
This is a repository copy of Diversity-aware mutation adequacy criterion for improving fault
detection capability.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/203531/

Version: Accepted Version

Proceedings Paper:
Shin, D. orcid.org/0000-0002-0840-6449, Yoo, S. and Bae, D.-H. (2016) Diversity-aware 
mutation adequacy criterion for improving fault detection capability. In: 2016 IEEE Ninth 
International Conference on Software Testing, Verification and Validation Workshops 
(ICSTW). 2016 IEEE Ninth International Conference on Software Testing, Verification and 
Validation Workshops (ICSTW), 11-15 Apr 2016, Chicago, IL, USA. Institute of Electrical 
and Electronics Engineers (IEEE) , pp. 122-131. ISBN 9781509036752 

https://doi.org/10.1109/icstw.2016.37

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers 
or lists, or reuse of any copyrighted components of this work in other works. Reproduced 
in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Diversity-Aware Mutation Adequacy Criterion for

Improving Fault Detection Capability

Donghwan Shin

School of Computing

KAIST

Daejeon, Republic of Korea

Email: donghwan@se.kaist.ac.kr

Shin Yoo

School of Computing

KAIST

Daejeon, Republic of Korea

Email: shin.yoo@kaist.ac.kr

Doo-Hwan Bae

School of Computing

KAIST

Daejeon, Republic of Korea

Email: bae@se.kaist.ac.kr

Abstract—Many existing testing techniques adopt diversity as
an important criterion for the selection and prioritization of
tests. However, mutation adequacy has been content with simply
maximizing the number of mutants that have been killed. We
propose a novel mutation adequacy criterion that considers the
diversity in the relationship between tests and mutants, as well
as whether mutants are killed. Intuitively, the proposed criterion
is based on the notion that mutants can be distinguished by
the sets of tests that kill them. A test suite is deemed adequate
by our criterion if the test suite distinguishes all mutants in
terms of their kill patterns. Our hypothesis is that, simply by
using a stronger adequacy criterion, it is possible to improve
fault detection capabilities of mutation-adequate test suites. The
empirical evaluation selects tests for real world applications using
the proposed mutation adequacy criterion to test our hypothesis.
The results show that, for real world faults, test suites adequate
to our criterion can increase the fault detection success rate by
up to 76.8 percentage points compared to test suites adequate to
the traditional criterion.

I. INTRODUCTION

One fundamental limitation of software testing is the fact

that, to validate the behavior of the Program Under Test (PUT),

we can only ever sample a very small number of test inputs out

of the vast input space. Almost all existing testing techniques

are, at some level, attempts to answer the following question:

how does one sample a finite number of test inputs to cover

as wide a range of program behaviours as possible?

The concept of diversity has received much attention while

answering the above question. For example, Adaptive Random

Testing (ART) [1] seeks to increase diversity of randomly

sampled test inputs by choosing an input that is as different

from those already sampled as possible. Clustering-based test

selection and prioritization [2], [3] assumes that a diverse set

of test inputs would explore and validate a wider range of

program behaviors. Diversity in test output has been studied

as a test adequacy criterion for black box testing of web

applications [4]. Information theoretic measures of diversity

has also been studied as a test selection criterion [5], [6].

In contrast, diversity has received little attention in relation

to mutation testing. Mutation adequacy remains essentially as a

simple count of the number of killed mutants. Many of existing

works focus either on reducing the cost of mutation testing

(i.e., do fewer, do smarter, and do faster as summarized by

Offutt and Untch [7]) or analyzing equivalent mutants [8], [9]

(i.e., mutants semantically equivalent to an original program).

Relatively very few attention has been paid to improve the

fault detection capability of the mutation adequacy criterion

itself.

The existing mutation adequacy as a count of killed mutants

does not cater for diversity. Consequently, despite its potential

correlation to the fault detection capability, many diverse

mutants are generated but wasted. Suppose a pathological case

in which a single test can kill all generated mutants. In terms

of the kill information, it means that the single test does

not capture the diversity of the mutants enough, while the

traditional mutation adequacy simply determines the single test

as adequate. Such a case calls for a richer adequacy criterion

in mutation testing.

This paper proposes a novel adequacy criterion called

distinguishing mutation adequacy criterion, which includes

the notion of diversity. The proposed metric is based on our

previous work on theoretical framework for mutation testing

[10]. At the core of the new criterion lies the idea that mutants

can be distinguished from each other by the set of tests that

kill them. Our mutation adequacy criterion aims not only to

kill, but also to distinguish as many mutants as possible. The

aforementioned pathological case of a single test killing all

mutants will perform poorly under our new criterion.

By aiming to distinguish the maximum number of mutants,

the proposed adequacy criterion can select more diverse set

of test cases. Suppose there exist two mutants. Test t1 kills

both, while t2 and t3 kill different one each. Under the

existing criterion, the set {t1} is deemed adequate, whereas

the proposed criterion will choose the set {t2, t3} instead. We

hypothesize that this, more diverse set of tests will show higher

fault detection capability.

The hypothesis on fault detection capability is validated by

an empirical study. We use the Defects4J [11] data set

to study real world faults in non-trivial systems. The control

group consists of sets of test suites selected based on the

traditional mutation adequacy (i.e., ones that kill all mutants),

while the treatment group consists of sets of test suites that

can collectively kill and distinguish all mutants. Both groups

are evaluated for their fault detection capabilities by executing

them against faulty and fixed versions of programs collected

from the real world. The results show that our novel mutation



adequacy criterion shows either equal or higher fault detection

capabilities for all studied subject faults.

The technical contributions of this paper are as follows:

• This paper introduces a novel mutation adequacy criterion

called distinguishing mutation criterion. A test suite is

mutation adequate with respect to this criterion if all

considered mutants have unique sets of tests that kill

them, i.e. can be distinguished by their kill patterns.

• The proposed adequacy criterion is empirically evaluated

using real faults in the Defects4J repository and

random testing. The results show that the new adequacy

criterion shows at least equal or higher fault detection ca-

pability than the traditional mutation adequacy criterion.

The increase in the fault detection success rate is up to

76.8 percentage points.

The rest of the paper is organised as follows. Section II

presents a formal definition of the existing mutation adequacy

criterion. Section III introduces the distinguishing mutants

adequacy criterion using the same formal notations. Section IV

describes the design of our empirical evaluation, the results of

which are presented and analysed in Section V. Section VI

discusses related work, and finally Section VII concludes.

II. BACKGROUND

A. Formal Model of Mutation Testing

To formally represent mutation adequacy criteria considered

in this paper, we summarize the essential elements of the

formal framework for the mutation-based testing methods.

Detailed descriptions for the formal framework are presented

in [10].

