contains a decision type (Permit or Deny) and a target. When
the request matches the target then the request is applicable
to the rule. In that case the decision type is returned. A
rule might also contains a condition element, i.e., a boolean
function that specifies constraints on the subjects, resources,
actions and environments values so that if the condition
evaluates to true, then the rule’s decision type is returned. A
combining algorithm is used to select which policy (policy-
combining algorithm) or rule (rule-combining algorithm) has
to be considered in case the request matches more than one
policy (or rule). For instance, the first-applicable combining
algorithm will select the first applicable policy (or rule).

An access request contains subject, resource, action, and
environment attributes. At the decision making time, the
Policy Decision Point evaluates an access request against
a policy, by comparing all the attributes in an access request
against the attributes in all the target and condition elements
of the policy set, policy and rule elements. If there is a
match between the attributes of the request and those of the
policy, the effect of a matching rule is returned, otherwise
the NotApplicable decision is drawn.

Listing 1 shows an example of a simplified XACML
policy for library access. The policy set target (line 3) is
empty, which means that it applies to any subject, resource,
action and environment. The policy target (lines 5-12) says
that this policy applies to any subject, any action, any
environment and the “books” resource. This policy has a
first rule (ruleA) (lines 13-34) with a target (lines 14-33)
specifying that this rule applies only to the access requests of
a “read” action of “books”, and “documents” resources with
any environment. The effect of the second rule (ruleB) (lines
35-50) is Permit when the subject is “Julius”, the action is
“write”, the resource and environment are any resource and
any environment respectively.

1 <PolicySet PolicySetId=" p o l i c y S e t E x a m p l e "

2 PolicyCombiningAlgId=" first - a p p l i c a b l e ">
3 <Target/>
4 <Policy PolicyId=" p o l i c y E x a m p l e " RuleCombiningAlgId="

permit - o v e r r i d e s ">
5 <Target>
6 <Resource>
7 <ResourceMatch MatchId=" anyURI - e q u a l ">
8 <AttributeValue DataType=" a n y U R I ">books</

AttributeValue>
9 <ResourceAttributeDesignator AttributeId=" r e s o u r c e - id

" DataType=" a n y U R I "/>
10 </ResourceMatch>
11 </Resource>
12 </Target>
13 <Rule RuleId=" r u l e A " Effect=" D e n y ">
14 <Target>
15 <Resources><Resource>
16 <ResourceMatch MatchId=" anyURI - e q u a l ">
17 <AttributeValue DataType=" a n y U R I ">books</

AttributeValue>
18 <ResourceAttributeDesignator AttributeId=" r e s o u r c e -

id " DataType=" a n y U R I "/>
19 </ResourceMatch>
20 </Resource>
21 <Resource>
22 <ResourceMatch MatchId=" anyURI - e q u a l ">



23 <AttributeValue DataType=" a n y U R I ">documents</
AttributeValue>

24 <ResourceAttributeDesignator AttributeId=" r e s o u r c e -

id " DataType=" a n y U R I "/>
25 </ResourceMatch>
26 </Resource></Resources>
27 <Actions><Action>
28 <ActionMatch MatchId=" string - e q u a l ">
29 <AttributeValue DataType=" s t r i n g ">read</

AttributeValue>
30 <ActionAttributeDesignator AttributeId=" action - id "

DataType=" s t r i n g "/>
31 </ActionMatch>
32 </Action></Actions>
33 </Target>
34 </Rule>
35 <Rule RuleId=" r u l e B " Effect=" P e r m i t ">
36 <Target>
37 <Subjects><Subject>
38 <SubjectMatch MatchId=" string - e q u a l ">
39 <AttributeValue DataType=" s t r i n g ">Julius</

AttributeValue>
40 <SubjectAttributeDesignator AttributeId=" s u b j e c t - id

" DataType=" s t r i n g "/>
41 </SubjectMatch>
42 </Subject></Subjects>
43 <Actions><Action>
44 <ActionMatch MatchId=" string - e q u a l ">
45 <AttributeValue DataType=" s t r i n g ">write</

AttributeValue>
46 <ActionAttributeDesignator AttributeId=" action - id "

DataType=" s t r i n g "/>
47 </ActionMatch>
48 </Action></Actions>
49 </Target>
50 </Rule>
51 </Policy>
52 </PolicySet>

Listing 1. An XACML Policy

Listing 2 shows an example of a simple request specifying
that the subject Julius wants to write the “books” resource.

