
EVALUATING THE EFFECTIVENESS OF BEN IN LOCALIZING DIFFERENT TYPES

OF SOFTWARE FAULT

by

JAGANMOHAN CHANDRASEKARAN

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2015

ii

Copyright © by Jaganmohan Chandrasekaran 2015

All Rights Reserved

iii

ACKNOWLEDGEMENTS

First I would like to extend my heartfelt thanks and gratitude to my thesis advisor

Professor Dr.Jeff Lei for providing me an opportunity to work in his group, for his

continuous guidance and helping me to evolve as a better researcher. Without his

kindness, patience and support this work would not be possible. I would also like to thank

Professor Dr. Hao Che and Professor Dr. Junzhou Huang for agreeing to be part of my

thesis committee.

I would like to thank Mrs. Laleh Sh.Ghandehari for her guidance throughout my

thesis work.

As always I am thankful to my Amma and Appa for their sacrifice, continuous

support and motivation. I am deeply indebted to my friends – Vinoth, Raja, R.R.Dhinesh,

Amarnath, Someshwar for their support during the course of my thesis work. I would like

to thank my friends here at Arlington, Danny and Abhishek for their help, support and

motivation.

Last but not least, I cannot thank Ankita enough for being my pillar of strength, by

allowing me to chase my dreams and being supportive as always.

July 31, 2015

iv

ABSTRACT

EVALUATING THE EFFECTIVENESS OF BEN IN LOCALIZING DIFFERENT TYPES

OF SOFTWARE FAULT

Jaganmohan Chandrasekaran, MS

The University of Texas at Arlington, 2015

Supervising Professor: Jeff Lei

Debugging refers to the activity of locating software faults in a program and is

considered to be one of the most challenging tasks during software development.

Automated fault localization tools have been developed to reduce the amount of effort

and time software developers have to spend on debugging. In this thesis, we evaluate

the effectiveness of a fault localization tool called BEN in locating different types of

software faults. Assuming that combinatorial testing has been performed on the subject

program, BEN leverages the result obtained from combinatorial testing to perform fault

localization.

Our evaluation focuses on how the following three properties of software fault

affect the effectiveness of BEN: (1) Accessibility: Accessibility refers to the degree of

difficulty to reach (and execute) a fault during a program execution; (2) Input-value

sensitivity: A fault is input-value sensitive if the execution of the fault triggers a failure only

for some input values but not for other input values; and (3) Control-flow sensitivity: A

fault is control-flow sensitive if the execution of the fault triggers a failure while inducing a

change of control flow in the program execution.

We conducted our experiments on seven programs from the Siemens suite and

two real-life programs, grep and gzip, from the SIR repository. Our results indicate that

BEN is very effective in locating faults of low accessibility. A unique aspect of BEN is that

v

it generates a failed test called the core member and a small group of passed tests called

the derived members. The spectrum of the core member is compared to that of each

derived member. The way in which the core and derived members are generated allows

faults of low accessibility to be effectively located by BEN. Our results also suggest that

in most of the cases, BEN is effective in locating input value- and control flow-insensitive

faults. However, no conclusion can be drawn from the experimental data about the

individual impact of input value sensitivity and control flow sensitivity on BEN’s

effectiveness.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. iii	

ABSTRACT .. iv	

LIST OF TABLES ... viii	

CHAPTER 1 INTRODUCTION .. 1	

CHAPTER 2 BEN: A FAULT LOCALIZATION TOOL .. 5	

2.1 Overview .. 5	

2.2 Phase 1 ... 6	

2.3 Phase 2 ... 7	

CHAPTER 3 FAULT PROPERTIES .. 9	

3.1 Accessibility ... 9	

3.2 Input Value Sensitivity ... 12	

3.3 Control Flow Sensitivity ... 15	

CHAPTER 4 EXPERIMENTAL DESIGN ... 18	

4.1 Subject Programs .. 18	

4.1.1 Siemens suite ... 18	

4.1.2 Grep and Gzip .. 19	

4.2 Input Parameter Modeling for Subject Programs .. 19	

4.3 Fault Localization Results .. 22	

4.4 Methodology .. 22	

4.4.1 Accessibility ... 23	

4.4.2 Input Value Sensitivity ... 24	

4.4.3 Control Flow Sensitivity .. 24	

4.5 Metrics ... 25	

CHAPTER 5 EXPERIMENTAL RESULTS... 26	

vii

5.1 Impact of Accessibility ... 27	

5.1.1 - Set 1 - Input Value Sensitive and Control Flow Sensitive 28	

5.1.2 - Set 2 - Input Value Sensitive and Control Flow Insensitive 29	

5.1.3 - Set 3 - Input Value Insensitive and Control Flow Sensitive 30	

5.1.4 - Set 4 - Input Value and Control Flow Insensitive ... 31	

5.2 Impact of Input Value Sensitivity ... 32	

5.2.1 - Set 1 - Control Flow Sensitive and High Accessibility 33	

5.2.2 - Set 2 - Control Flow Sensitive and Low Accessibility 33	

5.2.3 - Set 3 - Control Flow Insensitive and High Accessibility 34	

5.2.4 - Set 4 - Control Flow Insensitive and Low Accessibility 35	

5.3 Impact of Control Flow Sensitivity ... 36	

5.3.1 - Set 1 - Input Value Sensitive and High Accessibility 36	

5.3.2 - Set 2 - Input Value Sensitive and Low Accessibility 37	

5.3.3 - Set 3 - Input Value Insensitive and High Accessibility 38	

5.3.4 - Set 4 - Input Value Insensitive and Low Accessibility 39	

CHAPTER 6 RELATED WORK ... 40	

CHAPTER 7 CONCLUSION AND FUTURE WORK .. 44	

APPENDIX A CLASSIFICATION OF FAULTS FROM SUBJECT

PROGRAMS .. 46	

APPENDIX B EXHAUSTIVE TEST SET - EXECUTION TRACE 56	

REFERENCES ... 59	

BIOGRAPHICAL INFORMATION .. 63	

viii

LIST OF TABLES

Table 3-1 - Example for Accessibility ... 10	

Table 3-2 - Test Case and Results for Accessibility Example ... 11	

Table 3-3 - Program to Calculate Sum of Two Numbers ... 13	

Table 3-4 - Test Case and Results for Input Value Sensitivity Example 14	

Table 3-5 - Execution Trace Information for Input Value Sensitivity Example 14	

Table 3-6 - Example for Control Flow Sensitivity fault .. 15	

Table 3-7 -Test Case and Results for Control Flow Sensitivity Example 16	

Table 3-8 - Execution Trace (Expected Vs Actual) For Test Case - T3 17	

Table 4-1 - Siemens Suite ... 18	

Table 4-2 - Grep and Gzip ... 19	

Table 4-3 - Input Parameter Model for Subject Programs ... 20	

Table 4-4 - Test results for subject programs .. 21	

Table 5-1 - Overall Results .. 26	

Table 5-2 - Accessibility Set 1 .. 28	

Table 5-3 - Accessibility Set 2 .. 29	

Table 5-4 - Accessibility Set 3 .. 30	

Table 5-5 - Accessibility Set 4 .. 31	

Table 5-6 - Input Value Sensitivity - Set 1 .. 33	

Table 5-7 - Input Value Sensitivity - Set 2 .. 33	

Table 5-8 - Input Value Sensitivity - Set 3 .. 34	

Table 5-9 - Input Value Sensitivity - Set 4 .. 35	

Table 5-10 - Control Flow Sensitivity - Set 1 .. 36	

Table 5-11 - Control Flow Sensitivity - Set 2 .. 37	

Table 5-12 - Control Flow Sensitivity - Set 3 .. 38	

ix

Table 5-13 - Control Flow Sensitivity - Set 4 .. 39	

Table A-1 - Grep .. 47	

Table A-2 - Gzip ... 48	

Table A-3 - schedule .. 49	

Table A-4 - schedule2 .. 49	

Table A-5 - totInfo .. 50	

Table A-6 - printtokens2 ... 51	

Table A-7 - printtokens ... 51	

Table A-8 - tcas .. 52	

Table A-9 - replace .. 54	

Table B-1 - Execution trace for Accessibility Example ... 57	

1

CHAPTER 1

INTRODUCTION

Software debugging accounts for a major part of the expenditure in the software

development cycle. Debugging refers to the activity of locating software faults in a