Let P be a set of programs which includes the program un-

der test. In mutation testing, there are three essential programs

in P : an original program po ∈ P , a mutant m ∈ M ⊆ P
generated from po, and a correct program ps ∈ P which

represents the true requirements1 about po. For a test t ∈ T
for P , if the behaviors of po and ps are different, it is said

that t detects a fault in po. Similarly, if the behaviors of po
and m are different for t, it is said that t kills m. Note that

the notion of behavioral difference is an abstract concept. It

is formalized by a testing factor, called a test differentiator,

which is defined as follows:

Definition 1: A test differentiator d : T × P × P → {0, 1}
is a function,2 such that

d(t, px, py) =

{

1 (true), if px is different with py for t

0 (false), otherwise

for all tests t ∈ T and programs px, py ∈ P .

By definition, a test differentiator concisely represents whether

the behaviors of px ∈ P and py ∈ P are different for t.

1While ps is not a real program, this is not a serious assumption, because
we only require the behavior of ps for a given set of tests. In practice, a
human may play the role of ps, acting as a human oracle.

2This function-style definition is replaceable by a predicate-style definition,
such as d ⊆ T × P × P .

We make no attempt to incorporate any specific definition

of program differences. The specific definition of differences

can only be decided in context. For example, while 0.3333 is

different with 1/3 in the strict sense, 0.3333 will be regarded

as the same as 1/3 in some cases. To keep things general,

we consider a set of test differentiators D that includes all

possible test differentiators for P .

A test differentiator, or simply differentiator, can formally

describe the notion of differences in mutation testing. For

example, when t detects a fault in po, it is clearly formalized

as follows3:

d(t, po, ps) = 1

On the other hand, when t kills a mutant m, it is also clearly

formalized as follows:

d(t, po,m) = 1

Note that po, ps, and m are general entities, and largely

separated from any specifics such as programming languages

or mutation methods.

B. Mutation Adequacy Criterion

Since mutation testing was first proposed in the 1970s, it has

been widely studied in the aspects of both theory and practice,

and a mutation adequacy criterion has played the key role in

the studies of mutation testing. A mutation adequacy criterion

is a predicate that determines the adequacy of a test suite

using mutants. It is said that a test suite is mutation-adequate

when the test suite kills all of the generated mutants. Using a

differentiator, it is clearly and concisely formalized as follows:

∀m ∈ M, ∃t ∈ TS, d(t, po,m) = 1. (1)

In other words, a test suite TS is mutation-adequacy if all

mutants m ∈ M are killed by at least one test t ∈ TS.

Equation (1) is general enough to consider various muta-

tion testing approaches. For example, there is a spectrum of

mutation approaches from a strong mutation [12] to a weak

mutation [13], depending on which d is used. In a strong

mutation analysis, a test t kills a mutant m when the output

of m differs from the output of the original program po for

t. In a weak mutation analysis, t kills m when the internal

states of m and po are different for t. In the rest of this paper,

we refer (1) as the traditional mutation adequacy criterion in

compared to the new mutation adequacy proposed in Section

III-B.

III. EXTENDING MUTATION ADEQUACY CONSIDERING

DIVERSITY OF MUTANTS

A. Limitation of Traditional Mutation Adequacy

To see the limitation of the traditional mutation adequacy

criterion, we provide a working example with four mutants and

three tests in Figure 1. Each of the values represents whether

a test kills a mutant. For example, d(t1, po,m1) is 1 which

means that t1 kills m1.

3In experiments, when the correct version of a program for a fault is
known in advance, the correct version can be used as po. In this case, the
corresponding faulty version should be used as ps so that the difference
between po and ps implies the fault.



Test 𝑑(𝑡$ , 𝑝' , 𝑚)) 𝑑(𝑡$ , 𝑝' ,𝑚+) 𝑑(𝑡$ , 𝑝' ,𝑚,) 𝑑(𝑡$ , 𝑝' ,𝑚-)

𝑡) 1 1 1 1

𝑡+ 0 0 1 1

𝑡, 0 1 0 1

Fig. 1. An working example for demonstrating the limitation of the traditional
mutation adequacy criterion. The table represents whether a test kills a mutant.
For example, d(t1, po,m1) is 1 which means that t1 kills m1.

In the working example, a test suite TS1 = {t1} is adequate

to both the traditional mutation adequacy criterion and the

traditional mutation adequacy criterion, because all the four

mutants are killed by t1. However, TS1 does not capture

the diversity of the four mutants, and the mutants are simply

redundant to TS1. This implies that mutants are generated but

wasted in terms of the traditional mutation adequacy criterion,

because it does not consider the diversity of mutants.

B. Diversity-Aware Mutation Adequacy Criterion

To consider the diversity of mutants in terms of the ad-

equacy criterion of test suites, we first formally define the

distinguishment of mutants with respect to a test as follows:

Definition 2: Two mutants mx and my generated from po
are distinguished by a test t if and only if the following

condition holds:

d(t, po,mx) 6= d(t, po,my)

for a differentiator d.

In other words, two mutants are distinguished by a test

when the test differentiates the two mutants’ kill patterns. In

the working example, the four mutants are undistinguished

from each other by t1 because d(t1, po,mi) = 1 for all

i ∈ {1, · · · , 4}. By t2, m1 is distinguished from m3 and m4

but not from m2. By t3, m1 is distinguished from m2 and m4

but not from m3.

In terms of a set of tests, a mutant is killed by a set of tests

when there is at least one test that kills a mutant. Similarly,

we extend the distinguishment of mutants with respect to a

set of tests as follows: two mutants are distinguished by a set

of tests when there is at least one test that distinguishes the

two mutants. In the working example, if we consider a test

suite TS2 = {t1, t2}, m1 is distinguished from m3 and m4

but not distinguished from m2. By another test suite TS3 =
{t1, t2, t3}, all of the four mutants are distinguished from each

other.

We now define a new mutation adequacy criterion, called a

distinguishing mutation adequacy criterion, as follows:

Definition 3: For a set of mutants M generated from an

original program po, a test suite TS is distinguishing mutation-

adequate when the following condition holds:

∀mx,my ∈ M ′, ∃t ∈ TS, d(t, po,mx) 6= d(t, po,my)

where mx 6= my , M ′ = M ∪ {mo}, and mo = po.

In other words, a test suite TS is distinguishing mutation-

adequate if all possible pair of different mutants mx and my

in M ′ are distinguished by at least one test t ∈ TS. In the

working example, M ′ is {mo,m1, · · · ,m4} and there are
(

5

2

)

= 10 pairs of mutants including (mo,m1), (mo,m1),
· · · , (m1,m2), (m1,m3), · · · , (m3,m4). Among the test

suites TS1, TS2, and TS3, only TS3 is adequate to the

distinguishing mutation adequacy criterion.

It is important to appreciate the role of mo in the dis-

tinguishing mutation adequacy. Consider my = mo, the

distinguishing mutation adequacy criterion is simplified as

follows:

∀mx ∈ M, ∃t ∈ TS, d(t, po,mx) 6= d(t, po,mo). (2)

Since it is trivial that d(t, po,mo) = 0 for all t ∈ T , (2) is

exactly same as (1) (i.e., the traditional mutation adequacy cri-

terion). This means that the distinguishing mutation adequacy

criterion subsumes the traditional mutation adequacy criterion.

In other words, if a test suite is adequate to the distinguishing

mutation adequacy criterion, the test suite is guaranteed to be

adequate to the traditional mutation adequacy criterion.