1 <Request xmlns=" u r n : o a s i s : n a m e s : t c : x a c m l : 2 .0

: c o n t e x t : s c h e m a : o s ">
2 <Subject>
3 <Attribute AttributeId=" s u b j e c t - id1 " DataType=" s t r i n g ">
4 <AttributeValue>Julius</AttributeValue>
5 </Attribute>
6 </Subject>
7 <Resource>
8 <Attribute AttributeId=" r e s o u r c e - id " DataType=" s t r i n g ">
9 <AttributeValue>books</AttributeValue>

10 </Attribute>
11 </Resource>
12 <Action>
13 <Attribute AttributeId=" action - id " DataType=" s t r i n g ">
14 <AttributeValue>write</AttributeValue>
15 </Attribute>
16 </Action>
17 <Environment/>
18 </Request>

Listing 2. An XACML request

III. COVERAGE BASED SELECTION APPROACH

This section presents the XACML smart coverage se-
lection approach. First, an XACML coverage criterion is
defined, then an algorithm developed to select a set of
requests that achieve this coverage criterion is presented.

A. XACML coverage criterion

We define here the XACML rule coverage criterion on
which the XACML smart coverage approach is based. We
first provide some generic definitions concerning the policy
(Definitions 1 and 2) and request elements (Definition 3).

Definition 1 (Target Tuple): Given a Rule R, a Policy P,
a PolicySet PS, with R ∈ P and P ∈ PS, and given the set of
XACML Elements, called XE = {xe : xe is PS or P or R},
the Target Tuple of an xe ∈ XE, called TTxe, is a 4-tuple
(S, Res, A, E), where: S (Res, A, E) is a finite set of
subjects (resources, actions, environments) in the XACML
target of xe.

Definition 2 (Rule Target Set): Given a Rule R, its Target
Set is a set of Target Tuple, ordered by the XACML
hierarchy elements relation, defined as

TSR =

 TTxe : TTxe =

 TTPS if R ∈ PS
TTP if R ∈ P
TTR otherwise

 .

Definition 3 (Request Target Tuple): Given a request
Req, the Request Target Tuple, called TTreq is a 4 tuple
(S r, Res r, A r, E r) where S r, Res r, A r, E r are
the subject, resource, action and environment belonging to
the request Req.

We can now define the XACML rule coverage criterion
as follows:

Definition 4 (XACML Rule Coverage): Given a rule R,
the condition C of R, the Rule Target Set TSR, and the
request Req with Request Target Tuple TTreq=(S r, Res r,
A r, E r), Req covers R if and only if

• for each Target Tuple TTE =(S, Res, A, E) ∈ TSR

such that TTE is a TTPS , TTP or TTR, S r ∈ S or
S is ∅, Res r ∈ Res or Res is ∅, A r ∈ A or A is ∅,
and E r ∈ E or E is ∅.

• C is evaluated to True or False against TTreq
1.

Considering the policy of Listing 1, according to
Definition 2, the Target Set of ruleA is
TSRuleA = {TTPSpolicySetExample

, TTPpolicyExample
,

TTRuleA} = {(∅, ∅, ∅, ∅), (∅, {books}, ∅, ∅),(∅, {books,
documents}, {read}, ∅)}
while the Target Set of ruleB is
TSRuleB = {TTPSpolicySetExample

, TTPpolicyExample
,

TTRuleB} = {(∅, ∅, ∅, ∅), (∅, {books}, ∅, ∅), ({Julius}, ∅,
{write}, ∅)}.

Considering the XACML request of Listing 2, according
to Definition 3, the Request Target Tuple of this request is
TTrequestExample = ({Julius}, {books}, {write}, ∅).

According to Definition 4, the request of Listing 2 covers
ruleB but it does not cover ruleA since the action of the
request (write) is not included in the Target Set of RuleA.

1Note that only the condition is evaluated against the request values,
without having policy execution.



In a nutshell, the defined XACML rule coverage criterion
involves selecting tests that match the Rule Target Sets.
The Rule Target Set is the union of the target of the rule,
and all enclosing policy and policy sets targets. The main
idea is that according to the XACML language in order to
match the rule target, requests must first match the enclosing
policy and policy sets targets (note that there could be
several enclosing policy sets). For instance, if a rule contains
no condition, and it has a target containing the elements
{Subject1,Action1,Resource1} and the policy and policy set
targets which it belongs to are both empty, then in order to
match that rule a request should contain exactly these three
elements. If the rule target has several subjects, resources,
actions, and environments and the enclosing policy and
policy set targets are empty, to cover the rule target the
request should include a subject contained in target subjects
set, a resource contained in the target resources set, an action
contained in the target actions set, an environment contained
in the target environments set. Finally, if the Rule Target Set
of a rule is empty and its condition is evaluated to True or
False, all requests are covering this rule.

B. Test case selection algorithm

Algorithm 1 is used to select the test cases. Roughly, it
takes as input the Rule Target Sets and a set of requests.
Then, it loops through the requests and selects those ones
that match one Rule Target Set. Once a Rule Target Set is
matched, it is removed from the set of Rule Target Sets. This
prevents selecting all requests for empty Rule Target Sets.