program and is considered one of the most challenging tasks. A significant amount of

effort is spent in locating faults during debugging [4]. Automated fault localization tools

were developed to reduce the amount of effort and time the developers spend on

debugging.

Spectrum-based fault localization is a commonly used fault localization

technique. This technique is based on the notion of a program spectrum. A program

spectrum records information about certain aspects of a test execution [5] such as

program paths and function call counts [7]. In this fault localization technique, we identify

faults by comparing the spectrums of failed and passed test executions. The program

statements that are only exercised by failed tests are likely to be faulty [1].

Ghandehari et al. [2] reported a spectrum-based fault localization tool called

BEN, which was developed at the University of Texas at Arlington. BEN leverages the

results obtained from combinatorial testing to perform fault localization. It is assumed that

a combinatorial test set has already been executed, and the result of each test execution

is available before the application of BEN. The fault localization process in BEN involves

two major phases. In the first phase, BEN identifies the failure-inducing combination from

the initial combinatorial test set. A combination is considered to be failure-inducing, if it

causes any test in which it appears to fail [2]. In the second phase, it generates a small

group of tests containing one failed test called core member and a set of passed tests

called derived members using the failure-inducing combination from the first phase. The

core member and derived members are executed, and the spectrum of the core member

2

is compared with the spectrum of each of the derived members. Based on this

comparison, statements are ranked in terms of their likelihood to be faulty [3].

 The main goal of this thesis is to evaluate the effectiveness of BEN in locating

different types of software fault. The effectiveness of BEN is measured based on the

number of statements the user has to inspect to locate the faulty statement. If the user is

required to inspect a less number of statements to locate the fault, then BEN is

considered more effective. The evaluation focuses on how the following three properties

of software fault affect the effectiveness of BEN: (1) Accessibility: Accessibility refers to

the degree of difficulty to reach (and execute) a fault during a program execution; (2)

Input-value sensitivity: A fault is input-value sensitive if the execution of the fault triggers

a failure only for some input values but not for other values. This implies that the faulty

statement could be executed by both failed and passed test cases; and (3) Control-flow

sensitivity: A fault is control-flow sensitive if the execution of the fault triggers a failure

while inducing a change of control flow in the program execution.

The experiments were performed on seven programs from the Siemens suite,

and two real-life programs, grep and gzip, from the SIR [16]. Each of these programs has

several faulty versions, and BEN is applied on all of these faulty versions. Ghandehari et

al. [10] provided the input parameter modeling information and fault localization results of

the subject programs, which were used in the experiments. A random test set-based

approach was followed to determine the three properties of the fault in the subject

programs. The first step in this approach was to generate a random test set based on the

input parameter model of each subject program. In the next step, the random test set is

executed on each subject program, with test executions being recorded. Then, the

execution trace information was analyzed to determine the three properties of the fault as

follows. Accessibility was measured as the ratio of the number of test cases that

3

executed the faulty statement to the total number of test cases in the random test set. A

fault is considered to be input value sensitive if there exists at least one test case from

the random test set that executes the faulty statement and produces a passed execution.

To determine control flow sensitivity, we select the first failed test case from the test set

results, and its faulty version execution trace was compared with its error-free version

execution trace. If the comparison does not indicate the change in program flow, the next

failed test case from the test set was selected and the procedure is repeated. If there

exists at least one failed test case such that the fault induces a change in program flow

and produces a failure, we consider the fault to be control flow sensitive and otherwise

control flow insensitive

The experimental results suggest that BEN is highly effective in locating low

accessibility faults. This is because low accessibility faults are likely to be executed only

by the core member but not by the derived members. This will allow BEN’s ranking

algorithm to rank the corresponding faulty statements higher. On the other hand, if a fault

is easy to access, the fault is likely to be exercised by both core and derived members.

As a result, the corresponding faulty statement is ranked lower by BEN’s ranking

algorithm. The experimental results also suggest that in most of the cases, BEN is

effective in locating input value insensitive and control flow-insensitive faults. However,

with the experimental results, we were unable to reach a conclusion about the individual

impact of input value sensitivity and control flow sensitivity on BEN’s effectiveness in

locating the fault.

The remainder of the thesis is organized as follows. In Chapter 2, a discussion is

presented on BEN’s approach to locating faults. We also explain how the effectiveness of

BEN is measured. Chapter 3 discusses the three fault properties and approaches to

determining these properties. Also in this chapter, detailed examples are provided for

4

each of the three properties of the fault. Chapter 4 presents information about the subject

programs, including the input parameter model and fault localization results of each

subject program. We also present a discussion on the approach we used to determine

the fault properties in the subject programs. Chapter 5 presents the results of our

experiments. In this chapter, we provide the classification of faults in the subject

programs that were made using the approach discussed in Chapter 4. We also discuss

the individual impact of the three properties in BEN’s effectiveness in locating a fault.

Chapter 6 discusses the related work about evaluating the effectiveness of fault

localization techniques. In Chapter 7 we provide the concluding remarks and discuss

several directions for our future work.

5

CHAPTER 2

BEN: A FAULT LOCALIZATION TOOL

2.1 Overview

BEN is a spectrum-based fault localization tool, which uses the result of a

combinatorial test set. In spectrum based fault localization technique, the program

spectrum, e.g. statement coverage, is recorded for each test and then the spectra of the

failed and passed tests are compared to locate the fault. Statements which are executed

exclusively by the failed test cases i.e. statements those appear only in the program

execution spectra of the failed test cases and not appearing in the execution spectra of

the pass test cases are considered to be highly suspiciousness and most-likely to be

faulty. Fault localization methods like Tarantula [6], Set Union, Set Intersection, and

nearest neighbor [7] also follows the spectrum-based approach. BEN is different from the

other spectrum-based approaches in the way that the other spectrum-based methods

assume an existence of a larger number of test runs and locates the fault by comparing

the pass/fail spectra with respect to these test runs; where as, BEN uses the result of a

combinatorial test set and generates a small number of tests to locate the fault. BEN’s

approach is inspired by the concept of the nearest neighbor method [1].

The fault localization process in BEN involves two major phases. In the first

phase, it identifies failure-inducing combinations; failure-inducing combination is a

combination, which if it appears in a test, cause the test to fail. In the second phase, BEN

produces a ranking of statements in terms of their likelihood of being faulty. The user

should investigate the statements in the top rank at first, and then go to the next rank (if

the fault is not found in the top rank) until the fault is located.

