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ABSTRACT 

 
EVALUATING THE EFFECTIVENESS OF BEN IN LOCALIZING DIFFERENT TYPES 

OF SOFTWARE FAULT 

Jaganmohan Chandrasekaran, MS 

 

The University of Texas at Arlington, 2015 

 

Supervising Professor: Jeff Lei 

Debugging refers to the activity of locating software faults in a program and is 

considered to be one of the most challenging tasks during software development. 

Automated fault localization tools have been developed to reduce the amount of effort 

and time software developers have to spend on debugging. In this thesis, we evaluate 

the effectiveness of a fault localization tool called BEN in locating different types of 

software faults. Assuming that combinatorial testing has been performed on the subject 

program, BEN leverages the result obtained from combinatorial testing to perform fault 

localization.  

Our evaluation focuses on how the following three properties of software fault 

affect the effectiveness of BEN: (1) Accessibility:  Accessibility refers to the degree of 

difficulty to reach (and execute) a fault during a program execution; (2) Input-value 

sensitivity: A fault is input-value sensitive if the execution of the fault triggers a failure only 

for some input values but not for other input values; and (3) Control-flow sensitivity: A 

fault is control-flow sensitive if the execution of the fault triggers a failure while inducing a 

change of control flow in the program execution. 

We conducted our experiments on seven programs from the Siemens suite and 

two real-life programs, grep and gzip, from the SIR repository. Our results indicate that 

BEN is very effective in locating faults of low accessibility. A unique aspect of BEN is that 
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it generates a failed test called the core member and a small group of passed tests called 

the derived members. The spectrum of the core member is compared to that of each 

derived member. The way in which the core and derived members are generated allows 

faults of low accessibility to be effectively located by BEN. Our results also suggest that 

in most of the cases, BEN is effective in locating input value- and control flow-insensitive 

faults. However, no conclusion can be drawn from the experimental data about the 

individual impact of input value sensitivity and control flow sensitivity on BEN’s 

effectiveness.  



vi 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS .................................................................................................. iii	
  

ABSTRACT ........................................................................................................................ iv	
  

LIST OF TABLES ............................................................................................................. viii	
  

CHAPTER 1 INTRODUCTION .......................................................................................... 1	
  

CHAPTER 2 BEN: A FAULT LOCALIZATION TOOL ........................................................ 5	
  

2.1 Overview .................................................................................................................. 5	
  

2.2 Phase 1 ................................................................................................................... 6	
  

2.3 Phase 2 ................................................................................................................... 7	
  

CHAPTER 3 FAULT PROPERTIES .................................................................................. 9	
  

3.1 Accessibility ............................................................................................................. 9	
  

3.2 Input Value Sensitivity ........................................................................................... 12	
  

3.3 Control Flow Sensitivity ......................................................................................... 15	
  

CHAPTER 4 EXPERIMENTAL DESIGN ......................................................................... 18	
  

4.1 Subject Programs .................................................................................................. 18	
  

4.1.1 Siemens suite ................................................................................................. 18	
  

4.1.2 Grep and Gzip ................................................................................................ 19	
  

4.2 Input Parameter Modeling for Subject Programs .................................................. 19	
  

4.3 Fault Localization Results ...................................................................................... 22	
  

4.4 Methodology .......................................................................................................... 22	
  

4.4.1  Accessibility ................................................................................................... 23	
  

4.4.2  Input Value Sensitivity ................................................................................... 24	
  

4.4.3 Control Flow Sensitivity .................................................................................. 24	
  

4.5 Metrics ................................................................................................................... 25	
  

CHAPTER 5 EXPERIMENTAL RESULTS....................................................................... 26	
  



vii 

5.1 Impact of Accessibility ........................................................................................... 27	
  

5.1.1 - Set 1 - Input Value Sensitive and Control Flow Sensitive ............................ 28	
  

5.1.2 - Set 2 - Input Value Sensitive and Control Flow Insensitive .......................... 29	
  

5.1.3 - Set 3 - Input Value Insensitive and Control Flow Sensitive .......................... 30	
  

5.1.4 - Set 4 - Input Value and Control Flow Insensitive ......................................... 31	
  

5.2 Impact of Input Value Sensitivity ........................................................................... 32	
  

5.2.1 - Set 1 - Control Flow Sensitive and High Accessibility .................................. 33	
  

5.2.2 - Set 2 - Control Flow Sensitive and Low Accessibility ................................... 33	
  

5.2.3 - Set 3 - Control Flow Insensitive and High Accessibility ................................ 34	
  

5.2.4 - Set 4 - Control Flow Insensitive and Low Accessibility ................................ 35	
  

5.3 Impact of Control Flow Sensitivity ......................................................................... 36	
  

5.3.1 - Set 1 - Input Value Sensitive and High Accessibility .................................... 36	
  

5.3.2 - Set 2 - Input Value Sensitive and Low Accessibility ..................................... 37	
  

5.3.3 - Set 3 - Input Value Insensitive and High Accessibility .................................. 38	
  

5.3.4 - Set 4 - Input Value Insensitive and Low Accessibility .................................. 39	
  

CHAPTER 6 RELATED WORK ....................................................................................... 40	
  

CHAPTER 7 CONCLUSION AND FUTURE WORK ........................................................ 44	
  

APPENDIX A CLASSIFICATION OF FAULTS FROM SUBJECT 

PROGRAMS .................................................................................................................... 46	
  

APPENDIX B EXHAUSTIVE TEST SET -  EXECUTION TRACE ................................... 56	
  

REFERENCES ................................................................................................................. 59	
  

BIOGRAPHICAL INFORMATION .................................................................................... 63	
  

 
 



viii 

LIST OF TABLES 

Table 3-1 - Example for Accessibility ............................................................................... 10	
  

Table 3-2 - Test Case and Results for Accessibility Example ......................................... 11	
  

Table 3-3 - Program to Calculate Sum of Two Numbers ................................................. 13	
  

Table 3-4 - Test Case and Results for Input Value Sensitivity Example .......................... 14	
  

Table 3-5 - Execution Trace Information for Input Value Sensitivity Example ................. 14	
  

Table 3-6  - Example for Control Flow Sensitivity fault .................................................... 15	
  

Table 3-7 -Test Case and Results for Control Flow Sensitivity Example ......................... 16	
  

Table 3-8 - Execution Trace (Expected Vs Actual) For Test Case - T3 ........................... 17	
  

Table 4-1 - Siemens Suite ............................................................................................... 18	
  

Table 4-2 - Grep and Gzip ............................................................................................... 19	
  

Table 4-3 - Input Parameter Model for Subject Programs ............................................... 20	
  

Table 4-4 - Test results for subject programs .................................................................. 21	
  

Table 5-1 - Overall Results .............................................................................................. 26	
  

Table 5-2 - Accessibility Set 1 .......................................................................................... 28	
  

Table 5-3 - Accessibility Set 2 .......................................................................................... 29	
  

Table 5-4 - Accessibility Set 3 .......................................................................................... 30	
  

Table 5-5 - Accessibility Set 4 .......................................................................................... 31	
  

Table 5-6 - Input Value Sensitivity - Set 1 ........................................................................ 33	
  

Table 5-7 - Input Value Sensitivity - Set 2 ........................................................................ 33	
  

Table 5-8 - Input Value Sensitivity - Set 3 ........................................................................ 34	
  

Table 5-9 - Input Value Sensitivity - Set 4 ........................................................................ 35	
  

Table 5-10 - Control Flow Sensitivity - Set 1 .................................................................... 36	
  

Table 5-11 - Control Flow Sensitivity - Set 2 .................................................................... 37	
  

Table 5-12 - Control Flow Sensitivity - Set 3 .................................................................... 38	
  



ix 

Table 5-13 - Control Flow Sensitivity - Set 4 .................................................................... 39	
  

Table A-1 - Grep .............................................................................................................. 47	
  

Table A-2 - Gzip ............................................................................................................... 48	
  

Table A-3 - schedule ........................................................................................................ 49	
  

Table A-4 - schedule2 ...................................................................................................... 49	
  

Table A-5 - totInfo ............................................................................................................ 50	
  

Table A-6 - printtokens2 ................................................................................................... 51	
  

Table A-7 - printtokens ..................................................................................................... 51	
  

Table A-8 - tcas ................................................................................................................ 52	
  

Table A-9 - replace .......................................................................................................... 54	
  

Table B-1 - Execution trace for Accessibility Example ..................................................... 57	
  

 

 

 



 

1 

CHAPTER 1  

INTRODUCTION 

Software debugging accounts for a major part of the expenditure in the software 

development cycle. Debugging refers to the activity of locating software faults in a 

program and is considered one of the most challenging tasks. A significant amount of 

effort is spent in locating faults during debugging [4]. Automated fault localization tools 

were developed to reduce the amount of effort and time the developers spend on 

debugging.  