Algorithm 1 Coverage-Based Selection of Test Cases
1: input: S = {Req1, ..., Reqn} . Unordered set of n XACML

requests
2: input: P . The XACML policy
3: output: Result . List of m selected XACML requests with m ¡ n
4: Result← {}
5: TargetsConds← computeAllRulesTargetsConds(P )
6: i← 0
7: while i < TargetsConds.size() do
8: ContainsReq ← False
9: j ← 0

10: while !ContainsReq do
11: ReqTargetj ← extractReqTarget(Reqj)
12: if containsReq(TargetCondi, ReqTargetj) then
13: Result← Result ∪ {Reqj}
14: ContainsReq ← True
15: end if
16: j ← j + 1
17: if thenj == n
18: Break loop
19: end if
20: end while
21: i← i+ 1
22: end while
23: return Result

Algorithm 2 allows all Rule Target Sets and Rule Condi-
tions to be computed by taking into consideration the rule
and its enclosing policy and policy sets. In addition, when
a target contains more than one subject, action or resource,

the algorithm divides that target into several targets, each
having only one of these elements. For instance, a target
with 2 subjects, 1 action and 3 resources leads to creating 6
targets (each one with 1 subject, 1 action and 1 resource). In
fact, according to the XACML language a rule containing for
instance a target with 3 subjects is equivalent to three rules
having a target with 1 subject. XACML offers this facility
to avoid creating several rules, however for the sake of rule
evaluation, it is safer to consider several rules having each a
target with only one element. For test cases selection, having
targets with one subject, action, resource and environment
enables us to select test cases covering all subjects, actions,
resources and environments and helps improving the quality
of test cases.

IV. EXPERIMENT

This section presents and discusses the results of the appli-
cation of the XACML smart coverage selection approach to a
set of real XACML policies. First, we present the case study
and the experiment setup, which includes the XACMUT tool
for policy mutants generation and the X-CREATE tool for
test case generation. Then we present the research questions
and discuss the outcome of the experiments.

A. Policies details

One of the objectives of this paper is to improve the
trustworthiness of the experimental analysis presented in
previous related works (like [6] and [7]) by using a larger
and more representative set of XACML policies. Thus, we
include in the experiment six real world policies, which
differ from each other in terms of the complexity of their
structure and the number of elements they include. This
information is summarized in Table I, which shows the

Algorithm 2 Compute All Targets and Conditions
1: input: P = {Rule1, ..., Rulen} . XACML policy having n rules
2: output: L . List of n Targets with Condition
3: L← {}
4: i← 0
5: while i < n do
6: TargCondi ← {}
7: EnclosingPol← retrievePolForRule(Rulei)
8: PolTargeti ← extractPolicyTarget(EnclosingPol)
9: TargCondi ← L ∪ {PolTargeti}

10: EnclosingPolSet← retrievePolSetForPol(EnclosingPol)
11: PolSetTargeti ← extractPolicySetTarget(EnclosingPolSet)
12: TargCondi ← L ∪ {PolSetTargeti}
13: while isPolicySetEnclosedInPolicySet(EnclosingP olSet)

do
14: PolSet← getParent(PolSet)
15: PolSetTargeti ←

extractPolicySetTarget(EnclosingPolSet)
16: TargCondi ← L ∪ {PolSetTargeti}
17: end while
18: TargCondi ← TargCondi ∪ {Condi}
19: L← L ∪ {TargCondi}
20: end while
21: return L



Table I
DESCRIPTION OF THE SIX POLICIES

Name # Rul. # S # Res # A # E # Pol.set # Pol.
ASMS 117 8 5 11 3 1 1
itrust 64 7 46 9 0 1 1
VMS 106 7 3 15 4 1 1
continue-a 298 16 29 4 0 111 266
LMS 42 8 3 10 3 1 1
pluto 21 4 90 1 0 1 1

sizes of the XACML policies in terms of the number of
subjects, resources, actions and environments, in addition to
the structure in terms of rules, policy sets and policies.

Briefly, the policy labeled LMS rules a Library Manage-
ment System, VMS represents a Virtual Meeting System
and ASMS is conceived for an Auction Sales Management
System. All these policies are relative to three Java-based
systems, which have been used in previous papers (e.g., [8]).
The policy named continue-a [9] is used by the Continue
application, a web-based conference management tool; pluto
policy is used by the ARCHON system, a digital library
management tool [10]; and itrust policy is part of the iTrust
system, a health-care management system [11].

B. Experiment setup

The experiment carried out in this paper relies on two
existing tools, performing policy mutants generation and test
cases generation. In the remaining of this section they will
be briefly introduced.