6

2.2 Phase 1

At the start of phase 1, the user provides the following inputs (1). Subject

program (2).A combinatorial test set created based on the input parameter model. It is

assumed the user has executed the combinatorial test set, and the results (test execution

status) of each test are known [3]. First, BEN analyzes the initial combinatorial test set

and identifies a set of suspicious combinations and then ranks them based on their

suspiciousness. A suspicious combination is a combination which is candidate of being

inducing combination. For a given test set F, any combination that only appears in the

failed test of F is considered suspicious. BEN ranks the suspicious combinations based

on their likelihood to be inducing. Ranking of the suspicious combinations is based on the

suspiciousness of combinations (SoC) and suspiciousness of the environment of the

combinations (SoE). Suspiciousness of combination is computed based on

suspiciousness of components (parameter values) appear in the combination.

Suspiciousness of the environment for the combination is computed based on the

suspiciousness of components that do not appear in the combination but appear in the

same test as the combination. The suspicious combination, which has a higher SoC and

lower SoE value in the set F, will be ranked higher.

Followed by the rank generation, BEN generates a small set of new test cases

for top-ranked suspicious combinations, which the user can choose to execute and refine

the suspicious combinations set. A new test is generated in a way that it contains the

suspicious combination and has the minimum suspiciousness in the environment. If such

a test, fails, it is very likely that the suspicious combination is inducing. Otherwise the

suspicious combination is not suspicious any more since it appears in a passed test. The

rank and test generation continues iteratively until the stopping condition is satisfied [2].

At the end of Phase 1, BEN identifies the failure-inducing suspicious combination.

7

2.3 Phase 2

BEN generates a small group of tests S based on the failure-inducing

combination identified at Phase 1. The set S will contain one core member, that is a

failed test and several derived members that are passed tests. BEN generates the core

member such that it contains the failure-inducing combination. The derived members are

very similar to the core member, however, they do not contain the failure-inducing

combination, and they are expected to produce a program execution trace that is similar

to core member execution trace. Once, the test generation is completed, the user is

expected to execute them. The core member is very likely to fail as it contains the failure-

inducing combination. Likewise, all the derived members on test execution are most likely

to result in a pass, as they do not contain the failure-inducing combination. If the core

member does not result in a failure, BEN will select a failed test case from the initial test

set as a core member.

During the test execution, the program spectra for the core and derived members

are recorded with the help of coverage tool GCOV. BEN compares the execution trace of

the core member (failed test case) with each derived member’s execution trace to

compute the suspiciousness score of every statement. If a derived member does fail on

test execution, BEN will ignore that derived member and will not consider it, for

comparison with the core member.

The suspiciousness score represents how likely the statements is faulty.

Statements executed only by the core member are considered most suspicious, and BEN

will rank them higher. Statements executed by both core and derived member are

considered less suspicious. The statements executed only the derived member is

considered non-suspicious. Statements are ranked in descending order of their

suspiciousness value.

8

User will locate the fault, by investigating the statements in the top Rank at first

and user might continue to investigate (if fault not located in top ranked statements) the

statement in the next rank, until the faulty statement is found. The effectiveness of BEN

is measured based on the number of statements, a user has to investigate to reach the

faulty statement i.e. the ratio of number of statements to be investigated to locate the

fault to the total number of statements in the subject program.

9

CHAPTER 3

FAULT PROPERTIES

This chapter presents the definition of three fault properties 1). Accessibility 2).

Input value sensitivity and 3). Control flow sensitivity

3.1 Accessibility

Accessibility refers to the degree of difficulty to reach (and execute) a fault during

a program execution. It is a value between 0 and 1. Accessibility is measured as the ratio

of the number of test set executes the faulty statement to the total number of tests in the

exhaustive test set.

If a faulty statement has an accessibility value of 1, it indicates that all the test

cases do execute the faulty statement. The lesser the accessibility value, it is harder to

execute the faulty statement. For example, a value of 0.2 indicates that only 20% of the

total number of test cases executes the faulty statement. In testing phase, low

accessibility faults are difficult to detect, as the small number of tests could reach and

execute the faulty statement.

Example:

Consider the example in Table 3-1: In this program, if the customer makes a

purchase > $1000, a discount will be applied based on the type of membership.

EXECUTIVE members will receive 25% discount, GOLD members will receive 10%, and

customers who do not have a membership will receive 5% discount. There are three

inputs for the method applyDiscount() and they are amount of purchase made by the

customer, membership information of the customer i.e. is the customer holds an

membership(Y or N); If yes, the type of membership i.e. either executive or gold

membership(‘E’ or ‘G’).

10

Table 3-1 - Example for Accessibility

1. public int applyDiscount(int totalPrice,bool member, char
type)

2. {
3. float discount = 0.00;
4. if(totalPrice>100) //Fault #1 - correct :if(totalPrice>1000)
5. {
6. if(member == TRUE)
7. {
8. if(type == “E”)
9. {
10. discount = (0.25)*totalPrice;
11. totalPrice = totalPrice-Discount;
12. }
13. if(type == “G”)
14. {
15. //Fault # 2 - correct : Discount = (0.10)*totalPrice;
16. Discount = (0.07)*totalPrice;
17. totalPrice = totalPrice-Discount;
18. }
19. }
20. else
21. {
22. discount = (0.05)*totalPrice;
23. totalPrice = totalPrice-Discount;
24. }
25. }
26. }

This program has two faults. Fault (F1) at line # 4 and Fault (F2) at line # 16

• Fault - F1: - A discount should be applied to customers whose purchase value is

>$1000; instead discount will be applied for purchases > $100.

• Fault -F2: - For Gold Members, 7% of discount applied instead of 10% discount.

We use an exhaustive test set to perform testing. The testing and results are summarized

in Table 3 - 2.

11

Table 3-2 - Test Case and Results for Accessibility Example

Test Case

Result Test

case #
totalPrice member type

T1 500 T E Fail

T2 500 T G Fail

T3 500 F null Fail

T4 10 T E Pass

T5 10 T G Pass

T6 10 F null Pass

T7 1500 T E Pass

T8 1500 T G Fail

T9 1500 F null Pass

The Table 3-2 summarizes the exhaustive test set and results. For our example, there

are nine test cases. The execution trace of this exhaustive test set is provided in

Appendix B.

12

 Fault 1 at line # 4 (refer Appendix B) is executed by all the test cases. This fault

is located at the start of the program; so all the nine test cases execute the fault. So, the

accessibility value for this faulty statement is (9/9) = 1. This value indicates the faulty

statement has a higher degree of accessibility. i.e. it is accessed by all the test cases

from the exhaustive test set.

For a test case to access the faulty statement (F2) at line # 16 (refer Appendix B), the

test case has to satisfy the following criteria

1. Total Price > 1000 AND

2. Membership = True AND

3. Membership type = “G”

Among the nine test cases from the exhaustive test set, only T8 satisifies the critieria.

However, because of fault #1, Test case T2 is able to access this fault. Therefore, the

accessibility value for this faulty statement is calculated (2/9) = 0.22 (refer Appendix B).

This value indicates a lower degree of accessibility i.e. not many test cases from the

exhaustive test set will have access to this fault.

3.2 Input Value Sensitivity

A fault is considered to be input-value sensitive if the execution of the fault

triggers a failure only for some input values but not for other values. i.e., executing a fault

will not cause failure for all input values. This kind of fault, on execution, can result in a

pass state for certain input values.