Spectrum-based fault localization is a commonly used fault localization 

technique. This technique is based on the notion of a program spectrum. A program 

spectrum records information about certain aspects of a test execution [5] such as 

program paths and function call counts [7].  In this fault localization technique, we identify 

faults by comparing the spectrums of failed and passed test executions. The program 

statements that are only exercised by failed tests are likely to be faulty [1].  

Ghandehari et al. [2] reported a spectrum-based fault localization tool called 

BEN, which was developed at the University of Texas at Arlington. BEN leverages the 

results obtained from combinatorial testing to perform fault localization. It is assumed that 

a combinatorial test set has already been executed, and the result of each test execution 

is available before the application of BEN. The fault localization process in BEN involves 

two major phases. In the first phase, BEN identifies the failure-inducing combination from 

the initial combinatorial test set. A combination is considered to be failure-inducing, if it 

causes any test in which it appears to fail [2]. In the second phase, it generates a small 

group of tests containing one failed test called core member and a set of passed tests 

called derived members using the failure-inducing combination from the first phase. The 

core member and derived members are executed, and the spectrum of the core member 
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is compared with the spectrum of each of the derived members. Based on this 

comparison, statements are ranked in terms of their likelihood to be faulty [3].  

 The main goal of this thesis is to evaluate the effectiveness of BEN in locating 

different types of software fault. The effectiveness of BEN is measured based on the 

number of statements the user has to inspect to locate the faulty statement. If the user is 

required to inspect a less number of statements to locate the fault, then BEN is 

considered more effective. The evaluation focuses on how the following three properties 

of software fault affect the effectiveness of BEN: (1) Accessibility:  Accessibility refers to 

the degree of difficulty to reach (and execute) a fault during a program execution; (2) 

Input-value sensitivity: A fault is input-value sensitive if the execution of the fault triggers 

a failure only for some input values but not for other values. This implies that the faulty 

statement could be executed by both failed and passed test cases; and (3) Control-flow 

sensitivity: A fault is control-flow sensitive if the execution of the fault triggers a failure 

while inducing a change of control flow in the program execution. 

The experiments were performed on seven programs from the Siemens suite, 

and two real-life programs, grep and gzip, from the SIR [16]. Each of these programs has 

several faulty versions, and BEN is applied on all of these faulty versions. Ghandehari et 

al. [10] provided the input parameter modeling information and fault localization results of 

the subject programs, which were used in the experiments. A random test set-based 

approach was followed to determine the three properties of the fault in the subject 

programs. The first step in this approach was to generate a random test set based on the 

input parameter model of each subject program. In the next step, the random test set is 

executed on each subject program, with test executions being recorded. Then, the 

execution trace information was analyzed to determine the three properties of the fault as 

follows. Accessibility was measured as the ratio of the number of test cases that 
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executed the faulty statement to the total number of test cases in the random test set. A 

fault is considered to be input value sensitive if there exists at least one test case from 

the random test set that executes the faulty statement and produces a passed execution. 

To determine control flow sensitivity, we select the first failed test case from the test set 

results, and its faulty version execution trace was compared with its error-free version 

execution trace. If the comparison does not indicate the change in program flow, the next 

failed test case from the test set was selected and the procedure is repeated. If there 

exists at least one failed test case such that the fault induces a change in program flow 

and produces a failure, we consider the fault to be control flow sensitive and otherwise 

control flow insensitive 

The experimental results suggest that BEN is highly effective in locating low 

accessibility faults. This is because low accessibility faults are likely to be executed only 

by the core member but not by the derived members. This will allow BEN’s ranking 

algorithm to rank the corresponding faulty statements higher. On the other hand, if a fault 

is easy to access, the fault is likely to be exercised by both core and derived members. 

As a result, the corresponding faulty statement is ranked lower by BEN’s ranking 

algorithm. The experimental results also suggest that in most of the cases, BEN is 

effective in locating input value insensitive and control flow-insensitive faults. However, 

with the experimental results, we were unable to reach a conclusion about the individual 

impact of input value sensitivity and control flow sensitivity on BEN’s effectiveness in 

locating the fault. 

The remainder of the thesis is organized as follows. In Chapter 2, a discussion is 

presented on BEN’s approach to locating faults. We also explain how the effectiveness of 

BEN is measured. Chapter 3 discusses the three fault properties and approaches to 

determining these properties. Also in this chapter, detailed examples are provided for 
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each of the three properties of the fault. Chapter 4 presents information about the subject 

programs, including the input parameter model and fault localization results of each 

subject program. We also present a discussion on the approach we used to determine 

the fault properties in the subject programs. Chapter 5 presents the results of our 

experiments. In this chapter, we provide the classification of faults in the subject 

programs that were made using the approach discussed in Chapter 4. We also discuss 

the individual impact of the three properties in BEN’s effectiveness in locating a fault. 

Chapter 6 discusses the related work about evaluating the effectiveness of fault 

localization techniques. In Chapter 7 we provide the concluding remarks and discuss 

several directions for our future work. 
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CHAPTER 2  

BEN: A FAULT LOCALIZATION TOOL 

2.1 Overview 

BEN is a spectrum-based fault localization tool, which uses the result of a 

combinatorial test set. In spectrum based fault localization technique, the program 

spectrum, e.g. statement coverage, is recorded for each test and then the spectra of the 

failed and passed tests are compared to locate the fault. Statements which are executed 

exclusively by the failed test cases i.e. statements those appear only in the program 

execution spectra of the failed test cases and not appearing in the execution spectra of 

the pass test cases are considered to be highly suspiciousness and most-likely to be 

faulty. Fault localization methods like Tarantula [6], Set Union, Set Intersection, and 

nearest neighbor [7] also follows the spectrum-based approach. BEN is different from the 

other spectrum-based approaches in the way that the other spectrum-based methods 

assume an existence of a larger number of test runs and locates the fault by comparing 

the pass/fail spectra with respect to these test runs; where as, BEN uses the result of a 

combinatorial test set and generates a small number of tests to locate the fault. BEN’s 

approach is inspired by the concept of the nearest neighbor method [1].  

The fault localization process in BEN involves two major phases. In the first 

phase, it identifies failure-inducing combinations; failure-inducing combination is a 

combination, which if it appears in a test, cause the test to fail. In the second phase, BEN 

produces a ranking of statements in terms of their likelihood of being faulty. The user 

should investigate the statements in the top rank at first, and then go to the next rank (if 

the fault is not found in the top rank) until the fault is located.  
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2.2 Phase 1 

At the start of phase 1, the user provides the following inputs  (1). Subject 

program (2).A combinatorial test set created based on the input parameter model. It is 

assumed the user has executed the combinatorial test set, and the results (test execution 

status) of each test are known [3]. First, BEN analyzes the initial combinatorial test set 

and identifies a set of suspicious combinations and then ranks them based on their 

suspiciousness. A suspicious combination is a combination which is candidate of being 

inducing combination. For a given test set F, any combination that only appears in the 

failed test of F is considered suspicious. BEN ranks the suspicious combinations based 

on their likelihood to be inducing. Ranking of the suspicious combinations is based on the 

suspiciousness of combinations (SoC) and suspiciousness of the environment of the 

combinations (SoE). Suspiciousness of combination is computed based on 

suspiciousness of components (parameter values) appear in the combination. 

Suspiciousness of the environment for the combination is computed based on the 

suspiciousness of components that do not appear in the combination but appear in the 

same test as the combination. The suspicious combination, which has a higher SoC and 

lower SoE value in the set F, will be ranked higher. 