1) Mutation analysis: To derive the set of policy mu-
tants useful for assessing the fault detection capability of
the selected requests we rely on the mutation operators
implemented in the XACMUT tool2 [12]. To the best of our
knowledge, XACMUT is currently the most complete tool
for mutants derivation, since it combines together XACML
mutants taken from the literature with new ones that have
been conceived to address the specific features of XACML
2.0 policies. The XACMUT mutation operators are listed in
Table II. For lack of space we do not provide a description
beyond their name in the table, and refer to the respective
sources for more information. Specifically, PSTT, PSTF,
PTT, PTF, RTT, RTF, RCT, RCF, CPC, CRC and CRE
have been introduced in [13]), RTT, ANR, and RER in
[14], and the remaining ones in [12]. Relying on a more
powerful tool than those used so far in literature increases the
reliability of the fault detection effectiveness results obtained
by our experiment and contributes to depict more realistic
situations.

2) X-CREATE tool: Among the available tools for test
cases generation we refer in this paper to X-CREATE3. X-

2A release of the XACMUT tool is available at
http://labse.isti.cnr.it/tools/xacmut

3A release of the X-CREATE tool is available at
http://labse.isti.cnr.it/tools/xcreate

Table II
MUTATION OPERATORS [12]

ID Description
PSTT,PSTF Policy Set Target True/False

PTT,PTF Policy Target True/False
RTT,RTF Rule Target True/False
RCT,RCF Rule Condition True/False
CPC,CRC Change Policy/Rule Combining Algorithm

CRE Change Rule Effect
RPT (RTT) Rule Type is replaced with another one

ANR Add a New Rule
RER Remove an Existing Rule

AUF,RUF Add/Remove Uniqueness Function
CNOF Change N-OF Function
CLF Change Logical Function

ANF,RNF Add/Remove Not Function
CCF Change Comparison Function

FPR,FDR First the Rules having a Permit/Deny effect

CREATE [15], [3], [16] provides different strategies based
on combinatorial approaches of the subject, resource, action
and environment values taken from the XACML policy for
deriving the access requests. Experimental results presented
in [15], [3], [16] showed that the fault detection effectiveness
of X-CREATE test suites is similar or higher than that of
comparable tools (like for instance Targen [2]).

Among X-CREATE test strategies in this paper we con-
sider the Simple Combinatorial one, because it combines
the simplicity of the test case generation with the power
of the combinatorial approach applied to the policy values.
Specifically, for the test cases generation four data sets called
SubjectSet, ResourceSet, ActionSet and EnvironmentSet are
defined. Those sets are filled with the values of elements and
attributes referring to the <Subjects>, <Resources>,
<Actions> and <Environments> of the policy re-
spectively. These elements and attributes values are then
combined in order to obtain the entities. Specifically, a
subject entity is defined as a combination of the values of
elements and attributes of the SubjectSet set, and similarly
the resource entity, the action entity and the environment en-
tity represent combinations of the values of the elements and
attributes of the ResourceSet, ActionSet, and EnvironmentSet
respectively. Then, an ordered set of combinations of subject
entities, resource entities, action entities and environment
entities is generated in the following way: first, pair-wise
combinations are generated to obtain the PW set; then,
three-wise combinations are generated to obtain the TW set;
finally, four-wise combinations are generated to obtain the
FW set. These sets have the following inclusion propriety
PW ⊆ TW ⊆ FW. The maximum number of requests derived
by this strategy is equal to the cardinality of the FW set.
More details about this strategy are in [3].



C. Results

As for any test strategy that relies on a combinatorial
approach, the cardinality of the test suite derived by the
Simple Combinatorial strategy may rapidly grow up in
relation with the policy complexity. As we discussed in the
introduction, this may result into a huge increase of time
and effort due for the test execution and results analysis. In
this paper we propose a solution based on the XACML smart
coverage selection approach, and provide some experimental
results to reply to the following research questions:

• RQ1: Is XACML smart coverage a good approach for
test selection in terms of fault detection effectiveness?

• RQ2: Is XACML smart coverage better than other
selection approaches in terms of fault detection effec-
tiveness?

To tackle these research questions we first derived for
each policy in Table I the set of test cases by applying the
Simple Combinatorial strategy provided by the X-CREATE
tool. Table III third column shows the cardinality of each
derived test suite: as shown, the number of test cases has
a great variation (from the 360 of pluto to the 2835 of
iTrust) reflecting the differences in structures and values
of the considered set of policies. Then we applied the
XACML smart coverage selection approach to select from
each test suite the proper reduced set. Table III second
column shows the cardinality of the selected test suite. As
shown in the last column of the table, for most cases (except
pluto) the number of selected tests is quite low (less than
12%) and the cardinality of the reduced test suite remains
manageable in terms of requests to be run and checked
manually. This evidences a good performance of the XACML
smart coverage selection approach purely reasoning in terms
of test reduction. Finally, by means of the XACMUT tool,
for each of the six policies we generated the respective set of
mutants and used them for evaluating the test effectiveness
of the various test suites. Table IV last column shows the
cardinality of the mutants killed for each of the six policies.