13

Example: -

Table 3-3 - Program to Calculate Sum of Two Numbers

1. public int sum(int num1, int num2)

2. {

3. int sum=0;

4. //fault: operator “ * ” is used instead of “+”

5. sum = num1 * num2;

6. return sum;

7. }

Consider the program, which calculates the sum of two numbers and stores the

result in a variable sum. This program has a fault at line # 5. The program will perform the

multiplication of two numbers instead of addition. The testing and the results are

summarized in the following table (refer Table 3-4).

14

Table 3-4 - Test Case and Results for Input Value Sensitivity Example

Test Case

Result Test

case #

Input Value

1

Input Value

2

T1 2 2 Pass

T2 2 3 Fail

T3 1 1 Fail

Table 3-5 - Execution Trace Information for Input Value Sensitivity Example

 T1 T2 T3

1. public int sum(int num1, int num2) �

�

�

2. { �

�

�

3. int sum=0; �

�

�

4. //fault: operator fault - “*” is used
instead of “+”

5. sum = num1 * num2; �

�

�

6. return sum; �

�

�

7. } �

�

�

 Table 3-5 represents the execution trace of three test cases - T1, T2, and T3.

The executed statements are marked as “�”. The table indicates all the test cases (T1,

T2, and T3) execute the faulty statement (at line # 5). The faulty statement, on execution

triggers a failure for test cases T2 and T3. Test case - T1 executes the faulty statement,

15

yet does not produce a failure. During the execution of T1, the fault is executed, and the

program transition to an infectious state but the infection does not propagate to the

failure. This is known as “Co-incidental Correctness”.

As, this fault triggers a failure only for certain input values and not for all input

values. We consider this fault as input value sensitive fault.

3.3 Control Flow Sensitivity

A fault is considered to be control-flow sensitive if the execution of the fault triggers a

failure while inducing a change of control flow in the program execution.

Example: -

Table 3-6 - Example for Control Flow Sensitivity fault

1. void printRange(int number)

2. {

3. // fault: “ > “ is used instead of “ >= “

4. if(number>10)

5. {

6. printf(“The number is > 9”);

7. }

8. else

9. {

10. printf(“The number is < = 9”);

11. }

12. }

Consider the example in Table 3-6. This program will display a message “The number is

> 9” if the input is greater than 9. If the input is between 0 to 9, the program will display a

16

message “The number is <=9”. The below table (refer Table 3-7) summarizes the test

cases and results.

Table 3-7 -Test Case and Results for Control Flow Sensitivity Example

Test Cases

Result
Test # Input Value

T1 12 Pass

T2 5 Pass

T3 10 Fail

The fault is at line # 4. When test case “T3” with an input value of 10, executes the faulty

statement, the fault induces a change in program flow and triggers a failure. The system

incorrectly displays “The number is < =9”. The following table (Table 3-8) summarizes

the expected and actual program flow for test case “T3”.

17

Table 3-8 - Execution Trace (Expected Vs Actual) For Test Case - T3

Line # Statements Testcase - T3 (input value = 10)
Expected
Program Flow

Actual Program flow

1. void printRange(int number) � �
2. { � �
3. // fault: “ > “ is used instead of “

>= “

4. if(number>10) � �
5. { �

6. printf(“The number is > 9”); �

7. } �

8. else �
9. { �
10. printf(“The number is < = 9”); �
11. } �
12. } � �

Faulty statement (line # 4) on execution, induce a change in program flow for test

case - T3. The program changes its flow; skips line # 5 - line #7 and it executes line # 8 -

line# 11. This fault induces a change in program flow and results in a failure. We

consider this type of fault as a control-flow sensitive fault.

18

CHAPTER 4

EXPERIMENTAL DESIGN

This chapter discusses subject programs and their input parameter modeling,

fault localization results of subject programs, methodology and metrics.

4.1 Subject Programs

For our experimental study, we have used the Siemens suite and two real-life

large programs grep and gzip [16]. In this section, we discuss Siemens suite, grep and

gzip in detail.

4.1.1 Siemens suite

The Siemens suite consists of 7 benchmark programs namely schedule,

schedule2, printtokens, printtokens2, totinfo, tcas and replace. Each of the programs in

the Siemens suite contains several faulty versions. The table below (Table 4-1) shows

the number of faulty versions and the number of lines of the executable code for each

program. The number of executable code is computed using GCOV.

Table 4-1 - Siemens Suite

Programs Number of Faulty Versions Lines of Executable Code

Schedule 9 154

Schedule2 10 127

printtokens 7 188

printtokens2 10 201

totinfo 23 123

tcas 41 65

replace 32 242

19

4.1.2 Grep and Gzip

Siemens suite consists of programs that are smaller in size (Lines of executable

code). Therefore, in addition to the Siemens suite, we have selected two real-life

programs (larger programs) namely GREP and GZIP from the SIR repository for our

experiments. Both grep and gzip have five different implementations, and each

implementation has several faulty versions. The table below summarizes the GREP and

GZIP programs, the number of faulty versions of all five different implementations.

Table 4-2 - Grep and Gzip

Programs Number of Faulty Versions Lines of Executable code

GREP

grep1 18 3078

grep2 8 3224

grep3 18 3294

grep4 12 3313

grep5 1 3314

GZIP

gzip1 16 1705

gzip2 7 2006

gzip3 10 1866

gzip4 12 1892

gzip5 14 1993

4.2 Input Parameter Modeling for Subject Programs

The input model information for each subject program is summarized in Table 4-

3.The Model column in Table 4-3 represents the number of parameters and their domain

size. Each model is represented by (d1
p1 x d2

p2 x d3
p3 x d4

p4 x …) where d1
p1 indicates

there are p1 number of parameters with a domain size of d1. For example, the program

20

replace has 20 parameters in total. There are four parameters with a domain size of 2

and 16 parameters with a domain size of 4. The detailed information about Input

parameter modeling for the subject program is available in [8]. For all subject programs,

the combinatorial test sets with strength 2 to 6 were created using the ACTS tool [9]. All

faulty versions of each subject program were tested using 2-way test set. If the faulty

version is not killed by the test set, i.e. no failed test is found, we increased the strength

of the combinatorial test set until it is killed, or the strength of combinatorial test set

becomes 6. Table 4-4 indicates the number of killed versions of each program. We

ignored faulty versions that are not killed. If no failed test is found, no need to use fault

localization tool.

Table 4-3 - Input Parameter Model for Subject Programs

Programs Model Number of Constraints

printtokens (21 x 31 x 44 x 51 x 101 x 132) 8

printtokens2 (21 x 31 x 44 x 51 x 101 x 132) 8

replace (24 x 416) 36

schedule (21 x 38 x 82) 0

schedule2 (21 x 38 x 82) 0

tcas (27 x 32 x 41 x 102) 0

totinfo (33 x 52 x 61) 0

grep (27 x 41 x 51 x 63 x 81 x 91 x 131) 1

gzip (211 x 42) 8

21

Table 4-4 - Test results for subject programs

Programs
Total # of Faulty

Versions

of faulty versions

used in our

experiments

Schedule 9 7

Schedule2 10 3

printtokens 7 3

printtokens2 10 9

totinfo 23 12

tcas 41 36

replace 32 32

grep1 18 4

grep2 8 4

grep3 18 7

grep4 12 2

grep5 1 0

22

gzip1 16 7

gzip2 7 3

gzip3 10 0

gzip4 12 3

gzip5 14 4

4.3 Fault Localization Results

The effectiveness of BEN is measured based on the percentage of the source

code the user has to inspect to reach the fault. Step one in our experiment is to perform

fault localization on the subject programs using BEN and determine BEN’s effectiveness

for all faulty versions of all subject programs. This information forms the basis for our

experiment; Ghandehari et al. [10] has performed a similar experiment in which BEN was

used to locate the fault in the subject programs; they have shared the results, which has

been used in our experiments.