Followed by the rank generation, BEN generates a small set of new test cases 

for top-ranked suspicious combinations, which the user can choose to execute and refine 

the suspicious combinations set. A new test is generated in a way that it contains the 

suspicious combination and has the minimum suspiciousness in the environment. If such 

a test, fails, it is very likely that the suspicious combination is inducing. Otherwise the 

suspicious combination is not suspicious any more since it appears in a passed test. The 

rank and test generation continues iteratively until the stopping condition is satisfied [2]. 

At the end of Phase 1, BEN identifies the failure-inducing suspicious combination.  
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2.3 Phase 2 

BEN generates a small group of tests S based on the failure-inducing 

combination identified at Phase 1.  The set S will contain one core member, that is a 

failed test and several derived members that are passed tests. BEN generates the core 

member such that it contains the failure-inducing combination. The derived members are 

very similar to the core member, however, they do not contain the failure-inducing 

combination, and they are expected to produce a program execution trace that is similar 

to core member execution trace. Once, the test generation is completed, the user is 

expected to execute them. The core member is very likely to fail as it contains the failure-

inducing combination. Likewise, all the derived members on test execution are most likely 

to result in a pass, as they do not contain the failure-inducing combination. If the core 

member does not result in a failure, BEN will select a failed test case from the initial test 

set as a core member.  

During the test execution, the program spectra for the core and derived members 

are recorded with the help of coverage tool GCOV. BEN compares the execution trace of 

the core member (failed test case) with each derived member’s execution trace to 

compute the suspiciousness score of every statement. If a derived member does fail on 

test execution, BEN will ignore that derived member and will not consider it, for 

comparison with the core member.  

The suspiciousness score represents how likely the statements is faulty. 

Statements executed only by the core member are considered most suspicious, and BEN 

will rank them higher. Statements executed by both core and derived member are 

considered less suspicious. The statements executed only the derived member is 

considered non-suspicious. Statements are ranked in descending order of their 

suspiciousness value.  
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User will locate the fault, by investigating the statements in the top Rank at first 

and user might continue to investigate (if fault not located in top ranked statements) the 

statement in the next rank, until the faulty statement is found.  The effectiveness of BEN 

is measured based on the number of statements, a user has to investigate to reach the 

faulty statement i.e. the ratio of number of statements to be investigated to locate the 

fault to the total number of statements in the subject program.   
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CHAPTER 3  

FAULT PROPERTIES 

 

This chapter presents the definition of three fault properties 1). Accessibility 2). 

Input value sensitivity and 3). Control flow sensitivity 

3.1 Accessibility 

Accessibility refers to the degree of difficulty to reach (and execute) a fault during 

a program execution. It is a value between 0 and 1. Accessibility is measured as the ratio 

of the number of test set executes the faulty statement to the total number of tests in the 

exhaustive test set.  

If a faulty statement has an accessibility value of 1, it indicates that all the test 

cases do execute the faulty statement.  The lesser the accessibility value, it is harder to 

execute the faulty statement.  For example, a value of 0.2 indicates that only 20% of the 

total number of test cases executes the faulty statement. In testing phase, low 

accessibility faults are difficult to detect, as the small number of tests could reach and 

execute the faulty statement. 

Example:  

Consider the example in Table 3-1: In this program, if the customer makes a 

purchase > $1000, a discount will be applied based on the type of membership. 

EXECUTIVE members will receive 25% discount, GOLD members will receive 10%, and 

customers who do not have a membership will receive 5% discount. There are three 

inputs for the method applyDiscount() and they are amount of purchase made by the 

customer, membership information of the customer i.e. is the customer holds an 

membership(Y or  N); If yes, the type of membership i.e. either executive or gold 

membership(‘E’ or ‘G’). 
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Table 3-1 - Example for Accessibility  

1. public int applyDiscount(int totalPrice,bool member, char 
type) 

2. { 
3.    float discount = 0.00; 
4.   if(totalPrice>100) //Fault #1 - correct :if(totalPrice>1000) 
5.   { 
6.      if(member == TRUE) 
7.       { 
8.          if(type == “E”) 
9.            { 
10.               discount = (0.25)*totalPrice; 
11.               totalPrice = totalPrice-Discount; 
12.           } 
13.           if(type == “G”) 
14.           { 
15.              //Fault # 2 - correct : Discount = (0.10)*totalPrice; 
16.               Discount = (0.07)*totalPrice; 
17.               totalPrice = totalPrice-Discount; 
18.            }  
19.       }  
20.       else 
21.        { 
22.          discount = (0.05)*totalPrice; 
23.          totalPrice = totalPrice-Discount; 
24.       } 
25.   } 
26. } 

 

This program has two faults. Fault (F1) at line # 4 and Fault (F2) at line # 16 

• Fault - F1: - A discount should be applied to customers whose purchase value is 

>$1000; instead discount will be applied for purchases > $100.  

• Fault -F2: - For Gold Members, 7% of discount applied instead of 10% discount. 

We use an exhaustive test set to perform testing. The testing and results are summarized 

in Table 3 - 2. 
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Table 3-2 - Test Case and Results for Accessibility Example 

Test Case 

Result Test 

case # 
totalPrice member type 

T1 500 T E Fail 

T2 500 T G Fail 

T3 500 F null Fail 

T4 10 T E Pass 

T5 10 T G Pass 

T6 10 F null Pass 

T7 1500 T E Pass 

T8 1500 T G Fail 

T9 1500 F null Pass 

 

 

The Table 3-2 summarizes the exhaustive test set and results. For our example, there 

are nine test cases. The execution trace of this exhaustive test set is provided in 

Appendix B. 
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 Fault 1 at line # 4 (refer Appendix B) is executed by all the test cases. This fault 

is located at the start of the program; so all the nine test cases execute the fault. So, the 

accessibility value for this faulty statement is (9/9) = 1. This value indicates the faulty 

statement has a higher degree of accessibility. i.e. it is accessed by all the test cases 

from the exhaustive test set. 

For a test case to access the faulty statement (F2) at line # 16 (refer Appendix B), the 

test case has to satisfy the following criteria 

1. Total Price > 1000 AND 

2. Membership = True AND 

3. Membership type = “G” 

Among the nine test cases from the exhaustive test set, only T8 satisifies the critieria. 

However, because of fault #1, Test case T2 is able to access this fault. Therefore, the 

accessibility value for this faulty statement is calculated (2/9) = 0.22 (refer Appendix B). 

This value indicates a lower degree of accessibility i.e. not many test cases from the 

exhaustive test set will have access to this fault. 

3.2 Input Value Sensitivity 

A fault is considered to be input-value sensitive if the execution of the fault 

triggers a failure only for some input values but not for other values.  i.e., executing a fault 

will not cause failure for all input values. This kind of fault, on execution, can result in a 

pass state for certain input values.  
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Example: - 

Table 3-3 - Program to Calculate Sum of Two Numbers 

1. public int sum(int num1, int num2) 

2. { 

3.      int sum=0; 

4.    //fault:  operator  “ * ” is used instead of “+” 

5.      sum = num1 * num2; 

6.      return sum; 

7. } 

  

 

Consider the program, which calculates the sum of two numbers and stores the 

result in a variable sum. This program has a fault at line # 5. The program will perform the 

multiplication of two numbers instead of addition. The testing and the results are 

summarized in the following table (refer Table 3-4). 
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Table 3-4 - Test Case and Results for Input Value Sensitivity Example 

Test Case 

Result Test 

case # 

Input Value  

1 

Input Value 

2 

T1   2 2 Pass 

T2  2 3 Fail 

T3 1 1 Fail 

 

Table 3-5 - Execution Trace Information for Input Value Sensitivity Example 

  T1 T2 T3 

1. public int sum(int num1, int num2) � 
 

� 
 

� 
 

2. { � 
 

� 
 

� 
 

3. int sum=0; � 
 

� 
 

� 
 

4. //fault:  operator fault - “*” is used 
instead of “+”    

5. sum = num1 * num2; � 
 

� 
 

� 
 

6. return sum; � 
 

� 
 

� 
 

7. } � 
 

� 
 

� 
 

 

 Table 3-5 represents the execution trace of three test cases - T1, T2, and T3. 

The executed statements are marked as “�”. The table indicates all the test cases (T1, 

T2, and T3) execute the faulty statement (at line # 5). The faulty statement, on execution 

triggers a failure for test cases T2 and T3. Test case - T1 executes the faulty statement, 
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yet does not produce a failure. During the execution of T1, the fault is executed, and the 

program transition to an infectious state but the infection does not propagate to the 

failure. This is known as “Co-incidental Correctness”. 