To tackle RQ1, we compared the percentage of mutants
killed by the reduced test suite derived using the XACML
smart coverage selection approach with that killed by the
overall test suite. It is out of the scope of this paper to
evaluate the effectiveness of the test strategy used in this
experiment; the objective is the evaluation of the capability
of the XACML smart coverage selection approach to provide
a fault detection effectiveness as close as possible to that
of the overall test suite (whatever its effectiveness). The
results are shown in Table IV. In particular, the third column
(labeled Cov.-Based) reports the number of mutants killed
by the XACML smart coverage selection and summarizes
in brackets the percentage of fault detection effectiveness
reached by the reduced test suite with respect to the complete
one; the fifth column of the same table (labeled # Killed Mu-
tants) reports the number of mutants killed by the complete

Table III
TEST REDUCTION OF THE COVERAGE BASED SELECTION

Policy # SelectedTests # Tests % Selected Tests
LMS 42 720 6%
VMS 106 945 11%

ASMS 130 1760 7%
pluto 175 360 49%
iTrust 61 2835 2%

continue-a 169 1382 12%

Table IV
TEST SUITES EFFECTIVENESS IN TERMS OF MUTATION RESULTS

Pol. Random Cov.-Based Opt. Score # Killed Mutants
LMS 451 (20%) 1357 (62%) 1358 (62%) 2183
VMS 2771 (49%) 4031 (72%) 4076 (73%) 5550

ASMS 1522 (22%) 4771 (71%) 4809 (72%) 6649
pluto 7588 (51%) 13968 (94%) 13895 (94%) 14721
iTrust 1253 (10%) 11782 (98%) 11844 (99%) 11949

continue-a 757 (43%) 1333 (76%) 1685 (96%) 1741

test suite.
Considering column Cov.-Based, the loss in fault detec-

tion (except LMS) varies from the 29% to the 2% , with
an average value of 18%. Considering that, as reported in
Table III, the selected test cases are on average the 15% of
the overall test suite (for a reduction of 85%) the obtained
average value of the loss of fault detection effectiveness of
XACML smart coverage selection can be considered a valid
compromise in view of the considerable test case reduction.
Therefore the data collected in this experiment give a first
positively reply to RQ1, i.e. XACML smart coverage can be
considered a good approach for test selection in terms of
fault detection effectiveness.

The second experiment focused on RQ2, i.e., we wanted
to compare the performance in terms of fault detection
effectiveness of XACML smart coverage with other selection
approaches. In particular, we considered two different cases:
the random selection of test cases (as a baseline), and on the
other hand an optimal approach for test selection.

For the first case we randomly selected from the complete
test suite, the same number of test cases of the XACML
smart coverage selection. To prevent bias, we performed
the random selection 10 times and computed the average
number of killed mutants on the 10 runs. The results are
shown in Table IV second column (labeled Random). Again,
the first values are the number of mutants killed and in
brackets the percentage of fault detection effectiveness of
random selection with respect to that of the complete test
suite. As shown in the table, the results of the XACML smart
coverage selection (third column) outperform in all cases
those obtained by random selection. For iTrust the result is
even more evident because from 10% of Random it jumps to
98% of XACML smart coverage. These data positively reply
to RQ2 for the first case: XACML smart coverage selection



Figure 1. Mutation Analysis Results

can be considered a very good improvement with respect to
random selection in terms of fault detection capability.

For the second case, we compared the loss in fault
detection effectiveness of the XACML smart coverage se-
lection approach with that of an optimal test cases selection
technique. By applying a greedy algorithm, we selected the
test cases yielding the highest number of mutants killed at
each request (the mutation results) so to obtain a test suite,
called Opt. Score in the table, having the same cardinality
of that derived using the XACML smart coverage selection.
Of course, because the optimal selection relies on the
knowledge of the mutation score of each test case, the Opt.
Score test suite has only experimental validity. It represents
the upper bound of the fault detection effectiveness reachable
by the XACML smart coverage selection. For the sake of
consistency, as for random experiment, we performed the
optimal test suite 10 times and computed the average number
of killed mutants on the 10 runs. As shown in the table,
for three of the considered policies, the fault detection
effectiveness of the XACML smart coverage selection test
suite has a loss of 1% with respect to that of the Opt.
Score one. For pluto and LMS, the XACML smart coverage
selection has the same performance than Opt. Score 4, while
for the remaining continue-a the loss is equal to 20%.
Considering RQ2, the results evidenced that the XACML
smart coverage test selection is a good approximation of
the optimal solution.