4.4 Methodology

For our experiments, we need to determine the three properties of the faults in

our subject programs. Section 3.1 suggests that an exhaustive test set is required to

measure the accessibility. However, for our subject programs, it is not possible to create

exhaustive test set. Therefore, we use a random test set in place of an exhaustive test

set. In this approach, we generate the random test set for each subject program based

Table 4-4 - continued

23

on their input parameter model, execute them on our subject programs and evaluate the

results to determine three fault properties in our subject program.

Note that if two programs share the same input parameter model, they also share

the same random test set. Thus, we have generated nine random test sets (as we have

nine different input parameter model Table 4-3), each having maximum 1000 test cases.

If the input parameter model does not have any constraint, a random test is created in a

way that for each parameter, we randomly select one of the possible values from its

corresponding domain. If the model has a constraint, a random test is created in a way

that it will not violate the constraint. More information about random test generation can

be found at [18].

There are certain subject programs, which had an exception. GZIP has complex

constraints; it prevented us from generating 1000 unique random test cases. The

maximum unique random test cases we were able to generate were 395. For tcas

program from the Siemens suite, there are eight faulty versions for which, the random

test set on execution does not generate a single fail test. Therefore, we have used an

additional test case (failed) from their respective initial test set. For these eight versions,

we have used 1001 test cases. The next step is to execute the random test set on each

faulty version (see Table 4-3) of the subject program; we used GCOV to record the test

case execution.

4.4.1 Accessibility

Once the random test set execution on each faulty version is completed, we will

use the GCOV file to measure the accessibility. For each subject program, the

accessibility value for all the faulty versions calculated using the approach discussed in

Chapter 3.1 will give us a continuous data, and there is a possibility of an infinite number

of possible values within the range 0 to 1. So, we have used MEDIAN score to divide the

24

faulty versions into two groups i.e. faulty with high accessibility or faulty version with low

accessibility. Any faulty version with an accessibility value < MEDIAN, will be considered

to have low accessibility (harder to access) and Faulty version with an accessibility value

> = MEDIAN, is considered to have high accessibility (easier to access). We followed this

approach for all subject program used in our experiments.

4.4.2 Input Value Sensitivity

Identification of input value sensitivity property of a fault is a two-step process. In

step 1, we will use the GCOV file to identify the test cases that execute the faulty

statement. In the next step, we identify the input value sensitivity using the approach

discussed in Chapter 3.2 i.e. If there exist, at least one test case that on execution of the

faulty statement, produced a pass state, we will consider the fault as input value sensitive

fault. If all the test cases that execute the faulty statement produce a fail state, we will

consider the fault as input value insensitive fault.

4.4.3 Control Flow Sensitivity

To determine the control flow sensitivity property of the fault, in step 1 we will

execute the random test set on the error-free version of the subject program and record

the test case execution. In step 2, a failed test case was randomly selected from the test

set results, and its faulty version execution trace was compared with its error-free version

execution trace. If the comparison does not indicate the change in program flow, another

failed test case was randomly selected from the test set results and the procedure is

repeated. If there exist at least one failed test case, which on comparison, suggests that

the fault induces a change in program flow and produces a failure, we consider the fault

to be control flow sensitive. If all the failed test cases in the random test set, on

comparison suggest, the fault does not induce a change in program flow and yet trigger a

25

failure, we consider them as control flow-insensitive faults. Appendix A summarizes the

classification of faults based on three properties discussed above.

4.5 Metrics

The goal of our experimental design is to answer the following research

questions by empirical studies.

• R1: How does Accessibility affect the BEN’s effectiveness in locating the fault?

• R2: How does input value sensitive software fault affect the BEN’s effectiveness

in locating the fault?

• R3: How does control flow-sensitive software fault affect the BEN’s effectiveness

in locating the fault?

26

CHAPTER 5

EXPERIMENTAL RESULTS

Table 5-1 shows the overall results of the BEN’s effectiveness in locating

different fault types.

Table 5-1 - Overall Results

Input Value

Sensitivity

Control

Flow

Sensitivity

Accessibility
Of faulty

versions

Average % of code

to be diagnosed

Y Y H 78 19.73

Y Y L 21 4.29

Y N H 2 19.59

Y N L 3 18.89

N Y H 4 8.06

N Y L 15 4.52

N N H 0 NA

N N L 3 5.96

Totally, 126 fault versions were used in our experiments. In the table above,

column “# Of Faulty Versions” indicates the number of faulty versions belongs to the

particular category, Column 1 & 2 represents the fault properties Input Value Sensitivity

and Control flow sensitivity respectively. “Y” indicates that the faulty versions exhibit the

respective property and “N” indicates the faulty versions do not exhibit that respective

property. Column 3 represents the Accessibility property. A value of “H” denotes high

accessibility to the fault and “L” denotes low accessibility to the fault. Following is the brief

summary of faulty versions from the table 5 -1

27

• 78 faulty versions that contain input value sensitive, control flow-sensitive

and easier to access software fault.

• There is not a single faulty version that contains an input value and

control flow-insensitive fault with high accessibility.

In this thesis, our main goal is to evaluate how three properties affect the BEN’s

effectiveness in locating a fault. In the following three sections, we discuss how each

property (accessibility, input value sensitivity and control flow sensitivity) affect the BEN’s

effectiveness in locating the fault

5.1 Impact of Accessibility

To determine the impact of accessibility on BEN’s effectiveness in locating the

fault, we fix the other two properties and analyze the results i.e. we will select and

compare the effectiveness of faulty versions, whose Input Value Sensitive and Control

Flow sensitive values are fixed. We will have four sets of combinations as listed below

1. Input Value sensitive and Control Flow sensitive fault

2. Input value sensitive and Control flow insensitive fault

3. Input value insensitive and Control flow sensitive

4. Input value and Control flow insensitive fault

Since the other two factors are fixed, we believe any variation in BEN’s performance is

due to the change in Accessibility. This is the main idea behind our approach.

28

5.1.1 - Set 1 - Input Value Sensitive and Control Flow Sensitive

The following table summarizes set 1.

Table 5-2 - Accessibility Set 1

Input

Value

Sensitivity

Control

Flow

Sensitivity

Accessibility
of

versions

Average % of code

to be diagnosed

Y Y H 78 19.73

Y Y L 21 4.29

For set 1, we consider the test versions that have a software fault, which is input

value sensitive as well as control flow sensitive. In set 1, on an average, to locate a input

value and control flow sensitive fault which is easier to access (high accessibility), the

user is expected to diagnose 19.73% of the source code whereas, to locate input value

sensitive and control flow fault which is harder to access (low accessibility), the user is

expected to diagnose 4.29% of the source code on an average. On comparison, we

conclude, BEN has a better effectiveness in locating an input value sensitive and control

flow software fault that are harder to access (low accessibility).