For the sake of simplicity, let d-criterion hereafter refer to

the distinguishing mutation adequacy criterion (i.e., diversity-

aware) and, similarly, k-criterion to the traditional mutation

adequacy criterion (i.e., kill-only).

C. Time Complexity for Calculating Adequacy

In mutation testing, most time consuming computation is

the execution of mutants for tests to determine whether it

is killed or not. However, this cost is featured equally for

both d-criterion and k-criterion because both criteria needs to

determine whether a mutant is killed by a test or not. What

differs is that d-criterion additionally needs to compare the kill

information of each mutant as a pair. In Section V-D, we will

see how much additional time takes for the comparison.

As a test suite selection criterion, for each test, the d-

criterion should decide whether it should add a test to the

test suite or not. It may initially appear that the number of

comparison for n mutants is
(

n
2

)

because it is the number of all

possible pairs among the set of n elements. However, we need

to compare not all n mutants but only k (≤ n) undistinguished

mutants among them because the distinguishment of mutants

is monotonic—once two mutants are distinguished, they are

never subsequently undistinguished.

Further, the number of comparison for k undistinguished

mutants is only k − 1 because a test can partition the set

of undistinguished mutants into only two groups—one for the

mutants that are killed by the test, and the other for the mutants

that are not killed by the test. In the working example, for the 5

initially undistinguished mutants (mo, · · · ,m4), t3 partitions

it into two groups (m0,m1,m3) and (m2,m4). Here, it is

required to consider not all
(

5

2

)

= 10 pairs but only the 4

pairs (i.e., (m0,m1), (m0,m2), (m0,m3), and (m0,m4)) to

calculate the distinguishment of mutants by t3. As a result, the

number of comparison for each test is linearly proportional to

the number of undistinguished mutants, making the d-criterion



more practical. The detailed algorithm for test suite selection

will be explained in Section IV-B.

D. Generalized Equivalent Mutant Problem

In the k-criterion, it is possible that a mutant is semantically

equivalent to an original program so that there is no test to

kill it. The mutant is called an equivalent mutant. Formally, an

equivalent mutant me is described as ∀t ∈ T, d(t, po,me) = 0.

Unfortunately, deciding whether a mutant is equivalent or not

is undecidable. However, many researchers have attempt to

tackle this problem with practical approximation [14]–[16].

In the d-criterion, it is possible that two mutants are se-

mantically equivalent to each other so that there is no test to

distinguish them. Let us call the mutants universally undistin-

guishable mutants. Formally, the universally undistinguishable

mutants mx and my are described as ∀t ∈ T, d(t, po,mx) =
d(t, po,my). This is essentially the extension of the equivalent

mutant, which means the deciding whether a pair of mutants

are universally undistinguishable or not is another undecid-

able problem. Many ideas developed to tackle the traditional

equivalent mutant problem are fully applicable to this extended

problem as well. However, attempting to solve this problem

is not in the scope of this paper.

IV. EMPIRICAL EVALUATION DESIGN

In the experimental evaluation, we investigate the following

four main research questions:

• RQ1: Are there rooms for improvement of the fault

detection capability by distinguishing more mutants?

• RQ2: Is the distinguishing mutation adequacy criterion

more likely to detect faults than the traditional mutation

adequacy criterion?

• RQ3: How many tests are needed to be a mutation-

adequate test suite?

• RQ4: How much time takes for selecting a mutation-

adequate test suite?

RQ1 deals with the necessary question before we analyze

the improvement of fault detection capability. For example,

it may be the case that a traditional mutation-adequate test

suite is capable of distinguishing all mutants for some faults

in practice. In this case, it is not possible for a distinguishing

mutation-adequate test suite to improve the fault detection

capability by distinguishing more mutants. We classify faults

as several types and analyze the room for improvement for

each type of faults.

RQ2 is the main question of this paper: improving the

fault detection capabilities of mutation-adequate test suites.

If using a new test adequacy criterion improves the fault

detection capabilities for real faults, it is worth to consider

to adapt the new adequacy criterion not only in research but

also in practice. We compare the fault detection capabilities of

the traditional and distinguishing mutation adequacy for real

faults.

RQ3 is a practical question. The number of tests is directly

related to the testing efforts, especially when the cost of test

oracles is considered. A test suite with too many tests may

Real fault

Random test data 

generation tool

Mutation 

analysis tool

Test pool (𝑇)

Mutants’ kill 

information

Fault detection 

information
Run 𝑝# for 𝑇

Distinguishing 

mutation adequacy

Traditional 

mutation adequacy
𝑇𝑆%&'

𝑇𝑆()*

𝑇𝑆%&'

𝑇𝑆()*

𝑘-suite

𝑑-suite

Faulty version (𝑝#)

Fixed version (𝑝%)

Defects4J

Randoop

Major

Fig. 2. Experimental setup: overview

be practically useless even if its fault detection effectiveness

is promising. We compare the size of adequate test suites

(i.e., the number of tests) for the traditional and distinguishing

mutation adequacy.

RQ4 considers the time complexity for calculating the

mutant distinguishment in terms of test suite selection. We

compare the test suite selection times for the traditional and

distinguishing mutation adequacy.

To answer the above questions, we design our experiments

as described in Figure 2.

We use the developer-fixed and manually-verified faults of

the real applications in the database of Defects4J [11]. For

each fault, we generate a large number of random tests as

a test pool with the aid of Randoop [17]. The test pool

is used to execute many mutants generated by the mutation

analysis tool Major [18], and it returns the kill information

for all mutants to the test pool. We then generate distinguish-

ing mutation-adequate test suites and traditional mutation-

adequate test suites using the kill information. Meanwhile,

since Defects4J provides both faulty and fixed version of

programs for each fault, it is measurable whether each of the

generated test suites detects the fault or not.

A. Subject Faults

We conduct experiments on real applications provided by

Defects4J. Its database includes 357 developer-fixed and

manually-verified real faults and corresponding fixes from

five applications (JFreeChart, Closure compiler, Commons

Math, Joda-Time, and Commons Lang). For each fault, the

faulty version and the fixed version of the fault is given. The

difference between the faulty and fixed version of a fault does

not include unrelated changes such as refactorings. Since each

fault is given as an independent fault-fix pair of program

versions, we treat each fault as that of a separate subject

program.

We study the subset of the 357 faults which satisfy the

following conditions: (1) a fault must be detected by a test

pool, and (2) at least one mutant generated from the fault

must be killed by the test pool. As a result, 45 real faults are

remained. In Table I, the column labeled as fault represents

the identifiers of the 45 faults given by the Defects4J



database. For example, Chart-5 means the fifth real fault of

the JFreeChart program.

B. Test Pool Generation

As we attempt to generate a large number of unbiased tests

as a test pool for the test suite selection, we use a random test

generation tool, Randoop [17]. For each fault, we generate at

most 10,000 tests with the 200 seconds time limit. However,

not all test pools for the studied faults reached 10,000 tests

because Randoop may generate tests that make compile

errors, runtime errors, and sporadically fails as noted in [11].