The results collected in this experiment, and sketched in
Figure 1, positively reply to RQ1 and RQ2 and hint that the
XACML smart coverage selection approach can be a valid
methodology for reducing the tests suite while guaranteeing
an acceptable loss in fault detection effectiveness.

4Note that the Opt. Score is a mean value computed over 10 runs.

V. DISCUSSION

This section discusses the limitations of the current ap-
proaches and potential strategies for improving the selection
strategy. In addition, it discusses the threats to validity.

A. Limitations and Improvements

According to the experiments, the coverage-based selec-
tion enables reaching relatively high mutation score (from
62% to 98%). This shows that for some policies, there are
still a lot of mutants (38% in the worst case) that are not
killed by the selected test cases. It is important to note
that the remaining 38% mutants are not equivalent mutants
because we only consider the mutants that are killed by the
whole test suite. We need therefore to improve the selection
approach in order to achieve better mutation scores and
enable killing those remaining mutants. We are currently
investigating other selection strategies that, as for XACML
smart coverage, do not require running all the test cases
before making the selection, but rely on the policy structure
and on the requests content.

B. Threats to validity

The threats to external validity mainly relate to the fact
that the six policies used in the experiments may not be
representative of true practice. Therefore further experiments
on a larger set of policies may be required to reduce these
threats. In fact, several other real policies were available
to us. However, they included a quite small set of tests
(they had 2 or 3 rules only). In those cases, test selection
did not make much sense because the policies are quite
small and they could easily be checked manually. On the
other hand, our six policies have quite different structures.
Some have relatively few rules, while others have a large
number of rules. For some policies the number of resources
is bigger than the number of subjects (while for others it
is not the case). Therefore, we are confident in the general
relevance of the results. In addition, the random test case
selection could produce very different results (it could be a
very high or a very low mutation score), which would not
give a correct view on the effectiveness of this approach.
To address this threat, we repeated the process of random
selection 10 times and computed the average mutation score.
This enables us to evaluate correctly the effectiveness of the
random test cases selection. Furthermore, our current version
of the coverage criteria does not take into consideration the
combining algorithms, which play an important role when
it comes to selecting which rule applies in case of conflicts.
Therefore, for some cases, it is important to consider the
combining algorithm at policy and policy set level. We are
aware of this limitation and plan to improve the coverage
criterion by taking this into consideration. It is however
unclear whether combining algorithms have an important
impact on the quality of the selected test cases in terms of
fault detection effectiveness. This issue should therefore be



investigated by using other policies having many conflicts.
In addition, the effectiveness of the selection approaches
was evaluated based on mutation analysis. As always when
mutation is used, there is the issue whether the artificial
faults represent or not real faults. However, in our approach,
we have combined three different sets of mutation operators,
which are implemented by the XACMUT tool [12]. We
are confident in the quality of the mutation operators even
though it would be interesting to perform a large empiri-
cal study to assess the quality of access control mutation
operators.

VI. RELATED WORK

The work presented in this paper spans over two main
research directions: coverage criteria and test cases selection,
and access control testing.

Coverage Criteria and Test Case Selection: The work
in [17] provides a survey on test adequacy criteria presenting
code coverage as a good criterion for test cases selection
and test suite effectiveness evaluation. Many frameworks for
test coverage measurement and analysis have been proposed
dealing with different programming languages. The work
closer to our proposal is [6] where authors provide a
first coverage criterion for XACML policies defining three
structural coverage metrics targeting XACML policies, rules
and conditions respectively. As in our work, these coverage
metrics are used for reducing test sets and the effects of
test reduction in terms of fault detection are measured.
With respect to the coverage approach proposed in [6], our
proposal also addresses the policy set and does not require
the policy execution and PDP instrumentation to be applied,
then reducing the effort for coverage measurement. However,
while the work in [6] provides structural coverage of the
policy elements, our proposal relies on the Rule Target Set
concept and the inclusion of the request values in that Rule
Target Set, since according to the XACML language, only
requests matching the Rule Target Set could provide an
evaluation of that policy rule. Many proposals address test
cases selection for regression systems. The work in [18]
presents a survey of selection techniques able to identify
the test cases that are relevant to some set of changes
and addresses the emerging trends in the field. The work
of [7] addresses three regression test selection techniques
for security policies, based on mutation analysis, coverage
analysis and recorded request evaluation respectively. They
can be applied to XACML based systems and can reveal
regression faults caused by policy changes, thus reducing
the number of test cases. Differently from this work, our
proposal does not target regression systems and does not
require the execution of test cases against the security policy
for selecting test cases, then reducing cost and time effort
of the overall testing process. Code coverage criteria are
also addressed by most of the techniques of test cases
prioritization [19] [20] [21], with the aim to reorder test

cases so that those tests that have a higher priority are
executed before the ones having a lower priority [22], [23].
Differently from these works, the target of our proposal is
not test cases prioritization but test cases selection, i.e. to
choose a subset of test cases from the overall test suite.