29

5.1.2 - Set 2 - Input Value Sensitive and Control Flow Insensitive

Table 5-3 - Accessibility Set 2

Input Value

Sensitivity

Control

Flow

Sensitivity

Accessibility
of

versions

Average %

of code to

be

diagnosed

Y N H 2 19.59

Y N L 3 18.89

For set 2, we consider the test versions that consist of software faults, which are

input value sensitive and control flow insensitive. For this set, on an average, to locate a

input value sensitive and control flow insensitive fault with high accessibility, the user is

expected to diagnose 19.59% of the source code whereas, to locate input value sensitive

and control flow insensitive fault which is harder to access (low accessibility), the user is

expected to diagnose 18.89% of the source code on an average. By comparing the two,

though the difference is very minimal, we conclude that BEN is effective in locating input

value sensitive and control flow insensitive fault that are harder to access (low

accessibility).

30

5.1.3 - Set 3 - Input Value Insensitive and Control Flow Sensitive

Table 5-4 - Accessibility Set 3

Input Value

Sensitivity

Control

Flow

Sensitivity

Accessibility
of

versions

Average %

of code to

be

diagnosed

N Y H 4 8.06

N Y L 15 4.52

For Set 3, we consider the test versions, which contains input value insensitive

and control flow sensitive software fault. For this set, on an average, to locate an input

value insensitive and control flow sensitive fault with a high accessibility, the user is

expected to diagnose 8.06% of the source code to locate the fault; whereas to locate an

input value insensitive and control flow sensitive fault with low accessibility, the user is

expected to diagnose 4.52% of the source code. The result clearly suggests that BEN is

effective in locating input value insensitive and control flow sensitive fault with low

accessibility.

31

5.1.4 - Set 4 - Input Value and Control Flow Insensitive

Table 5-5 - Accessibility Set 4

Input Value

Sensitivity

Control

Flow

Sensitivity

Accessibility
of

versions

Average %

of code to

be

diagnosed

N N H 0 NA

N N L 3 5.96

 For set 4, we consider the test versions, which contains input value and control

flow insensitive software fault. Based on our classification of benchmark programs, we do

not have at least 1 version that belongs to the category non-input value and control flow

sensitive with higher accessibility (N, N, H). So, we were unable determine on how higher

accessibility will impact the BEN effectiveness in locating input value and control flow

insensitive fault. The results suggest, to locate an input value and control flow insensitive

fault with low accessibility, the user is expected to diagnose 5.96% of the source code.

 Based on our observations from set 1, set 2, set 3, we believe, BEN is

more effective in locating low accessibility faults than high accessibility faults.

Theoretically, for faults that are harder to access, the probability of derived members

executing them is very low. When the derived member does not execute the fault, 1). The

chances of the faulty statement appearing only in the failed test case spectra are high; 2).

BEN will have more passed test cases and 3). Based on BEN ranking algorithm, the

faulty statement will be ranked higher. Experimental results also suggest the same. BEN

effectively locates the faults that are harder to access.

32

BEN’s approach is inspired by the notion of nearest neighbor [1]. A derived

member spectrum is almost similar to the core member spectra. So, if the fault is easier

to access, there is a high probability for derived member(s) executing the faulty

statement. This results in BEN considering the faulty statement less suspicious and

ranking them lower. Experimental results suggest the same. BEN has a low effectiveness

in locating faults that are easier to access.

5.2 Impact of Input Value Sensitivity

To determine the impact of input value sensitivity on BEN’s effectiveness in

locating the fault, we fix the other two properties and analyze the results i.e. we will select

and compare the effectiveness of faulty versions, whose Accessibility and Control Flow

sensitive values are fixed. So, we will have four sets with the following combinations

listed below

1. Control flow sensitive and High Accessibility

2. Control flow sensitive and Low Accessibility

3. Control flow-insensitive and High Accessibility

4. Control flow-insensitive and Low Accessibility.

Since the other two factors of the fault are fixed, we believe any variation in BEN’s

effectiveness is because of the Input Value Sensitivity property of the fault.

33

5.2.1 - Set 1 - Control Flow Sensitive and High Accessibility

Table 5-6 - Input Value Sensitivity - Set 1

Input

Value

Sensitivity

Control

Flow

Sensitivity

Accessibility
of

versions

Average % of code to

be diagnosed

Y Y H 78 19.73

N Y H 4 8.06

In set 1, we consider the faulty versions, which contain a control flow sensitive

fault with high accessibility. For this set, to locate a control flow sensitive, easier to

access (High Accessibility) and input value sensitive fault, on an average the user is

expected to diagnose 19.73% of the source code where as, to locate a fault which is

control flow sensitive, easier to access (High Accessibility) and input value insensitive,

the user is expected to diagnose 8.06% of the source code. The result suggests. BEN is

highly effective in locating input value insensitive and control flow sensitive software fault

with high accessibility.

5.2.2 - Set 2 - Control Flow Sensitive and Low Accessibility

Table 5-7 - Input Value Sensitivity - Set 2

Input Value

Sensitivity

Control

Flow

Sensitivity

Accessibility
of

versions

Average %

of code to

be

diagnosed

Y Y L 21 4.29

N Y L 15 4.52

34

In set 2, we consider the faulty versions, which contains a harder to access (low

accessibility), control flow sensitive faults. For this set, to locate an input value sensitive

and Control flow sensitive fault, which is harder to access (low accessibility); on average

the user is expected to diagnose 4.29% of the source code. In comparison, to locate a

input value insensitive and Control flow sensitive, that is harder to access (low

Accessibility), the user is expected to diagnose 4.52% of the source code. The result

suggests, BEN is effective in locating input value sensitive and control flow sensitive fault,

that is harder to access (Low Accessibility).

5.2.3 - Set 3 - Control Flow Insensitive and High Accessibility

Table 5-8 - Input Value Sensitivity - Set 3

Input Value

Sensitivity

Control

Flow

Sensitivity

Accessibility
of

versions

Average % of

code to be

diagnosed

Y N H 2 19.59

N N H 0 NA

In set 3, we consider the faulty versions, which contains a control flow-insensitive

fault with high accessibility. Based on our classification of subject programs, we do not

have at least 1 version that belongs to the category input value and control flow

insensitive with higher accessibility (N, N, H). So, we were unable determine on how

input value sensitivity will affect the BEN effectiveness in locating control flow insensitive

fault with high accessibility. Our result suggests that to locate an input value sensitive

and control flow insensitive fault with high accessibility (easy to access the fault), on an

average the user is expected to diagnose 19.59% of the source code.

35

5.2.4 - Set 4 - Control Flow Insensitive and Low Accessibility

Table 5-9 - Input Value Sensitivity - Set 4

Input Value

Sensitivity

Control

Flow

Sensitivity

Accessibility
of

versions

Average %

of code to

be

diagnosed

Y N L 3 18.89

N N L 3 5.96

In set 4, we consider the faulty versions, which contains a control flow-insensitive

fault with low accessibility. In this set, to locate an input value sensitive and Control flow-

insensitive fault with low accessibility on an average the user is expected to diagnose

18.89% of the source code. In comparison, to locate an input value insensitive and

Control flow insensitive fault with Low Accessibility, the user is expected to diagnose

5.96% of the source code. The result suggests BEN is effective in locating input value

insensitive and Control flow insensitive with low accessibility.

To our surprise, result from one of the cases (set 2) suggests BEN is effective in

locating an input sensitive fault. For the remaining two cases (set 1 and set 4), results

suggest BEN is effective in locating input value insensitive fault; for set 3, we were unable

to reach a conclusion about the impact of input value sensitivity on BEN’s effectiveness in

locating a control flow insensitive and high accessibility fault. In majority of the cases, the

results suggest that BEN is effective in locating input value insensitive fault. However,

there exist one set (set 2), in which BEN is effective in locating an input value sensitive

fault. Overall, we were unable to draw conclusions about the impact of input value

sensitivity on BEN’s effectiveness in locating a software fault.