As, this fault triggers a failure only for certain input values and not for all input 

values. We consider this fault as input value sensitive fault. 

3.3 Control Flow Sensitivity 

A fault is considered to be control-flow sensitive if the execution of the fault triggers a 

failure while inducing a change of control flow in the program execution.  

Example: - 

Table 3-6  - Example for Control Flow Sensitivity fault 

1. void printRange(int number) 

2. { 

3. // fault: “ > “ is used instead of “ >= “ 

4. if(number>10) 

5. { 

6.    printf(“The number is > 9”); 

7. } 

8. else 

9. { 

10.    printf(“The number is < = 9”); 

11. } 

12. } 

 

Consider the example in Table 3-6. This program will display a message “The number is 

> 9” if the input is greater than 9. If the input is between 0 to 9, the program will display a 
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message “The number is <=9”. The below table (refer Table 3-7) summarizes the test 

cases and results. 

Table 3-7 -Test Case and Results for Control Flow Sensitivity Example 

Test Cases 

Result 
Test # Input Value 

T1  12 Pass 

T2 5 Pass 

T3  10 Fail 

 

The fault is at line # 4. When test case “T3” with an input value of 10, executes the faulty 

statement, the fault induces a change in program flow and triggers a failure. The system 

incorrectly displays “The number is < =9”.  The following table (Table 3-8) summarizes 

the expected and actual program flow for test case “T3”.
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Table 3-8 - Execution Trace (Expected Vs Actual) For Test Case - T3 

Line # Statements Testcase - T3 (input value = 10) 
Expected  
Program Flow 

Actual Program flow 

1. void printRange(int number) � � 
2. { � � 
3. // fault: “ > “ is used instead of “ 

>= “ 
  

4. if(number>10) � � 
5. { �  

6.    printf(“The number is > 9”); �  

7. } �  

8. else  � 
9. {  � 
10.    printf(“The number is < = 9”);  � 
11. }  � 
12. } � � 

 

Faulty statement (line # 4) on execution, induce a change in program flow for test 

case - T3. The program changes its flow; skips line # 5 - line #7 and it executes line # 8 - 

line# 11.  This fault induces a change in program flow and results in a failure. We 

consider this type of fault as a control-flow sensitive fault. 
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CHAPTER 4  

EXPERIMENTAL DESIGN 

This chapter discusses subject programs and their input parameter modeling, 

fault localization results of subject programs, methodology and metrics.  

4.1 Subject Programs 

For our experimental study, we have used the Siemens suite and two real-life 

large programs grep and gzip [16].  In this section, we discuss Siemens suite, grep and 

gzip in detail. 

4.1.1 Siemens suite 

The Siemens suite consists of 7 benchmark programs namely schedule, 

schedule2, printtokens, printtokens2, totinfo, tcas and replace. Each of the programs in 

the Siemens suite contains several faulty versions. The table below (Table 4-1) shows 

the number of faulty versions and the number of lines of the executable code for each 

program. The number of executable code is computed using GCOV. 

 

Table 4-1 - Siemens Suite 

Programs Number of Faulty Versions Lines of Executable Code 

Schedule 9 154 

Schedule2 10 127 

printtokens 7 188 

printtokens2 10 201 

totinfo 23 123 

tcas 41 65 

replace 32 242 
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4.1.2 Grep and Gzip 

Siemens suite consists of programs that are smaller in size (Lines of executable 

code). Therefore, in addition to the Siemens suite, we have selected two real-life 

programs (larger programs) namely GREP and GZIP from the SIR repository for our 

experiments. Both grep and gzip have five different implementations, and each 

implementation has several faulty versions. The table below summarizes the GREP and 

GZIP programs, the number of faulty versions of all five different implementations. 

Table 4-2 - Grep and Gzip 

Programs Number of Faulty Versions Lines of Executable code 

GREP 

grep1 18 3078 

grep2 8 3224 

grep3 18 3294 

grep4 12 3313 

grep5 1 3314 

GZIP 

gzip1 16 1705 

gzip2 7 2006 

gzip3 10 1866 

gzip4 12 1892 

gzip5 14 1993 

 

4.2 Input Parameter Modeling for Subject Programs 

The input model information for each subject program is summarized in Table 4- 

3.The Model column in Table 4-3 represents the number of parameters and their domain 

size. Each model is represented by (d1
p1 x d2

p2 x d3
p3 x d4

p4 x …) where d1
p1 indicates 

there are p1 number of parameters with a domain size of d1. For example, the program 
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replace has 20 parameters in total. There are four parameters with a domain size of 2 

and 16 parameters with a domain size of 4. The detailed information about Input 

parameter modeling for the subject program is available in [8].  For all subject programs, 

the combinatorial test sets with strength 2 to 6 were created using the ACTS tool [9]. All 

faulty versions of each subject program were tested using 2-way test set. If the faulty 

version is not killed by the test set, i.e. no failed test is found, we increased the strength 

of the combinatorial test set until it is killed, or the strength of combinatorial test set 

becomes 6.  Table 4-4 indicates the number of killed versions of each program. We 

ignored faulty versions that are not killed. If no failed test is found, no need to use fault 

localization tool. 

Table 4-3 - Input Parameter Model for Subject Programs 

Programs Model Number of Constraints 

printtokens (21 x 31 x 44 x 51 x 101 x 132) 8 

printtokens2 (21 x 31 x 44 x 51 x 101 x 132) 8 

replace (24 x 416) 36 

schedule (21 x 38 x 82) 0 

schedule2 (21 x 38 x 82) 0 

tcas (27 x 32 x 41 x 102) 0 

totinfo (33 x 52 x 61) 0 

grep (27 x 41 x 51 x 63 x 81 x 91 x 131) 1 

gzip (211 x 42) 8 
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Table 4-4 - Test results for subject programs 

Programs 
Total # of Faulty 

Versions 

# of faulty versions 

used in our 

experiments 

Schedule 9 7 

Schedule2 10 3 

printtokens 7 3 

printtokens2 10 9 

totinfo 23 12 

tcas 41 36 

replace 32 32 

grep1 18 4 

grep2 8 4 

grep3 18 7 

grep4 12 2 

grep5 1 0 
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gzip1 16 7 

gzip2 7 3 

gzip3 10 0 

gzip4 12 3 

gzip5 14 4 

 
4.3 Fault Localization Results 

The effectiveness of BEN is measured based on the percentage of the source 

code the user has to inspect to reach the fault. Step one in our experiment is to perform 

fault localization on the subject programs using BEN and determine BEN’s effectiveness 

for all faulty versions of all subject programs. This information forms the basis for our 

experiment; Ghandehari et al. [10] has performed a similar experiment in which BEN was 

used to locate the fault in the subject programs; they have shared the results, which has 

been used in our experiments.  

4.4 Methodology 

For our experiments, we need to determine the three properties of the faults in 

our subject programs. Section 3.1 suggests that an exhaustive test set is required to 

measure the accessibility. However, for our subject programs, it is not possible to create 

exhaustive test set. Therefore, we use a random test set in place of an exhaustive test 

set. In this approach, we generate the random test set for each subject program based 

Table 4-4 - continued 
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on their input parameter model, execute them on our subject programs and evaluate the 

results to determine three fault properties in our subject program. 

Note that if two programs share the same input parameter model, they also share 

the same random test set. Thus, we have generated nine random test sets (as we have 

nine different input parameter model Table 4-3), each having maximum 1000 test cases. 

If the input parameter model does not have any constraint, a random test is created in a 

way that for each parameter, we randomly select one of the possible values from its 

corresponding domain. If the model has a constraint, a random test is created in a way 

that it will not violate the constraint. More information about random test generation can 

be found at [18].  

There are certain subject programs, which had an exception. GZIP has complex 

constraints; it prevented us from generating 1000 unique random test cases. The 

maximum unique random test cases we were able to generate were 395.  For tcas 

program from the Siemens suite, there are eight faulty versions for which, the random 

test set on execution does not generate a single fail test. Therefore, we have used an 

additional test case (failed) from their respective initial test set. For these eight versions, 

we have used 1001 test cases. The next step is to execute the random test set on each 

faulty version (see Table 4-3) of the subject program; we used GCOV to record the test 

case execution. 