We automatically removed those problematic tests using the

script given in Defects4J. In Table I, the columns labeled

test pool size and trigs represent the total number of tests in

the test pool and the number of fault-triggering tests among

the test pool, respectively, for each fault. For example, Chart-

5 has the test pool whose size is 10,000, and only 165 tests

among the pool are capable of detecting the Chart-5 fault.

C. Mutant Generation and Execution

We use Major [18] mutation analysis tool for generating

and executing all mutants to the test pool for each fault. Be

default, Major provides a set of commonly used mutation

operators [19] including binary operator replacement, unary

operator replacement, constant value replacement, branch con-

dition manipulation, and statement deletion. We applied all the

mutation operators and generate all possible mutants for each

fault. In Table I, the columns labeled as mutation analysis

represent the mutation-related information including the total

number of generated mutants (allM), killed mutants (by the

test pool) (kM), distinguished mutants (by the test pool) (dM),

and the mutants-tests execution time (time), for each fault.

The number of killed and distinguished mutants (by the test

pool) are the maximum number of killable and distinguishable

mutants in test suite selection, respectively.

D. Test Suite Generation

We generate an adequate test suite by selecting tests from a

test pool for each fault. We define the fault detection capability

of an adequacy criterion as the probability that a test suite

selected to be adequate to the criterion will detect a fault [20].

Considering that test suites adequate to the same adequacy

criterion may have different fault detection capabilities in

practice, we generate 500 adequate test suites for each criterion

and analyze them to obtain statistically sound analysis results.

Let 500 distinguishing mutation-adequate test suites as a d-

suite (i.e., distinguish-suite) and 500 traditional mutation-

adequate test suites as a k-suite (i.e., kill-suite). For example,

let x be the number of fault-detecting test suites among k-suite

for a fault. Then, the fault detection success rate of the k-suite

x/500 implies the fault detection capability of the k-criterion

for the fault.

Algorithm 1 shows how to generate a d-suite from a test

pool. The algorithm takes a test pool T , a set of mutants

M , an original program po, and the maximum number of

distinguishable mutants (with respect to the test pool) maxδ

as inputs, and returns a distinguishing mutation-adequate test

suite TSdist. In Algorithm 1, δmap represents the dictionary

of mutant distinguishment. The values of δmap are the set

of undistinguished mutants. For each set of undistinguished

mutants, one mutant in the set is selected (and removed from

the set) as the key for the dictionary. For example, Line 4

initializes δmap with the key po and the value M , because

all mutants m ∈ M and po = mo are undistinguished at

first. Lines 8-16 calculate and handle the distinguishment of

previously undistinguished mutants. Lines 17-20 update δmap

and check the exit condition of the while-loop.

Algorithm 1 d-suite generation

1: function GENERATEDISTTS(T,M, po,maxδ)
2: TSdist ← SET()
3: δmap ← DICT() ⊲ k: a mutant, v: a set of mutants
4: PUT(δmap[p0],M )
5: while True do
6: t←POP(T )
7: δ′map ← DICT()
8: for all mk ∈ KEYS(δmap) do
9: Mtmp ← SET()

10: for all mu ∈ δmap[mk] do
11: if d(t, po,mk) 6= d(t, po,mu) then
12: ADD(Mtmp,mu)

13: if ISNOTEMPTY(Mtmp) then
14: REMOVEALL(δmap[mk],Mtmp)
15: mk′ ← POP(Mdist)
16: PUT(δ′map[mk′ ],Mtmp)

17: if ISNOTEMPTY(δ′map) then
18: ADD(TSdist, t)
19: PUTALL(δmap, δ

′

map)
20: if SIZE(KEYS(δmap)) = maxδ then
21: break

22: return TSdist

V. RESULTS AND ANALYSIS

A. RQ1: Are there rooms for improvement of the fault detec-

tion effectiveness by distinguishing more mutants?

To consider the room for improvement of the fault detection

success rates of d-suites by distinguishing more mutants in

compared to k-suites, we have classified the studied faults

based on the fault detection success rate and the distinguished

mutants rate of the k-suite of each fault. The distinguished

mutants rate of a k-suite for a fault is the ratio of the

average number of distinguished mutants by the k-suite to the

maximum number of mutants distinguished by the test pool.

The results are presented in Figure 3.

There are four types of faults in Figure 3. For type1 faults,

k-suites neither certainly detect the faults nor distinguish

all mutants from the faults. More type1 faults means more

potential rooms for improvement of fault detection success

rates of d-suites. Type2 faults are not certainly detected by k-

suites while all mutants are distinguished by k-suites. Type3

includes faults that are certainly detected by k-suites while

not all mutants are distinguished by k-suites. Type4 faults are

certainly detected and their mutants are fully distinguished

by k-suites. The sum of type3 and type4 faults implies the



TABLE I
SUBJECT FAULTS, TESTS, AND MUTANTS

Test pool Mutation analysis Test pool Mutation Analysis

Fault size trigs allM kM dM time (sec) Fault size trigs allM kM dM time (sec)

Chart-5 10000 165 271 168 110 2157 Math-9 3788 1 84 51 31 106

Chart-11 236 34 221 26 13 82 Math-14 5492 2 24 10 6 206

Chart-12 6759 2 51 44 24 1314 Math-22 2865 62 285 267 84 293

Chart-14 5693 9 762 198 88 1320 Math-27 8567 7 400 296 227 2733

Chart-15 5639 24 198 147 113 12502 Math-29 3574 11 220 146 89 396

Chart-16 9341 6254 161 153 131 4880 Math-35 10000 21 33 15 8 206

Chart-17 3398 376 316 146 71 280 Math-60 10000 2 125 116 76 2474

Chart-18 1897 147 218 121 73 652 Math-61 3896 296 64 57 36 569

Chart-22 3370 307 112 63 28 204 Math-66 3740 3 22 6 4 57

Chart-24 930 238 35 28 27 31 Math-68 3728 9 10 2 2 53

Closure-56 6411 14 174 128 59 813 Math-77 1229 1 918 542 217 1902

Closure-107 5421 1 119 3 3 296 Math-90 515 13 60 48 32 35

Lang-12 857 8 139 76 45 526 Math-92 541 13 927 623 278 3128

Lang-37 6956 55 1924 1319 817 6307 Math-93 273 1 794 517 207 525

Lang-41 749 368 214 99 19 675 Math-95 872 23 74 67 42 40

Lang-45 9114 28 300 215 127 220 Math-98 3026 811 1366 950 401 2625

Lang-56 3707 381 495 337 246 12223 Math-102 2844 46 282 206 61 217

Lang-59 1199 28 1412 652 321 408 Math-103 5878 226 108 91 75 707

Math-1 2045 3 710 415 236 962 Math-104 4216 319 337 302 167 1783

Math-3 2087 6 1535 1292 911 2151 Time-8 890 5 379 170 56 1282

Math-4 3537 1 48 6 6 65 Time-9 5686 21 369 221 150 5023

Math-5 1476 2 670 506 291 2689 Time-13 1695 5 910 398 84 1263

Math-6 6672 12 37 18 16 270 average 4018.0 230.2 398.1 250.2 135.7 1703.3

Fault detection success

rate of 𝑘-suite < 1

Fault detection success

rate of 𝑘-suite = 1

Distinguished

mutants rate of

𝑘-suite< 1

Type1: not certainly 

detected by the 𝑘-suite 

while there are 

undistinguished mutants.