36

5.3 Impact of Control Flow Sensitivity

To determine the impact of control flow sensitivity on BEN’s effectiveness in

locating the fault, we fix the other two properties and analyze the results i.e. we will select

and compare the effectiveness of faulty versions, whose Accessibility and Input value

sensitive values are fixed. We will have four sets with the following combinations listed

below

1. Input value sensitive and high accessibility

2. Input value sensitive and low accessibility

3. Input value insensitive and high accessibility

4. Input value insensitive and low accessibility

Since the other two factors of the fault are fixed, we believe any variation in

BEN’s effectiveness is because of the Control flow Sensitivity property of the fault.

5.3.1 - Set 1 - Input Value Sensitive and High Accessibility

Table 5-10 - Control Flow Sensitivity - Set 1

Input

Value

Sensitivity

Control

Flow

Sensitivity

Accessibility
of

versions

Average % of code to

be diagnosed

Y Y H 78 19.73

Y N H 2 19.59

In set 1, we consider the faulty versions, which contains an input value sensitive,

easier to access (high accessibility) faults. In this set, on an average, to locate a input

value sensitive, easier to access and control flow sensitive fault the user is expected to

diagnose 19.73% of the source code where as, to locate a input value sensitive, easier to

access and control flow insensitive fault, the user is expected to diagnose 19.59% of the

37

source code on an average. On comparison, we conclude BEN has relatively better

effectiveness in locating a input value sensitive, control flow insensitive and easier to

access software fault.

5.3.2 - Set 2 - Input Value Sensitive and Low Accessibility

Table 5-11 - Control Flow Sensitivity - Set 2

Input Value

Sensitivity

Control

Flow

Sensitivity

Accessibility
of

versions

Average %

of code to

be

diagnosed

Y Y L 21 4.29

Y N L 3 18.89

In set 2, we consider the faulty versions, which contains an input value sensitive

and harder to access (low accessibility) faults. In this set, on an average, to locate a input

value sensitive, harder to access and control flow sensitive fault the user is expected to

diagnose 4.29% of the source code where as, to locate input value sensitive, harder to

access and control flow insensitive fault, the user is expected to diagnose 18.89% of the

source code to locate the fault. On comparison, BEN has a relatively better effectiveness

in locating a fault, which is input value sensitive, control flow sensitive and easier to

access.

38

5.3.3 - Set 3 - Input Value Insensitive and High Accessibility

Table 5-12 - Control Flow Sensitivity - Set 3

Input Value

Sensitivity

Control

Flow

Sensitivity

Accessibility
of

versions

Average %

of code to

be

diagnosed

N Y H 4 8.06

N N H 0 NA

In set 3, we consider the faulty versions, which contains input value insensitive,

high accessibility fault. In our subject programs, we do not have at least one version that

belongs to the category input value and control flow insensitive with higher accessibility

(N, N, H). So, we were unable determine on how control flow sensitivity property will

affect the BEN effectiveness in locating input value sensitive fault with high accessibility.

The results suggest, to locate an input value insensitive and control flow sensitive fault

with high accessibility, on an average to locate the fault, the user is expected to diagnose

8.06% of the source code.

39

5.3.4 - Set 4 - Input Value Insensitive and Low Accessibility

Table 5-13 - Control Flow Sensitivity - Set 4

Input Value
Control

Flow
Accessibility

of

versions

Average %

of code to

be

diagnosed

N Y L 15 4.52

N N L 3 5.96

In set 4, we consider the faulty versions, which contains input value insensitive,

harder to access (low accessibility) faults. In this set, on an average, to locate a input

value insensitive, harder to access and control flow sensitive fault the user is expected to

diagnose 4.52% of the source code where as, to locate input value insensitive, harder to

access and control flow insensitive fault, the user is expected to diagnose 5.96% of the

source code to locate the fault. On comparison, BEN relatively has a better effectiveness

in locating a fault, which is input value insensitive, control flow sensitive and harder to

access.

For certain scenarios(set 2 and set 4), the BEN has a better effectiveness in

locating a control flow-sensitive fault. However, for set 1 our results suggest the opposite,

i.e. BEN has a better effectiveness in locating control flow-insensitive fault. So, based on

the overall results we were unable to draw a conclusion on the impact of control flow

sensitivity on BEN’s effectiveness in locating the fault.

40

CHAPTER 6

RELATED WORK

There are many existing empirical evaluations that have studied the effect of

different factors on the effectiveness of fault localization techniques. Abreu et al. [11]

discussed the effect of adding more failed and passed runs to the approach. Their result

concludes that the effect of adding more passed runs is unpredictable, whereas the

effectiveness improves if more failed test cases are used. Their result also suggests that

fewer instances of coincidental correctness improve the overall effectiveness of the

approach. Coincidental correctness is an event in which a test case executes the fault but

coincidentally it does not result in a failure.

Jones et al. [6] compared the effectiveness of different fault localization

techniques including Tarantula [19], Set intersection [26], Set Union [27], Nearest

neighbor [7] and Cause transition [20]. In their experiment, the effectiveness is measured

based on the percentage of the subject program that needs not be examined to find a

faulty statement. Similar to our approach, they also follow the same methodology to

distinguish between a failed and passed test case, i.e. First, they execute the test cases

on the error-free version of the subject programs. These results would then be

considered as the expected output. In the next step, they execute the test cases on the

faulty versions, and the output is compared with their corresponding expected output.

Their result suggests that set-intersection performs the worst while Tarantula performs

the best in locating the faults. Their work is primarily focused on evaluating the

effectiveness of different fault localization techniques, whereas our work is focused on

evaluating the effectiveness of a particular fault localization technique in locating different

fault types.

41

Baudry et al. [13] discussed the type of information needed for effective fault

localization. Their work proposed a test-for-diagnosis criterion, which evaluates the

capacity of the test cases to help fault localization. Their work discussed an explicit

connection between testing and diagnosis. They introduced an attribute known as

Dynamic Basic Block (DBB), which is a set of statements that is covered by the same test

cases in a test set. All the program statements in the same basic block will have the

same rank. They propose that DBB is a decisive factor in the diagnosis accuracy of a

fault localization technique. Their results suggest that increasing the number of DBBs

improves the overall effectiveness of fault localization. They also confirm a strong

correlation between the size of the DBB and the diagnosis accuracy. Faults that are

located in small DBBs are effectively localized. Their work is different from ours, because

we focus on how the fault properties that impact the effectiveness of fault localization

technique, whereas their work is focused on improving the capacity of test cases in order

to improve the effectiveness of fault localization.

Yu et al. [14] studied the impact of various test suite reduction strategies on the

effectiveness of fault localization. They used a vector based reduction strategy and a

statement-based reduction strategy for their study. In the vector based reduction strategy,

the reduced test suite covers the same set of statement vectors as the original test suite.

A statement vector is defined as the set of statements executed by one test case. The

statement-based reduction strategy uses a reduced test suite that covers the same

statements as the original test suite. Their experiment investigates the effect of test

reduction strategies on the following fault localization techniques, including Tarantula

[19], Statistical Bug Isolation [25], Jacaard [11] and Ochiai [17]. They have used the

Siemens suite [24] as their subject programs. Their results show that the vector-based

reduction has a negligible effect on the effectiveness, statement based reduction

42

significantly reduces the effectiveness. This work is focused on studying the effect of test

case reduction in fault localization effectiveness, whereas our work is focused on

understanding the effect of fault properties in fault localization effectiveness.