4.4.1  Accessibility 

Once the random test set execution on each faulty version is completed, we will 

use the GCOV file to measure the accessibility. For each subject program, the 

accessibility value for all the faulty versions calculated using the approach discussed in 

Chapter 3.1 will give us a continuous data, and there is a possibility of an infinite number 

of possible values within the range 0 to 1. So, we have used MEDIAN score to divide the 
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faulty versions into two groups i.e. faulty with high accessibility or faulty version with low 

accessibility. Any faulty version with an accessibility value < MEDIAN, will be considered 

to have low accessibility (harder to access) and Faulty version with an accessibility value 

> = MEDIAN, is considered to have high accessibility (easier to access). We followed this 

approach for all subject program used in our experiments. 

4.4.2  Input Value Sensitivity 

Identification of input value sensitivity property of a fault is a two-step process. In 

step 1, we will use the GCOV file to identify the test cases that execute the faulty 

statement. In the next step, we identify the input value sensitivity using the approach 

discussed in Chapter 3.2 i.e. If there exist, at least one test case that on execution of the 

faulty statement, produced a pass state, we will consider the fault as input value sensitive 

fault. If all the test cases that execute the faulty statement produce a fail state, we will 

consider the fault as input value insensitive fault. 

4.4.3 Control Flow Sensitivity 

To determine the control flow sensitivity property of the fault, in step 1 we will 

execute the random test set on the error-free version of the subject program and record 

the test case execution. In step 2, a failed test case was randomly selected from the test 

set results, and its faulty version execution trace was compared with its error-free version 

execution trace. If the comparison does not indicate the change in program flow, another 

failed test case was randomly selected from the test set results and the procedure is 

repeated. If there exist at least one failed test case, which on comparison, suggests that 

the fault induces a change in program flow and produces a failure, we consider the fault 

to be control flow sensitive. If all the failed test cases in the random test set, on 

comparison suggest, the fault does not induce a change in program flow and yet trigger a 
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failure, we consider them as control flow-insensitive faults. Appendix A summarizes the 

classification of faults based on three properties discussed above. 

4.5 Metrics  

The goal of our experimental design is to answer the following research 

questions by empirical studies. 

• R1: How does Accessibility affect the BEN’s effectiveness in locating the fault? 

• R2: How does input value sensitive software fault affect the BEN’s effectiveness 

in locating the fault? 

• R3: How does control flow-sensitive software fault affect the BEN’s effectiveness 

in locating the fault? 
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CHAPTER 5  

EXPERIMENTAL RESULTS 

Table 5-1 shows the overall results of the BEN’s effectiveness in locating 

different fault types. 

Table 5-1 - Overall Results 

Input Value 

Sensitivity 

Control 

Flow 

Sensitivity 

Accessibility 
# Of faulty 

versions 

Average % of code 

to be diagnosed 

Y Y H 78 19.73 

Y Y L 21 4.29 

Y N H 2 19.59 

Y N L 3 18.89 

N Y H 4 8.06 

N Y L 15 4.52 

N N H 0 NA  

N N L 3 5.96 

 

Totally, 126 fault versions were used in our experiments. In the table above, 

column “# Of Faulty Versions” indicates the number of faulty versions belongs to the 

particular category, Column 1 & 2 represents the fault properties Input Value Sensitivity 

and Control flow sensitivity respectively. “Y” indicates that the faulty versions exhibit the 

respective property and “N” indicates the faulty versions do not exhibit that respective 

property. Column 3 represents the Accessibility property. A value of  “H” denotes high 

accessibility to the fault and “L” denotes low accessibility to the fault. Following is the brief 

summary of faulty versions from the table 5 -1 
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• 78 faulty versions that contain input value sensitive, control flow-sensitive 

and easier to access software fault. 

• There is not a single faulty version that contains an input value and 

control flow-insensitive fault with high accessibility. 

In this thesis, our main goal is to evaluate how three properties affect the BEN’s 

effectiveness in locating a fault. In the following three sections, we discuss how each 

property (accessibility, input value sensitivity and control flow sensitivity) affect the BEN’s 

effectiveness in locating the fault 

5.1 Impact of Accessibility 

To determine the impact of accessibility on BEN’s effectiveness in locating the 

fault, we fix the other two properties and analyze the results i.e. we will select and 

compare the effectiveness of faulty versions, whose Input Value Sensitive and Control 

Flow sensitive values are fixed. We will have four sets of combinations as listed below 

1. Input Value sensitive and Control Flow sensitive fault  

2. Input value sensitive and Control flow insensitive fault  

3. Input value insensitive and Control flow sensitive  

4. Input value and Control flow insensitive fault  

Since the other two factors are fixed, we believe any variation in BEN’s performance is 

due to the change in Accessibility. This is the main idea behind our approach.  
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5.1.1 - Set 1 - Input Value Sensitive and Control Flow Sensitive 

The following table summarizes set 1. 

Table 5-2 - Accessibility Set 1 

Input 

Value 

Sensitivity 

Control 

Flow 

Sensitivity 

Accessibility 
# of 

versions 

Average % of code 

to be diagnosed 

Y Y H 78 19.73 

Y Y L 21 4.29 

 

For set 1, we consider the test versions that have a software fault, which is input 

value sensitive as well as control flow sensitive. In set 1, on an average, to locate a input 

value and control flow sensitive fault which is easier to access (high accessibility), the 

user is expected to diagnose 19.73% of the source code whereas, to locate input value 

sensitive and control flow fault which is harder to access (low accessibility), the user is 

expected to diagnose 4.29% of the source code on an average. On comparison, we 

conclude, BEN has a better effectiveness in locating an input value sensitive and control 

flow software fault that are harder to access (low accessibility).  
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5.1.2 - Set 2 - Input Value Sensitive and Control Flow Insensitive 

Table 5-3 - Accessibility Set 2 

Input Value 

Sensitivity  

Control 

Flow 

Sensitivity 

Accessibility 
# of 

versions 

Average % 

of code to 

be 

diagnosed 

Y N H 2 19.59 

Y N L 3 18.89 

 

For set 2, we consider the test versions that consist of software faults, which are 

input value sensitive and control flow insensitive. For this set, on an average, to locate a 

input value sensitive and control flow insensitive fault with high accessibility, the user is 

expected to diagnose 19.59% of the source code whereas, to locate input value sensitive 

and control flow insensitive fault which is harder to access (low accessibility), the user is 

expected to diagnose 18.89% of the source code on an average. By comparing the two, 

though the difference is very minimal, we conclude that BEN is effective in locating input 

value sensitive and control flow insensitive fault that are harder to access (low 

accessibility). 
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5.1.3 - Set 3 - Input Value Insensitive and Control Flow Sensitive 

Table 5-4 - Accessibility Set 3 

Input Value 

Sensitivity 

Control 

Flow 

Sensitivity 

Accessibility 
# of 

versions 

Average % 

of code to 

be 

diagnosed 

N Y H 4 8.06 

N Y L 15 4.52 

 

For Set 3, we consider the test versions, which contains input value insensitive 

and control flow sensitive software fault. For this set, on an average, to locate an input 

value insensitive and control flow sensitive fault with a high accessibility, the user is 

expected to diagnose 8.06% of the source code to locate the fault; whereas to locate an 

input value insensitive and control flow sensitive fault with low accessibility, the user is 

expected to diagnose 4.52% of the source code. The result clearly suggests that BEN is 

effective in locating input value insensitive and control flow sensitive fault with low 

accessibility. 
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5.1.4 - Set 4 - Input Value and Control Flow Insensitive 

Table 5-5 - Accessibility Set 4 

Input Value 

Sensitivity  

Control 

Flow 

Sensitivity 

Accessibility 
# of 

versions 

Average % 

of code to 

be 

diagnosed 

N N H 0  NA 

N N L 3 5.96 

 

 For set 4, we consider the test versions, which contains input value and control 

flow insensitive software fault. Based on our classification of benchmark programs, we do 

not have at least 1 version that belongs to the category non-input value and control flow 

sensitive with higher accessibility (N, N, H). So, we were unable determine on how higher 

accessibility will impact the BEN effectiveness in locating input value and control flow 

insensitive fault.  The results suggest, to locate an input value and control flow insensitive 

fault with low accessibility, the user is expected to diagnose 5.96% of the source code. 