Type3: certainly detected 

by the 𝑘-suite while there 

are undistinguished 

mutants.

Distinguished

mutants rate of

𝑘-suite= 1

Type2: not certainly 

detected by the 𝑘-suite

while there is no 

undistinguished mutants.

Type4: certainly detected 

by the 𝑘-suite while there 

is no undistinguished 

mutants.

Fig. 3. Types of faults. If the fault detection success rate of the k-suite for
a fault is equal to 1, it means that the k-criterion certainly detects the fault.
If the distinguished mutants rate of the k-suite for a fault is equal to 1, it
means that the k-criterion distinguishes all mutants generated from the faulty
program.

0% 20% 40% 60% 80% 100%

Type1 Type2 Type3 Type4

11.1% 51.1%11.1% 26.7%

Fig. 4. The percentages of types of faults. Each percentage of a type represents
the ratio of the number of faults for the type to the number of all faults. For
example, the first box shows that 11.1% (5/45) of faults are type1.

proportion of faults that are certainly detected by the k-

criterion. The sum of type2 and type4 faults implies the mutant

distinguishment power of k-suites.

We provide the proportions of types in Figure 4. As a result,

11.1% of faults are type1 which means that there are rooms

for improvement in 11% of faults. In other words, 11.1% of

faults are not effectively detected by the k-criterion possibly

because the k-criterion failed to distinguish mutants. We will

carefully investigate the amount of improvements for the type1

faults in Section V-B.

Type2 faults are 11.1% of all faults. This means that

distinguishing all mutants cannot guarantee to detect all faults.

For example, the fault detection success rate of both the k-

criterion and the d-criterion for Closure-107 (i.e., one of the

type2 fault) is zero. While it is not in the scope of this work,

a further investigation on this type of faults would be an

interesting future work.

The sum of type3 and type4 faults are 77.8% of all faults,

meaning that the k-criterion can detects 77.8% of the studied

faults without explicitly considering the diversity of mutants.

This accounts for why the k-criterion seems effective at detect-

ing faults in many previous studies. Still, there is considerable

room for improvement with the type1 faults, and it would be

worthwhile to investigate the d-criterion to explicitly consider

the diversity of mutants.

Note that the results given in Figure 4 are bounded by

several experimental parameters including test data generation

methods, studied faults, and mutation operators. However, the

results clearly show that, simply by using a stronger adequacy

criterion while using the same set of mutants and tests, it is

possible to improve fault detection capabilities of mutation-

adequate test suites.



TABLE II
EXPERIMENTATION RESULTS SUMMARY

Fault detection capability Dist. mutants rate Fault detection capability Dist. mutants rate

Fault d-suite k-suite p-value OR d-suite k-suite Fault d-suite k-suite p-value OR d-suite k-suite

Chart-5 0.976 0.970 0.728 1.248 1.000 1.000 Math-9 0.552 0.486 0.018 1.302 1.000 0.757

Chart-11 1.000 1.000 - 1.000 1.000 0.864 Math-14 0.172 0.166 0.400 1.043 1.000 1.000

Chart-12 0.808 0.040 0.000 98.25 1.000 0.533 Math-22 1.000 1.000 - 1.000 1.000 0.523

Chart-14 1.000 1.000 - 1.000 1.000 0.924 Math-27 0.432 0.328 0.000 1.557 1.000 0.834

Chart-15 1.000 1.000 - 1.000 1.000 0.712 Math-29 1.000 1.000 - 1.000 1.000 0.899

Chart-16 1.000 1.000 - 1.000 1.000 0.759 Math-35 0.774 0.754 0.772 1.117 1.000 1.000

Chart-17 1.000 1.000 - 1.000 1.000 1.000 Math-60 1.000 1.000 - 1.000 1.000 0.530

Chart-18 1.000 1.000 - 1.000 1.000 0.893 Math-61 1.000 1.000 - 1.000 1.000 0.664

Chart-22 1.000 1.000 - 1.000 1.000 0.980 Math-66 1.000 1.000 - 1.000 1.000 0.974

Chart-24 1.000 1.000 - 1.000 1.000 0.724 Math-68 0.184 0.162 0.179 1.166 1.000 1.000

Closure-56 1.000 1.000 - 1.000 1.000 0.850 Math-77 1.000 1.000 - 1.000 1.000 0.862

Closure-107 0 0 - 1.000 1.000 1.000 Math-90 0.594 0.374 0.000 2.444 1.000 0.755

Lang-12 1.000 1.000 - 1.000 1.000 0.776 Math-92 1.000 1.000 - 1.000 1.000 0.806

Lang-37 1.000 1.000 - 1.000 1.000 1.000 Math-93 1.000 1.000 - 1.000 1.000 1.000

Lang-41 1.000 1.000 - 1.000 1.000 1.000 Math-95 1.000 1.000 - 1.000 1.000 1.000

Lang-45 1.000 1.000 - 1.000 1.000 1.000 Math-98 1.000 1.000 - 1.000 1.000 1.000

Lang-56 1.000 1.000 - 1.000 1.000 1.000 Math-102 1.000 1.000 - 1.000 1.000 1.000

Lang-59 1.000 1.000 - 1.000 1.000 1.000 Math-103 1.000 1.000 - 1.000 1.000 1.000

Math-1 1.000 1.000 - 1.000 1.000 1.000 Math-104 1.000 1.000 - 1.000 1.000 0.437

Math-3 1.000 1.000 - 1.000 1.000 0.756 Time-8 1.000 1.000 - 1.000 1.000 0.909

Math-4 1.000 1.000 - 1.000 1.000 0.977 Time-9 1.000 1.000 - 1.000 1.000 0.799

Math-5 1.000 1.000 - 1.000 1.000 0.748 Time-13 1.000 1.000 - 1.000 1.000 0.864

Math-6 0.182 0.006 0.000 31.76 1.000 0.863 average 0.882 0.851 - 3.91 1.000 0.885

B. RQ2: Is the distinguishing mutation adequacy criterion

more likely to detect faults than the traditional mutation

adequacy criterion?

To investigate the difference of the fault detection capabili-

ties between the d-criterion and the k-criterion, for each fault,

we calculate the percentage points (pp) of the fault detection

success rate of the d-suite in compared to the k-suite. For

example, if the fault detection success rate of the d-suite for a

fault is 90% and the fault detection success rate of the k-suite

for the fault is 40%, then the increased fault detection success

rate for the fault is 50 pp. The results for all faults, ranked in

descending order, are presented in Figure 5.

In Figure 5, it is clear that the increased fault detection suc-

cess rates for all faults never be negative. This means that the

d-criterion is always better than or equal to the k-criterion in

terms of fault detection capability. This is intuitive considering

the subsumption relationship between the distinguishing and

k-criterion as explained in Section III-B.