Testing Access Control Systems: Automated test cases
generation solutions have been proposed for testing either
the XACML policy or the PDP implementation. The Targen
tool [2] generates test inputs using combinatorial coverage
of the truth values of independent clauses of XACML policy
values. This approach has been proven to be more effective
than random generation strategy in terms of structural cov-
erage of the policy and fault detection capability [2]. The
already mentioned X-CREATE tool [15], [3], [16] provides
different strategies based on combinatorial approaches of
the subject, resource, action and environment values taken
from the XACML policy for deriving the access requests.
A comparison of X-CREATE test generation strategies in
terms of fault detection effectiveness is presented in [3],
[16]. Among the X-CREATE generation strategies we used
in this paper Simple Combinatorial. This strategy is easy-
to-apply and at the same time able to reach the coverage
of the policy input domain represented by the policy values
combinations. More detail about this strategy were presented
in Section IV-B2. Other test cases generation strategies [8]
deal with combinatorial approaches of the elements of the
model (role names, permission names, context names). Such
approaches automatically derive abstract test cases that have
to be then refined into concrete XACML requests for being
executed on a PDP. A different approach is provided by Cirg
[24] that is able to exploit change-impact analysis for test
cases generation starting from policy specification.

To evaluate the effectiveness of the generated test suites,
mutation analysis has been applied on access control policies
[13], [14], [12]. The work of [13] has been the first attempt
to define a fault model for access control policies and a set of
mutation operators manipulating the predicates and logical
constructs of target and condition elements of an XACML
policy. The authors of [14] extend the mutation operators
in [13], focusing on the use of a metamodel that allows
to simulate the faults in the security models independently
from the used role-based formalism (R-BAC or OrBAC).
Finally, the work in [12] includes and enhances the mutation
operators of [13] and [14] providing the XACMUT tool
adopted in this paper.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented a new approach that aims
at selecting access control test cases for testing XACML
policies. This new approach relies on an XACML coverage
criterion. The approach is efficient in terms of test case re-
duction, while reaching high mutation killing scores. In fact,
the approach reduces drastically the test suite (an average of
15% of tests are selected). According to the experiments that



we performed, the proposed coverage-based test selection
approach performs much better than random selection and
its mutation score is close to the optimal one.

Although high mutation scores are already reached by
the selected test sets, for future work we are currently
investigating new approaches to further improve the test
selection criteria to increase the mutation score and kill the
remaining mutants. In fact, in some cases, it can be important
to select more test cases to reach higher mutation scores
(specially when more testing resources are available). The
current proposal does not provide support for improving the
mutation score beyond the coverage criteria.

In addition, as future work, we plan to perform an
empirical study to compare our approach to other similar
approaches [25], [26]. In addition, other approaches (like
for instance [24], [27], [28]), which are more generic than
ours could be also taken into consideration and compared to
our proposed approach.

ACKNOWLEDGMENT

This work has been partially funded by the EC FP7
Network of Excellence NESSoS No. 256980.

REFERENCES

[1] OASIS, “extensible access control markup language (xacml)
version 2.0,” February 1 Feb 2005.

[2] E. Martin and T. Xie, “Automated Test Generation for Access
Control Policies,” in Supplemental Proc. of 17th International
Symposium on Software Reliability Engineering (ISSRE),
November 2006.

[3] A. Bertolino, S. Daoudagh, F. Lonetti, and E. Marchetti,
“Automatic XACML requests generation for policy testing,”
in Proc. of The Third International Workshop on Security
Testing, 2012, pp. 842–849.

[4] M. Pezzè and M. Young, Software Testing and Analysis:
Process, Principles and Techniques. Wiley, 2007.

[5] G. Rothermel, M. J. Harrold, J. Ostrin, and C. Hong., “An
empirical study of the effects of minimization on the fault
detection capabilities of test suites,” in Proc. of International
Conference on Software Maintenance, 1998, pp. 34–43.

[6] E. Martin, T. Xie, and T. Yu, “Defining and measuring policy
coverage in testing access control policies,” in Proc. of 8th In-
ternational Conference on Information and Communications
Security, 2006, pp. 139–158.

[7] J. Hwang, T. Xie, D. El Kateb, T. Mouelhi, and Y. Le Traon,
“Selection of regression system tests for security policy
evolution,” in Proc. of the 27th International Conference on
Automated Software Engineering. ACM, 2012, pp. 266–269.