 Based on our observations from set 1, set 2, set 3, we believe, BEN is 

more effective in locating low accessibility faults than high accessibility faults. 

Theoretically, for faults that are harder to access, the probability of derived members 

executing them is very low. When the derived member does not execute the fault, 1). The 

chances of the faulty statement appearing only in the failed test case spectra are high; 2). 

BEN will have more passed test cases and 3). Based on BEN ranking algorithm, the 

faulty statement will be ranked higher. Experimental results also suggest the same. BEN 

effectively locates the faults that are harder to access. 
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BEN’s approach is inspired by the notion of nearest neighbor [1]. A derived 

member spectrum is almost similar to the core member spectra. So, if the fault is easier 

to access, there is a high probability for derived member(s) executing the faulty 

statement. This results in BEN considering the faulty statement less suspicious and 

ranking them lower. Experimental results suggest the same. BEN has a low effectiveness 

in locating faults that are easier to access.  

5.2 Impact of Input Value Sensitivity 

To determine the impact of input value sensitivity on BEN’s effectiveness in 

locating the fault, we fix the other two properties and analyze the results i.e. we will select 

and compare the effectiveness of faulty versions, whose Accessibility and Control Flow 

sensitive values are fixed. So, we will have four sets with the following combinations 

listed below  

1. Control flow sensitive and High Accessibility 

2. Control flow sensitive and Low Accessibility 

3. Control flow-insensitive and High Accessibility 

4. Control flow-insensitive and Low Accessibility. 

Since the other two factors of the fault are fixed, we believe any variation in BEN’s 

effectiveness is because of the Input Value Sensitivity property of the fault. 
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5.2.1 - Set 1 - Control Flow Sensitive and High Accessibility 

Table 5-6 - Input Value Sensitivity - Set 1 

Input 

Value 

Sensitivity 

Control 

Flow 

Sensitivity 

Accessibility 
# of 

versions 

Average % of code to 

be diagnosed 

Y Y H 78 19.73 

N Y H 4 8.06 

 

In set 1, we consider the faulty versions, which contain a control flow sensitive 

fault with high accessibility. For this set, to locate a control flow sensitive, easier to 

access (High Accessibility) and input value sensitive fault, on an average the user is 

expected to diagnose 19.73% of the source code where as, to locate a fault which is 

control flow sensitive, easier to access (High Accessibility) and input value insensitive, 

the user is expected to diagnose 8.06% of the source code. The result suggests. BEN is 

highly effective in locating input value insensitive and control flow sensitive software fault 

with high accessibility.  

5.2.2 - Set 2 - Control Flow Sensitive and Low Accessibility 

Table 5-7 - Input Value Sensitivity - Set 2 

Input Value 

Sensitivity  

Control 

Flow 

Sensitivity 

Accessibility 
# of 

versions 

Average % 

of code to 

be 

diagnosed 

Y Y L 21 4.29 

N Y L 15 4.52 
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In set 2, we consider the faulty versions, which contains a harder to access (low 

accessibility), control flow sensitive faults. For this set, to locate an input value sensitive 

and Control flow sensitive fault, which is harder to access (low accessibility); on average 

the user is expected to diagnose 4.29% of the source code. In comparison, to locate a 

input value insensitive and Control flow sensitive, that is harder to access (low 

Accessibility), the user is expected to diagnose 4.52% of the source code. The result 

suggests, BEN is effective in locating input value sensitive and control flow sensitive fault, 

that is harder to access (Low Accessibility). 

5.2.3 - Set 3 - Control Flow Insensitive and High Accessibility 

Table 5-8 - Input Value Sensitivity - Set 3 

Input Value 

Sensitivity  

Control 

Flow 

Sensitivity 

Accessibility 
# of 

versions 

Average % of 

code to be 

diagnosed 

Y N H 2 19.59 

N N H 0  NA 

 

In set 3, we consider the faulty versions, which contains a control flow-insensitive 

fault with high accessibility. Based on our classification of subject programs, we do not 

have at least 1 version that belongs to the category input value and control flow 

insensitive with higher accessibility (N, N, H). So, we were unable determine on how 

input value sensitivity will affect the BEN effectiveness in locating control flow insensitive 

fault with high accessibility.  Our result suggests that to locate an input value sensitive 

and control flow insensitive fault with high accessibility (easy to access the fault), on an 

average the user is expected to diagnose 19.59% of the source code. 
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5.2.4 - Set 4 - Control Flow Insensitive and Low Accessibility 

Table 5-9 - Input Value Sensitivity - Set 4 

Input Value 

Sensitivity  

Control 

Flow 

Sensitivity 

Accessibility 
# of 

versions 

Average % 

of code to 

be 

diagnosed 

Y N L 3 18.89 

N N L 3 5.96 

 

In set 4, we consider the faulty versions, which contains a control flow-insensitive 

fault with low accessibility. In this set, to locate an input value sensitive and Control flow-

insensitive fault with low accessibility on an average the user is expected to diagnose 

18.89% of the source code. In comparison, to locate an input value insensitive and 

Control flow insensitive fault with Low Accessibility, the user is expected to diagnose 

5.96% of the source code. The result suggests BEN is effective in locating input value 

insensitive and Control flow insensitive with low accessibility. 

To our surprise, result from one of the cases (set 2) suggests BEN is effective in 

locating an input sensitive fault. For the remaining two cases (set 1 and set 4), results 

suggest BEN is effective in locating input value insensitive fault; for set 3, we were unable 

to reach a conclusion about the impact of input value sensitivity on BEN’s effectiveness in 

locating a control flow insensitive and high accessibility fault. In majority of the cases, the 

results suggest that BEN is effective in locating input value insensitive fault.  However, 

there exist one set (set 2), in which BEN is effective in locating an input value sensitive 

fault. Overall, we were unable to draw conclusions about the impact of input value 

sensitivity on BEN’s effectiveness in locating a software fault.  
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5.3 Impact of Control Flow Sensitivity 

To determine the impact of control flow sensitivity on BEN’s effectiveness in 

locating the fault, we fix the other two properties and analyze the results i.e. we will select 

and compare the effectiveness of faulty versions, whose Accessibility and Input value 

sensitive values are fixed. We will have four sets with the following combinations listed 

below 

1. Input value sensitive and high accessibility 

2. Input value sensitive and low accessibility 

3. Input value insensitive and high accessibility 

4. Input value insensitive and low accessibility 

Since the other two factors of the fault are fixed, we believe any variation in 

BEN’s effectiveness is because of the Control flow Sensitivity property of the fault. 

5.3.1 - Set 1 - Input Value Sensitive and High Accessibility 

Table 5-10 - Control Flow Sensitivity - Set 1 

Input 

Value 

Sensitivity 

Control 

Flow 

Sensitivity 

Accessibility 
# of 

versions 

Average % of code to 

be diagnosed 

Y Y H 78 19.73 

Y N H 2 19.59 

 

In set 1, we consider the faulty versions, which contains an input value sensitive, 

easier to access (high accessibility) faults. In this set, on an average, to locate a input 

value sensitive, easier to access and control flow sensitive fault the user is expected to 

diagnose 19.73% of the source code where as, to locate a input value sensitive, easier to 

access and control flow insensitive fault, the user is expected to diagnose 19.59% of the 
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source code on an average. On comparison, we conclude BEN has relatively better 

effectiveness in locating a input value sensitive, control flow insensitive and easier to 

access software fault. 

5.3.2 - Set 2 - Input Value Sensitive and Low Accessibility 

Table 5-11 - Control Flow Sensitivity - Set 2 

Input Value 

Sensitivity 

Control 

Flow 

Sensitivity 

Accessibility 
# of 

versions 

Average % 

of code to 

be 

diagnosed 

Y Y L 21 4.29 

Y N L 3 18.89 

 
In set 2, we consider the faulty versions, which contains an input value sensitive 

and harder to access (low accessibility) faults. In this set, on an average, to locate a input 

value sensitive, harder to access and control flow sensitive fault the user is expected to 

diagnose 4.29% of the source code where as, to locate input value sensitive, harder to 

access and control flow insensitive fault, the user is expected to diagnose 18.89% of the 

source code to locate the fault. On comparison, BEN has a relatively better effectiveness 

in locating a fault, which is input value sensitive, control flow sensitive and easier to 

access.  