The top five faults (Chart-12, Math-90, Math-6, Math-

27, and Math-9) in Figure 5 show that the d-criterion is

statistically better than the k-criterion in terms of the fault

detection capability, based on non-parametric proportion test

with α = 0.05. While Math-68, Math-35, Math-14, and Chart-

5 also show increased fault detection success rates, their results

are not statistically significant. Additionally, we provide effect

sizes for the improvements of the fault detection capabilities

in Table II. We calculate the odd ratio (OR) as the effect size

because the fault detection result of a test suite for each fault

is dichotomous [21]. If OR= 1, it means that the difference

0.00 

0.00 

0.60 

0.60 

2.00 

2.20 

6.60 

10.40 

17.60 

22.00 

76.80 

0 20 40 60 80 100 

Chart-11

…

Time-9

Chart-5

Math-14

Math-35

Math-68

Math-9

Math-27

Math-6

Math-90

Chart-12

Increased fault detection success rate (pp)

Statistically significant

Not statistically significant

Fig. 5. Effect size of the d-criterion on fault detection. Each bar represents the
increased fault detection success rate for each fault. The results are given in
descending order. A fault with dark-grayed bar signifies that the fault detection
success rate of the d-criterion is statistically greater than the fault detection
success rate of the k-criterion (non-parametric proportion test, one-sided, N =
500, α = 0.05) for the fault.

has no practical significance. The higher the OR value is, the

stronger the association between the success of fault detection

and the d-criterion in compared to the k-criterion becomes.

Interestingly, the five faults with the significant results

exactly correspond to the five type1 faults. In other words,

the d-criterion statistically significantly improves the fault

detection capability for all type1 faults. It means that the d-

criterion successfully improves the fault detection capabilities

of adequate test suites whenever mutants are undistinguished



0.20%

80.80%

0%

20%

40%

60%

80%

100%

RND EXT

F
au

lt
 d

et
ec

ti
o
n
 r

at
e 

(%
)

Test adequacy criterion

Chart 12

𝑑-suite𝑟-suite

Fig. 6. Fault detection success rate of the r-suite and the d-suite for Chart-12.
The r-suite is composed of randomly selected test suites whose size is equal
to the average size of the d-suite.

by the k-criterion.

In Figure 5, the result for Chart-12 (i.e., 76.80 pp) is

especially surprising. We first investigate the influence of test

set size. In Figure 6, we compare the fault detection rates

of test suites d-suite and r-suite (i.e., 500 randomly selected

test suites whose size is equal to the average size of d-suite).

Note that the fault detection success rate of the r-suite is very

smaller than the fault detection success rate of the d-suite

while their test suite sizes are equal. This means that the fault

detection effectiveness of the d-criterion is not because of the

test suite size.

We also manually investigated the fault-detecting tests and

kill information of all mutants with respect to the test pool

for Chart-12. We found a general case where the d-criterion

outperforms the k-criterion. Consider two distinguishable mu-

tants m and m′, we can think of two different test sets Tkill

and Tdist as follows:

Tkill = {t ∈ T | d(t, po,m) = 1 ∨ d(t, po,m
′) = 1}

Tdist = {t ∈ T | d(t, po,m) 6= d(t, po,m
′)}

In other words, Tkill is the set of tests that kills m or m′,

and Tdist is the set of tests that distinguishes m and m′.

Interestingly, Tdist is the subset of Tkill by their formal

descriptions. In this sense, if there exists a fault-detecting test

ttrig in Tdist, it is more frequently selected from Tdist than

Tkill. Note that the k-criterion considers only Tkill while the

d-criterion considers not only Tkill but also Tdist. Thus, the

d-criterion outperforms the k-criterion if ttrig ∈ Tdist for two

arbitrary mutants, and the amount of improvement increases

as decreasing the size ratio of Tdist to Tkill.

C. RQ3: How many tests are needed to be a mutation-

adequate test suite?

Considering all k-suites and d-suites for all faults, we

provide the test suite sizes of k-suites and d-suites and their

ratios in Table III. For each fault, each size value represents

the average test suite size of the k/d-suite. For example, the

test suite size of the d-suite for Chart-5 is 81.37. This means

that 81.37 tests are selected to satisfy the d-criterion for Chart-

5 in average. The test suite size ratio column represents the

size ratio of the d-suite to the k-suite for each fault. Figure 7

shows the representative ratios in descending order.

1.00 

1.00 

1.00 

1.03 

1.04 

1.67 

2.21 

2.35 

2.58 

3.02 

3.48 

1 2 3 4

Closure-107

Math-14

Math-68

Math-4

Math-66

Average

Math-3

Math-103

Math-60

Lang-56

Math-104

Test suite size ratio

Fig. 7. Test suite size ratio of the d-suite to the k-suite for each fault. The
results are given in descending order, while the average value is given instead
of the results in the middle. In average, the d-criterion needs 1.67 times more
tests than the k-criterion.

For all faults, the average of the size ratios of d-suites to

k-suites is 1.67. This means that the d-criterion needs 1.67

times more tests than required by the k-criterion in average.

While the d-criterion needs more tests than the k-criterion,

the improvement of fault detection effectiveness is not simply

because of the larger test suite size. For example, there are

only two fault-detecting tests in the test pool for Chart-12,

which means that randomly adding more tests to the test suite

would hardly improve the fault detection capability.

D. RQ4: How much time takes for selecting a mutation-

adequate test suite?

Similar to the test suite sizes, we provide the test suite

selection times of all k-suites and d-suites and their ratios

in Table III. For each fault, the selection time of the k/d-suite

is the average selection time of all test suites in the k/d-suite.

For example, the selection time of the d-suite for Chart-5 is

33.56 milliseconds. This means that selecting a distinguishing

mutation-adequate test suite takes 33.56 milliseconds in aver-

age. The selection time ratio column represents the selection

time ratio of the d-suite to the k-suite for each fault. Figure 8

shows the representative ratios in descending order.

For all faults, the average of the selection time ratios of

d-suites to k-suites is 5.74. This means that the d-criterion

needs 5.74 times more selection time than the k-criterion in

average. While the d-criterion takes more time for selecting

an adequate test suite than the k-criterion, it is acceptable in a

sense that each of distinguishing mutation-adequate test suites

is selected within 0.078 seconds in average.