[8] A. Pretschner, T. Mouelhi, and Y. L. Traon, “Model-based
tests for access control policies,” in Proc. of First Interna-
tional Conference on Software Testing, Verification (ICST),
2008, pp. 338–347.

[9] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Test
case prioritization: An empirical study,” in Proc. of IEEE
International Conference on Software Maintenance (ICSM).
IEEE, 1999, pp. 179–188.

[10] K. Maly, M. Zubair, M. Nelson, X. Liu, H. Anan, J. Gao,
J. Tang, and Y. Zhao, “Archon - a digital library that federates
physics collections.”

[11] Realsearch Group at NCSU, “iTrust: Role-Based Healthcare,”
http://agile.csc.ncsu.edu/iTrust/wiki/doku.php.

[12] A. Bertolino, S. Daoudagh, F. Lonetti, and E. Marchetti.,
“XACMUT: XACML 2.0 Mutants Generator,” in Proc. of 8th
International Workshop on Mutation Analysis, 2013, pp. 28–
33.

[13] E. Martin and T. Xie, “A fault model and mutation testing
of access control policies,” in Proc. of 16th International
Conference on World Wide Web (WWW), pp. 667–676.

[14] T. Mouelhi, F. Fleurey, and B. Baudry, “A generic metamodel
for security policies mutation,” in Proc. of Software Testing
Verification and Validation Workshop (ICSTW), 2008, pp.
278–286.

[15] A. Bertolino, F. Lonetti, and E. Marchetti, “Systematic
XACML Request Generation for Testing Purposes,” in Proc.
of 36th EUROMICRO Conference on Software Engineering
and Advanced Applications (SEAA), 2010, pp. 3–11.

[16] A. Bertolino, S. Daoudagh, F. Lonetti, E. Marchetti, and
L. Schilders, “Automated testing of extensible access control
markup language-based access control systems,” IET Soft-
ware, vol. 7, no. 4, pp. 203–212, 2013.

[17] H. Zhu, P. A. V. Hall, and J. H. R. May, “Software
unit test coverage and adequacy,” ACM Comput. Surv.,
vol. 29, no. 4, pp. 366–427, Dec. 1997. [Online]. Available:
http://doi.acm.org/10.1145/267580.267590

[18] S. Yoo and M. Harman, “Regression testing minimization,
selection and prioritization: A survey,” Softw. Test. Verif.
Reliab., vol. 22, no. 2, pp. 67–120, Mar. 2012. [Online].
Available: http://dx.doi.org/10.1002/stv.430

[19] A. Kaur and S. Goyal, “A genetic algorithm for regression test
case prioritization using code coverage,” International journal
on computer science and engineering, vol. 3, no. 5, pp. 1839–
1847, 2011.

[20] D. Leon and A. Podgurski, “A comparison of coverage-based
and distribution-based techniques for filtering and prioritizing
test cases,” in Proc. of 14th International Symposium on
Software Reliability Engineering (ISSRE). IEEE, 2003, pp.
442–453.

[21] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer, and R. S.
Roos, “Timeaware test suite prioritization,” in Proc. of the
2006 International Symposium on Software Testing and Anal-
ysis. ACM, 2006, pp. 1–12.

[22] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Prioritiz-
ing test cases for regression testing,” SIGSOFT Softw. Eng.
Notes, vol. 25, no. 5, pp. 102–112, 2000.



[23] Z. Li, M. Harman, and R. M. Hierons, “Search algorithms
for regression test case prioritization,” IEEE Transactions on
Software Engineering, vol. 33, no. 4, pp. 225–237, 2007.

[24] E. Martin and T. Xie, “Automated test generation for access
control policies via change-impact analysis,” in Proc. of the
Third International Workshop on Software Engineering for
Secure Systems, 2007, pp. 5–12.

[25] H. Hu and G. Ahn, “Enabling verification and conformance
testing for access control model,” in Proc. of the 13th ACM
symposium on Access control models and technologies, 2008,
pp. 195–204.

[26] V. C. Hu, E. Martin, J. Hwang, and T. Xie, “Conformance
checking of access control policies specified in XACML,”
in 31st Annual IEEE International Computer Software and
Applications Conference, vol. 2, 2007, pp. 275–280.

[27] A. D. Brucker, L. Brügger, P. Kearney, and B. Wolff, “An
approach to modular and testable security models of real-
world health-care applications,” in Proc. of the 16th ACM
Symposium on Access Control Models and Technologies,
2011, pp. 133–142.

[28] V. C. Hu, D. R. Kuhn, and T. Xie, “Property verification
for generic access control models,” in Proc. of IEEE/IFIP
International Conference on Embedded and Ubiquitous Com-
puting, vol. 2, 2008, pp. 243–250.