  



 

38 

5.3.3 - Set 3 - Input Value Insensitive and High Accessibility 

Table 5-12 - Control Flow Sensitivity - Set 3 

Input Value 

Sensitivity  

Control 

Flow 

Sensitivity 

Accessibility 
# of 

versions 

Average % 

of code to 

be 

diagnosed 

N Y H 4 8.06 

N N H 0  NA 

 

In set 3, we consider the faulty versions, which contains input value insensitive, 

high accessibility fault. In our subject programs, we do not have at least one version that 

belongs to the category input value and control flow insensitive with higher accessibility 

(N, N, H). So, we were unable determine on how control flow sensitivity property will 

affect the BEN effectiveness in locating input value sensitive fault with high accessibility.  

The results suggest, to locate an input value insensitive and control flow sensitive fault 

with high accessibility, on an average to locate the fault, the user is expected to diagnose 

8.06% of the source code. 
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5.3.4 - Set 4 - Input Value Insensitive and Low Accessibility 

Table 5-13 - Control Flow Sensitivity - Set 4 

Input Value  
Control 

Flow 
Accessibility 

# of 

versions 

Average % 

of code to 

be 

diagnosed 

N Y L 15 4.52 

N N L 3 5.96 

 

In set 4, we consider the faulty versions, which contains input value insensitive, 

harder to access (low accessibility) faults. In this set, on an average, to locate a input 

value insensitive, harder to access and control flow sensitive fault the user is expected to 

diagnose 4.52% of the source code where as, to locate input value insensitive, harder to 

access and control flow insensitive fault, the user is expected to diagnose 5.96% of the 

source code to locate the fault. On comparison, BEN relatively has a better effectiveness 

in locating a fault, which is input value insensitive, control flow sensitive and harder to 

access.  

For certain scenarios(set 2 and set 4), the BEN has a better effectiveness in 

locating a control flow-sensitive fault. However, for set 1 our results suggest the opposite, 

i.e. BEN has a better effectiveness in locating control flow-insensitive fault. So, based on 

the overall results we were unable to draw a conclusion on the impact of control flow 

sensitivity on BEN’s effectiveness in locating the fault. 
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CHAPTER 6  

RELATED WORK  

There are many existing empirical evaluations that have studied the effect of 

different factors on the effectiveness of fault localization techniques. Abreu et al. [11] 

discussed the effect of adding more failed and passed runs to the approach. Their result 

concludes that the effect of adding more passed runs is unpredictable, whereas the 

effectiveness improves if more failed test cases are used. Their result also suggests that 

fewer instances of coincidental correctness improve the overall effectiveness of the 

approach. Coincidental correctness is an event in which a test case executes the fault but 

coincidentally it does not result in a failure. 

Jones et al. [6] compared the effectiveness of different fault localization 

techniques including Tarantula [19], Set intersection [26], Set Union [27], Nearest 

neighbor [7] and Cause transition [20]. In their experiment, the effectiveness is measured 

based on the percentage of the subject program that needs not be examined to find a 

faulty statement. Similar to our approach, they also follow the same methodology to 

distinguish between a failed and passed test case, i.e. First, they execute the test cases 

on the error-free version of the subject programs. These results would then be 

considered as the expected output. In the next step, they execute the test cases on the 

faulty versions, and the output is compared with their corresponding expected output. 

Their result suggests that set-intersection performs the worst while Tarantula performs 

the best in locating the faults. Their work is primarily focused on evaluating the 

effectiveness of different fault localization techniques, whereas our work is focused on 

evaluating the effectiveness of a particular fault localization technique in locating different 

fault types. 
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Baudry et al. [13] discussed the type of information needed for effective fault 

localization. Their work proposed a test-for-diagnosis criterion, which evaluates the 

capacity of the test cases to help fault localization.  Their work discussed an explicit 

connection between testing and diagnosis. They introduced an attribute known as 

Dynamic Basic Block (DBB), which is a set of statements that is covered by the same test 

cases in a test set. All the program statements in the same basic block will have the 

same rank. They propose that DBB is a decisive factor in the diagnosis accuracy of a 

fault localization technique. Their results suggest that increasing the number of DBBs 

improves the overall effectiveness of fault localization. They also confirm a strong 

correlation between the size of the DBB and the diagnosis accuracy. Faults that are 

located in small DBBs are effectively localized. Their work is different from ours, because 

we focus on how the fault properties that impact the effectiveness of fault localization 

technique, whereas their work is focused on improving the capacity of test cases in order 

to improve the effectiveness of fault localization. 

Yu et al. [14] studied the impact of various test suite reduction strategies on the 

effectiveness of fault localization. They used a vector based reduction strategy and a 

statement-based reduction strategy for their study. In the vector based reduction strategy, 

the reduced test suite covers the same set of statement vectors as the original test suite. 

A statement vector is defined as the set of statements executed by one test case. The 

statement-based reduction strategy uses a reduced test suite that covers the same 

statements as the original test suite. Their experiment investigates the effect of test 

reduction strategies on the following fault localization techniques, including Tarantula 

[19], Statistical Bug Isolation [25], Jacaard [11] and Ochiai [17]. They have used the 

Siemens suite [24] as their subject programs. Their results show that the vector-based 

reduction has a negligible effect on the effectiveness, statement based reduction 
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significantly reduces the effectiveness. This work is focused on studying the effect of test 

case reduction in fault localization effectiveness, whereas our work is focused on 

understanding the effect of fault properties in fault localization effectiveness. 

Renieris et al. [15] discussed the effects of two types of spectra, namely binary 

coverage spectrum and permutation spectrum, on the effectiveness of the nearest 

neighbor model. A binary coverage spectrum contains the coverage of basic blocks 

whereas a permutation spectrum contains the execution counts of the basic blocks. They 

evaluate the performance of nearest neighbor models with set union and set intersection 

models. While, one of the nearest neighbor model uses a binary coverage spectrum, the 

other nearest neighbor model uses the actual basic block execution counts, i.e. 

permutation spectrum. They use the Georgia Tech version [23] of the Siemens suite [24] 

as the subject programs for their experiments. Their work suggests that the nearest 

neighbor model has a better overall performance when compared to set union and set 

intersection model. Among the two nearest neighbor models, the one using permutation 

spectrums has a better effectiveness in locating the fault than the other that uses binary 

coverage spectrums. Their work is primarily focused on comparing the fault localization 

effectiveness of nearest neighbor model technique with the set union and set intersection 

techniques and evaluating the impact of different types of spectra in nearest neighbor’s 

effectiveness.  Our work is different from theirs, as we are focused on evaluating the 

impact of fault properties on the effectiveness of BEN. 

The related work discussed so far is focused on evaluating the effectiveness 

among different fault localization techniques [6], improving the capacity of test cases to 

improve the effectiveness of fault localization [13], studying the effect of test case 

reduction on the effectiveness of BEN [14] and evaluating the impact of different spectra 

on the effectiveness of fault localization technique [15]. To the best of our knowledge, 
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there are not many empirical studies focused on evaluating the effectiveness of fault 

localization techniques in locating different fault types. 

Bandyopadhyay et al. [12] studied how the effectiveness of a fault localization 

tool called Tarantula [19] in localizing faults is affected by three fault properties, including 

accessibility, original state failure condition, and impact. They have used the Siemens 

suite for their experimental study. Their results indicate that Tarantula, which is also a 

spectrum based fault localization technique, effectively localizes faults that are hard to 

access and have low impact.  

Our work is different from Bandyopadhyay et al. [12] in the following ways. First, 

our work focuses on evaluating the effectiveness of BEN, whereas their work is focused 

on evaluating the effectiveness of Tarantula. Second, while they also evaluate the impact 

of accessibility on the effectiveness of a fault localization technique, their approach used 

to measure accessibility is different. In their approach, accessibility is measured by the 

size of the backward slice of the faulty statement as a percentage of the program size, 

whereas in our approach accessibility is measured as the ratio of the number of test case 

executes the faulty statement to the total number of test cases. Third, in addition to the 

Siemens suite, our experiments were performed on two real-life programs grep and gzip. 