E. Threats to Validity

There may be several threats to validity for our empirical

evaluations. One threat is due to the representativeness of the

studied faults. While this threat can only be properly addressed

by further study, we tried to use a non-trivial number of real

faults collected in defect4j repository. Our results are also

dependent on the test pool generated by Randoop. While an-

other test pool generated by a coverage-aware test generation



TABLE III
EXPERIMENTATION RESULTS SUMMARY FOR TEST SUITE SIZE AND TEST SUITE SELECTION TIME

Test suite size Selection time (m sec) Test suite size Selection time (m sec)

Fault d-suite k-suite ratio d-suite k-suite ratio Fault d-suite k-suite ratio d-suite k-suite ratio

Chart-5 81.37 55.68 1.46 33.56 5.17 6.49 Math-9 21.15 12.59 1.68 2.53 0.75 3.37

Chart-11 9.76 6.83 1.43 1.28 0.39 3.30 Math-14 5.00 5.00 1.00 0.66 0.42 1.59

Chart-12 20.22 9.31 2.17 5.22 1.30 4.03 Math-22 52.09 23.69 2.20 6.00 0.46 12.98

Chart-14 74.03 61.04 1.21 18.75 11.03 1.70 Math-27 128.94 72.90 1.77 49.90 4.37 11.42

Chart-15 89.10 44.96 1.98 15.23 1.93 7.88 Math-29 64.11 46.94 1.37 7.95 1.56 5.11

Chart-16 118.79 77.66 1.53 26.85 2.35 11.45 Math-35 6.18 4.75 1.30 1.62 0.94 1.71

Chart-17 56.77 41.69 1.36 7.09 2.29 3.10 Math-60 50.31 19.47 2.58 16.18 1.27 12.73

Chart-18 54.07 37.04 1.46 3.92 0.83 4.71 Math-61 25.76 13.17 1.96 2.62 0.25 10.34

Chart-22 24.13 18.58 1.30 2.51 0.84 2.98 Math-66 3.00 2.90 1.04 0.42 0.32 1.30

Chart-24 18.93 10.18 1.86 0.24 0.05 4.74 Math-68 1.00 1.00 1.00 0.12 0.10 1.19

Closure-56 38.65 26.86 1.44 9.27 1.68 5.53 Math-77 140.25 96.38 1.46 9.66 2.49 3.87

Closure-107 2.00 2.00 1.00 0.96 1.39 0.69 Math-90 19.58 9.02 2.17 0.29 0.04 7.76

Lang-12 28.00 14.88 1.88 0.94 0.25 3.78 Math-92 168.07 120.02 1.40 5.00 1.43 3.49

Lang-37 450.18 291.36 1.55 185.93 19.98 9.31 Math-93 119.74 94.55 1.27 2.11 0.82 2.56

Lang-41 13.46 6.73 2.00 0.40 0.19 2.09 Math-95 25.56 13.18 1.94 0.72 0.11 6.75

Lang-45 80.84 41.40 1.95 30.03 3.74 8.03 Math-98 246.04 179.75 1.37 44.17 6.87 6.43

Lang-56 175.89 58.22 3.02 21.66 2.61 8.30 Math-102 38.14 29.30 1.30 4.69 1.03 4.56

Lang-59 176.69 132.40 1.33 13.11 4.76 2.75 Math-103 51.07 21.71 2.35 9.79 0.86 11.40

Math-1 137.96 96.53 1.43 13.08 2.83 4.62 Math-104 91.23 26.20 3.48 18.55 1.00 18.50

Math-3 294.12 132.97 2.21 59.58 3.95 15.07 Time-8 37.50 28.28 1.33 1.65 0.81 2.04

Math-4 5.00 4.86 1.03 0.57 0.57 1.01 Time-9 101.90 63.40 1.61 22.58 3.86 5.85

Math-5 127.37 63.51 2.01 11.39 1.53 7.44 Time-13 32.22 22.12 1.46 5.33 3.17 1.68

Math-6 13.39 9.92 1.35 1.92 0.76 2.51 average 78.21 47.80 1.67 15.20 2.30 5.74

0.69 

1.01 

1.19 

1.30 

1.59 

5.74 

11.45 

12.73 

12.98 

15.07 

18.50 

0 5 10 15 20

Closure-107

Math-4

Math-68

Math-66

Math-14

Average

Chart-16

Math-60

Math-22

Math-3

Math-104

Test suite selection time ratio

Fig. 8. Test suite selection time ratio of the d-suite to the k-suite for each
fault. The results are given in descending order, while the average value is
given instead of the results in the middle. In average, the d-criterion needs
5.74 times more time than the k-criterion.

tool, such as EvoSuite [22], may detect a different set of

faults, we initialised our study with Randoop because we

wanted to generate a large number of unbiased tests. In the

future work, we will investigate different test pools using both

Randoop and EvoSuite.

The fault detection capability of a test adequacy criterion

may vary depending on the testing scenarios. For example, a

test adequacy criterion may be used for not test suite selection

but test data generation (e.g., Counter-exampled based test

generation [23], [24] and search-based test generation [25],

[26]). Further information about the testing scenarios and their

impact on the fault detection capability is well-described in

Zhu et al. [27]. We have a plan for developing a method for

test generation for directly satisfy the d-criterion.

VI. RELATED WORK

Ammann et al. [28] recently discussed the notion of “undis-

tinguished” mutants. They stated that, if two mutants are killed

by precisely the same set of tests, the mutants are undis-

tinguished, even though the mutants may involve different

syntactic changes to po. We follow this concept to formally

define the mutant distinguishment. However, they tried to

remove such undistinguished mutants to establish minimal set

of mutants, while we attempt to utilize the undistinguished

mutants to improve the fault detection capabilities of mutation-

adequate test suites.

Baudry et al. [29] studied the idea of distinguishment of

execution traces to improve the fault localization effectiveness.

They defined the concept of a Dynamic Basic Block (DBB)

which is the set of statements that is covered by the same set of

tests. A Large DBB implies low accuracy of fault localization

since all statements in the DBB are equally suspicious as the

faulty statement. They reported that optimizing a test suite to

distinguish statements in a DBB leads the improvement of the

fault localization accuracy. While both work use the concept

of distinguishment in similar ways, we consider the mutant

distinguishment to improve fault detection capability.

VII. CONCLUSION

This paper introduces a novel mutation-based test adequacy

criterion called distinguishing mutation adequacy criterion

based on the formal definition of the mutant distinguishment.

The new adequacy aims to make adequate test suites capture

the diversity of mutants.



We provide an empirical evaluation for the comparison

of the distinguishing mutation adequacy criterion with the

traditional mutation adequacy criterion in terms of their fault

detection capabilities, test suite sizes, and test suite selection

times. We use 45 real faults to study real worlds applications.

The results show that the distinguishing mutation adequacy

improves the fault detection success rate up to 76.8 percentage

points compared to the traditional mutation adequacy, while

the distinguishing mutation adequacy requires more tests and

selection times to adequate test suites. In average, the distin-

guishing mutation adequacy requires 1.67 times and 5.74 times

more tests and selection times compared to the traditional

mutation adequacy, respectively.

While the cost of mutation is a long-stranding problem,

we should not miss the fault detection capability as well.

Since a mutation adequacy criterion is independent to the

other mutation-related artifacts, studying stronger mutation

adequacy is one promising way to improve the fault detection

capability of mutation. We will provide more comprehensive

investigations on the distinguishing mutation adequacy in the

future work.

ACKNOWLEDGMENT

This work was supported by Institute for Information &

communications Technology Promotion(IITP) grant funded by

the Korea government(MSIP) (No. R0126-15-1101, (SW Star

Lab) Software R&D for Model-based Analysis and Verifica-

tion of Higher-order Large Complex System)

REFERENCES

[1] T. Y. Chen, H. Leung, and I. Mak, “Adaptive random testing,” in
Advances in Computer Science-ASIAN 2004. Higher-Level Decision

Making. Springer, 2004, pp. 320–329.