Apart from accessibility, our work evaluates the impact of other two fault properties 

namely Input Value Sensitivity and Control Flow Sensitivity on the effectiveness of BEN.  

Using the Input Value Sensitivity property in our study helps understand the impact of co-

incidental correctness on the effectiveness of BEN.  
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CHAPTER 7  

CONCLUSION AND FUTURE WORK 

 
The focus of this thesis was on evaluating the effectiveness of BEN in locating 

different types of fault. In particular, how the three fault properties, namely accessibility, 

input value sensitivity, and control flow sensitivity affects the effectiveness of BEN in 

locating a fault. One challenge in our experiments was how to determine the three 

properties of a given fault. Instead of using an exhaustive test set, which is always nearly 

impossible in practice, a random test set-based approach was adopted as an 

approximation to determine the three fault properties. The experimental results suggests, 

BEN is highly effective in locating faults that are harder to access. This can be explained 

by the fact that BEN generates a small group of tests whose spectra are compared to 

locate faults. Experimental results also suggest that in most cases, BEN is effective in 

locating input value insensitive and control flow-insensitive faults. However, we are 

unable to reach a conclusion about the individual impact of input value sensitivity and 

control flow sensitivity on BEN’s effectiveness in locating the software fault.  

The work presented in this thesis was limited to evaluating BEN’s effectiveness 

in locating different types of fault. Hence, in the future, we plan to extend our work in the 

following directions. First, we plan to conduct similar studies on other fault localization 

tools such as Tarantula [19] and Ochiai [17]. Second, the determination of fault properties 

was performed with manual effort. We plan to automate this process by using scripts that 

will analyze the GCOV file and random test set results as inputs to determine the 

properties of the faults automatically. Finally, the subject programs used in the 

experiments do not have faults that are of high accessibility, input value insensitive and 

control flow insensitive. Therefore, we were unable to evaluate the impact of such a fault 

on BEN’s effectiveness. We plan to create this type of fault either by using a mutation tool 
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or by modifying the subject program manually such that the impact of this fault type can 

be investigated on BEN’s effectiveness. 
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APPENDIX A 

CLASSIFICATION OF FAULTS FROM SUBJECT PROGRAMS  
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Table A-1 - Grep 

Subject Program 
Input Value 

Sensitive 

Control Flow 

Sensitive 
Accessibility Category 

Grep 1 

V3 Y Y H 

V8 Y Y L 

V14 Y Y H 

Grep 3 

V3 Y Y H 

V10 Y Y H 

V12 N Y L 

V16 N N L 

Grep 4 
V2 Y Y H 

V12 N Y L 
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Table A-2 - Gzip 

Subject 

Program 

Input Value 

Sensitive 

Control Flow 

Sensitive 
Accessibility Category 

Gzip1 

V2 Y Y L 

V4 Y N H 

V5 Y Y H 

V13 N Y L 

V15 N Y H 

V16 N Y L 

Gzip2 

V1 N Y H 

V3 Y Y H 

V6 Y Y H 

Gzip4 V6 N Y L 

Gzip5 

V1 N Y H 

V6 N Y L 

V13 N Y L 
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Table A-3 - schedule 

Subject 

Program 

Input Value 

Sensitive 

Control Flow 

Sensitive 
Accessibility Category 

schedule 

v1 Y Y H 

v2 Y N L 

v3 Y N H 

v4 Y Y H 

v5 Y Y H 

v6 Y Y H 

v7 N Y L 

 

 

Table A-4 - schedule2 

Subject 

Program 
Input Value Sensitive Control Flow Sensitive 

Accessibility 

Category 

schedule2 

v2 Y Y H 

v3 Y Y H 

v7 Y Y H 
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Table A-5 - totInfo 

Subject 

Program 
Input Value Sensitive Control Flow Sensitive 

Accessibility 

Category 

totInfo 

v1 Y Y L 

v2 Y Y H 

v5 Y N L 

v6 Y Y H 

v8 N N L 

v9 Y N L 

v11 N Y L 

v15 N Y L 

v18 Y Y H 

v19 Y Y H 

v20 Y Y H 

v21 Y Y H 
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Table A-6 - printtokens2 

Subject Program Input Value Sensitive Control Flow Sensitive 
Accessibility 

Category 

printtokens2 

v1 Y Y H 

v2 N Y L 

v4 Y Y H 

v5 N Y L 

v6 Y Y H 

v7 Y Y H 

v8 Y Y H 

v9 Y Y H 

v10 Y Y H 

 

Table A-7 - printtokens 

Subject Program Input Value Sensitive Control Flow Sensitive 
Accessibility 

Category 

printtokens 

v3 N Y H 

v5 Y Y L 

v6 Y Y H 
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Table A-8 - tcas 

Subject 

Program 
Input Value Sensitive Control Flow Sensitive 

Accessibility 

Category 

tcas 

v2 Y Y H 

v3 Y Y H 

v4 Y Y L 

v5 Y Y H 

v6 Y Y L 

v8 Y Y H 

v9 Y Y H 

v10 Y Y L 

v11 Y Y L 

v12 Y Y H 

v13 Y Y H 

v14 Y Y H 

v15 Y Y H 

v18 Y Y H 

v20 Y Y H 

v21 Y Y H 

v22 Y Y H 

v23 Y Y H 

v24 Y Y H 

v25 Y Y L 

v26 Y Y H 
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 v27 Y Y H 

tcas 

v28 Y Y H 

v29 Y Y H 

v30 Y Y H 

v31 Y Y H 

v32 Y Y L 

v33 Y Y H 

v34 Y Y H 

v35 Y Y H 

v36 N N L 

v37 Y Y L 

v38 Y Y L 

v39 Y Y L 

v40 Y Y H 

v41 Y Y L 

 

Table A-8 - continued 
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Table A-9 - replace 

Subject 

Program 

Input Value 

Sensitive 

Control Flow 

Sensitive 

Accessibility 

Category 

replace 

 

v1 Y Y H 

v2 Y Y H 

v3 Y Y H 

v4 Y Y H 

v5 Y Y H 

v6 Y Y H 

v7 Y Y H 

v8 Y Y H 

v9 Y Y H 

v10 Y Y H 

v11 Y Y H 

v12 Y Y L 

v13 N Y L 

v14 Y Y L 

v15 Y Y H 

v16 Y Y H 

v17 N Y L 

v18 Y Y L 

v19 Y Y H 

v20 N Y L 
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 v21 Y Y H 

 v22 Y Y H 

 v23 Y Y H 

 v24 Y Y L 

 v25 Y Y L 

replace v26 Y Y L 

 v27 Y Y H 

 v28 Y Y H 

 v29 Y Y H 

 v30 Y Y H 

 v31 Y Y L 

 v32 Y Y H 

Table A - 9 - continued 
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APPENDIX B 

EXHAUSTIVE TEST SET -  EXECUTION TRACE 
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Table B-1 - Execution trace for Accessibility Example 

Program statements T1 T2 T3 T4 T5 T6 T7 T8 T9 

1. public int applyDiscount(int 

totalPrice,bool member, 

char type) 

� � � � � � � � � 

2. { � � � � � � � � � 

3.    float discount = 0.00; � � � � � � � � � 

4.   if(totalPrice>100) //Fault #1 

- correct :if(totalPrice>1000) 

� � � � � � � � � 

5.   { � � �    � � � 

6.      if(member == TRUE) � � �    � � � 

7.       { � �     � �  

8.          if(type == “E”) � �     � �  

9.            { �      �   

10.               discount = 

(0.25)*totalPrice; 

�      �   

11.               totalPrice = 

totalPrice-Discount; 

�      �   

12.           } �      �   

13.           if(type == “G”) � �     � �  

14.           {  �      �  

15.  //Fault # 2 - correct : 

Discount = (0.10)*totalPrice; 

         

16.               Discount = 

(0.07)*totalPrice; 

 �      �  
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17.               totalPrice = 

totalPrice-Discount; 

 �      �  

18.            }   �      �  

19.       }  � �     � �  

20.       else   �      � 

21.        {   �      � 

22.          discount = 

(0.05)*totalPrice; 

  �      � 

23.          totalPrice = totalPrice-

Discount; 

  �      � 

24.       }   �      � 

25.   } � � �      � 

26. } � � � � � �   � 

Table B - 1 - continued 
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