[2] D. Leon, A. Podgurski, and W. Dickinson, “Visualizing similarity
between program executions,” in Proceedings of the IEEE 16th Interna-

tional Symposium on Software Reliability Engineering (ISSRE). IEEE,
2005, pp. 310–321.

[3] S. Yoo, M. Harman, P. Tonella, and A. Susi, “Clustering test cases
to achieve effective and scalable prioritisation incorporating expert
knowledge,” in Proceedings of the 18th International Symposium on

Software Testing and Analysis (ISSTA). ACM, 2009, pp. 201–212.

[4] N. Alshahwan and M. Harman, “Coverage and fault detection of the
output-uniqueness test selection criteria,” in Proceedings of the 2014

International Symposium on Software Testing and Analysis. ACM,
2014, pp. 181–192.

[5] R. Feldt, R. Torkar, T. Gorschek, and W. Afzal, “Searching for
cognitively diverse tests: Towards universal test diversity metrics,” in
Proceedings of the IEEE International Conference on Software Testing

Verification and Validation Workshop (ICSTW). IEEE, 2008, pp. 178–
186.

[6] R. Feldt, S. Poulding, D. Clark, and S. Yoo, “Test set diameter:
Quantifying the diversity of sets of test cases,” in Proceedings of the

IEEE 9th International Conference on Software Testing, Verification and

Validation (ICST). IEEE, to appear.

[7] A. J. Offutt and R. H. Untch, “Mutation 2000: Uniting the orthogonal,”
in Mutation testing for the new century. Springer, 2001, pp. 34–44.

[8] A. J. Offutt and J. Pan, “Automatically detecting equivalent mutants and
infeasible paths,” Software testing, verification and reliability, vol. 7,
no. 3, pp. 165–192, 1997.

[9] B. J. Grun, D. Schuler, and A. Zeller, “The impact of equivalent
mutants,” in Proceedings of the International Conference on Software

Testing, Verification and Validation Workshops (ICSTW). IEEE, 2009,
pp. 192–199.

[10] D. Shin and D.-H. Bae, “A theoretical framework for understanding
mutation-based testing methods,” in Proceedings of the IEEE 9th In-

ternational Conference on Software Testing, Verification and Validation

(ICST). IEEE, to appear.
[11] R. Just, D. Jalali, and M. D. Ernst, “Defects4J: A database of existing

faults to enable controlled testing studies for Java programs,” in Pro-

ceedings of the 2014 International Symposium on Software Testing and

Analysis (ISSTA). ACM, 2014, pp. 437–440.
[12] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data

selection: Help for the practicing programmer,” Computer, vol. 11, no. 4,
pp. 34–41, 1978.

[13] M. Woodward and K. Halewood, “From weak to strong, dead or alive?
an analysis of some mutation testing issues,” in Proceedings of the

Second Workshop on Software Testing, Verification, and Analysis. IEEE,
1988, pp. 152–158.

[14] L. Madeyski, W. Orzeszyna, R. Torkar, and M. Józala, “Overcoming
the equivalent mutant problem: A systematic literature review and a
comparative experiment of second order mutation,” IEEE Transactions

on Software Engineering (TSE), vol. 40, no. 1, pp. 23–42, 2014.
[15] M. Papadakis, Y. Jia, M. Harman, and Y. Le Traon, “Trivial compiler

equivalence: A large scale empirical study of a simple, fast and effective
equivalent mutant detection technique,” in Proceedings of the IEEE/ACM

37th IEEE International Conference on Software Engineering (ICSE),
vol. 1. IEEE, 2015, pp. 936–946.

[16] M. Kintis and N. Malevris, “Medic: A static analysis framework for
equivalent mutant identification,” Information and Software Technology,
vol. 68, pp. 1–17, 2015.

[17] C. Pacheco and M. D. Ernst, “Randoop: feedback-directed random
testing for Java,” in Companion to the 22nd ACM SIGPLAN conference

on Object-oriented programming systems and applications companion.
ACM, 2007, pp. 815–816.

[18] R. Just, “The Major mutation framework: Efficient and scalable mutation
analysis for Java,” in Proceedings of the International Symposium on

Software Testing and Analysis (ISSTA). ACM, 2014, pp. 433–436.
[19] A. Siami Namin, J. H. Andrews, and D. J. Murdoch, “Sufficient mutation

operators for measuring test effectiveness,” in Proceedings of the 30th

International Conference on Software Engineering (ICSE), 2008, pp.
351–360.

[20] P. G. Frankl and S. N. Weiss, “An experimental comparison of the
effectiveness of branch testing and data flow testing,” IEEE Transactions

on Software Engineering (TSE), vol. 19, no. 8, pp. 774–787, 1993.
[21] A. Arcuri and L. Briand, “A practical guide for using statistical tests to

assess randomized algorithms in software engineering,” in Proceedings

of the IEEE/ACM 33rd International Conference on Software Engineer-

ing (ICSE). IEEE, 2011, pp. 1–10.
[22] G. Fraser and A. Arcuri, “Evosuite: automatic test suite generation for

object-oriented software,” in Proceedings of the 19th ACM SIGSOFT

symposium and the 13th European conference on Foundations of soft-

ware engineering. ACM, 2011, pp. 416–419.
[23] A. Gargantini and C. Heitmeyer, “Using model checking to gener-

ate tests from requirements specifications,” in Proceeding of the 7th

European Software Engineering Conference Held Jointly with the 7th

ACM SIGSOFT Symposium on the Foundations of Software Engineering

(ESEC/FSE). Springer, 1999, pp. 146–162.
[24] C. Cadar, D. Dunbar, and D. R. Engler, “Klee: Unassisted and automatic

generation of high-coverage tests for complex systems programs,” in
OSDI, vol. 8, 2008, pp. 209–224.

[25] P. McMinn, “Search-based software test data generation: a survey,”
Software testing, Verification and reliability, vol. 14, no. 2, pp. 105–
156, 2004.

[26] M. Harman, Y. Jia, and W. B. Langdon, “Strong higher order mutation-
based test data generation,” in Proceedings of the 19th ACM SIGSOFT

symposium and the 13th European conference on Foundations of soft-

ware engineering (ESEC/FSE). ACM, 2011, pp. 212–222.
[27] H. Zhu, “A formal analysis of the subsume relation between software test

adequacy criteria,” IEEE Transactions on Software Engineering (TSE),
vol. 22, no. 4, pp. 248–255, 1996.

[28] P. Ammann, M. E. Delamaro, and J. Offutt, “Establishing theoretical
minimal sets of mutants,” in Software Testing, Verification and Valida-

tion, IEEE 7th International Conference on, 2014, pp. 21–30.
[29] B. Baudry, F. Fleurey, and Y. Le Traon, “Improving test suites for

efficient fault localization,” in Proceedings of the 28th international

conference on Software engineering. ACM, 2006, pp. 82–91.