Renieris et al. [15] discussed the effects of two types of spectra, namely binary

coverage spectrum and permutation spectrum, on the effectiveness of the nearest

neighbor model. A binary coverage spectrum contains the coverage of basic blocks

whereas a permutation spectrum contains the execution counts of the basic blocks. They

evaluate the performance of nearest neighbor models with set union and set intersection

models. While, one of the nearest neighbor model uses a binary coverage spectrum, the

other nearest neighbor model uses the actual basic block execution counts, i.e.

permutation spectrum. They use the Georgia Tech version [23] of the Siemens suite [24]

as the subject programs for their experiments. Their work suggests that the nearest

neighbor model has a better overall performance when compared to set union and set

intersection model. Among the two nearest neighbor models, the one using permutation

spectrums has a better effectiveness in locating the fault than the other that uses binary

coverage spectrums. Their work is primarily focused on comparing the fault localization

effectiveness of nearest neighbor model technique with the set union and set intersection

techniques and evaluating the impact of different types of spectra in nearest neighbor’s

effectiveness. Our work is different from theirs, as we are focused on evaluating the

impact of fault properties on the effectiveness of BEN.

The related work discussed so far is focused on evaluating the effectiveness

among different fault localization techniques [6], improving the capacity of test cases to

improve the effectiveness of fault localization [13], studying the effect of test case

reduction on the effectiveness of BEN [14] and evaluating the impact of different spectra

on the effectiveness of fault localization technique [15]. To the best of our knowledge,

43

there are not many empirical studies focused on evaluating the effectiveness of fault

localization techniques in locating different fault types.

Bandyopadhyay et al. [12] studied how the effectiveness of a fault localization

tool called Tarantula [19] in localizing faults is affected by three fault properties, including

accessibility, original state failure condition, and impact. They have used the Siemens

suite for their experimental study. Their results indicate that Tarantula, which is also a

spectrum based fault localization technique, effectively localizes faults that are hard to

access and have low impact.

Our work is different from Bandyopadhyay et al. [12] in the following ways. First,

our work focuses on evaluating the effectiveness of BEN, whereas their work is focused

on evaluating the effectiveness of Tarantula. Second, while they also evaluate the impact

of accessibility on the effectiveness of a fault localization technique, their approach used

to measure accessibility is different. In their approach, accessibility is measured by the

size of the backward slice of the faulty statement as a percentage of the program size,

whereas in our approach accessibility is measured as the ratio of the number of test case

executes the faulty statement to the total number of test cases. Third, in addition to the

Siemens suite, our experiments were performed on two real-life programs grep and gzip.

Apart from accessibility, our work evaluates the impact of other two fault properties

namely Input Value Sensitivity and Control Flow Sensitivity on the effectiveness of BEN.

Using the Input Value Sensitivity property in our study helps understand the impact of co-

incidental correctness on the effectiveness of BEN.

44

CHAPTER 7

CONCLUSION AND FUTURE WORK

The focus of this thesis was on evaluating the effectiveness of BEN in locating

different types of fault. In particular, how the three fault properties, namely accessibility,

input value sensitivity, and control flow sensitivity affects the effectiveness of BEN in

locating a fault. One challenge in our experiments was how to determine the three

properties of a given fault. Instead of using an exhaustive test set, which is always nearly

impossible in practice, a random test set-based approach was adopted as an

approximation to determine the three fault properties. The experimental results suggests,

BEN is highly effective in locating faults that are harder to access. This can be explained

by the fact that BEN generates a small group of tests whose spectra are compared to

locate faults. Experimental results also suggest that in most cases, BEN is effective in

locating input value insensitive and control flow-insensitive faults. However, we are

unable to reach a conclusion about the individual impact of input value sensitivity and

control flow sensitivity on BEN’s effectiveness in locating the software fault.

The work presented in this thesis was limited to evaluating BEN’s effectiveness

in locating different types of fault. Hence, in the future, we plan to extend our work in the

following directions. First, we plan to conduct similar studies on other fault localization

tools such as Tarantula [19] and Ochiai [17]. Second, the determination of fault properties

was performed with manual effort. We plan to automate this process by using scripts that

will analyze the GCOV file and random test set results as inputs to determine the

properties of the faults automatically. Finally, the subject programs used in the

experiments do not have faults that are of high accessibility, input value insensitive and

control flow insensitive. Therefore, we were unable to evaluate the impact of such a fault

on BEN’s effectiveness. We plan to create this type of fault either by using a mutation tool

45

or by modifying the subject program manually such that the impact of this fault type can

be investigated on BEN’s effectiveness.

46

APPENDIX A

CLASSIFICATION OF FAULTS FROM SUBJECT PROGRAMS

47

Table A-1 - Grep

Subject Program
Input Value

Sensitive

Control Flow

Sensitive
Accessibility Category

Grep 1

V3 Y Y H

V8 Y Y L

V14 Y Y H

Grep 3

V3 Y Y H

V10 Y Y H

V12 N Y L

V16 N N L

Grep 4
V2 Y Y H

V12 N Y L

48

Table A-2 - Gzip

Subject

Program

Input Value

Sensitive

Control Flow

Sensitive
Accessibility Category

Gzip1

V2 Y Y L

V4 Y N H

V5 Y Y H

V13 N Y L

V15 N Y H

V16 N Y L

Gzip2

V1 N Y H

V3 Y Y H

V6 Y Y H

Gzip4 V6 N Y L

Gzip5

V1 N Y H

V6 N Y L

V13 N Y L

49

Table A-3 - schedule

Subject

Program

Input Value

Sensitive

Control Flow

Sensitive
Accessibility Category

schedule

v1 Y Y H

v2 Y N L

v3 Y N H

v4 Y Y H

v5 Y Y H

v6 Y Y H

v7 N Y L

Table A-4 - schedule2

Subject

Program
Input Value Sensitive Control Flow Sensitive

Accessibility

Category

schedule2

v2 Y Y H

v3 Y Y H

v7 Y Y H

50

Table A-5 - totInfo

Subject

Program
Input Value Sensitive Control Flow Sensitive

Accessibility

Category

totInfo

v1 Y Y L

v2 Y Y H

v5 Y N L

v6 Y Y H

v8 N N L

v9 Y N L

v11 N Y L

v15 N Y L

v18 Y Y H

v19 Y Y H

v20 Y Y H

v21 Y Y H

51

Table A-6 - printtokens2

Subject Program Input Value Sensitive Control Flow Sensitive
Accessibility

Category

printtokens2

v1 Y Y H

v2 N Y L

v4 Y Y H

v5 N Y L

v6 Y Y H

v7 Y Y H

v8 Y Y H

v9 Y Y H

v10 Y Y H

Table A-7 - printtokens

Subject Program Input Value Sensitive Control Flow Sensitive
Accessibility

Category

printtokens

v3 N Y H

v5 Y Y L

v6 Y Y H

52

Table A-8 - tcas

Subject

Program
Input Value Sensitive Control Flow Sensitive

Accessibility

Category

tcas

v2 Y Y H

v3 Y Y H

v4 Y Y L

v5 Y Y H

v6 Y Y L

v8 Y Y H

v9 Y Y H

v10 Y Y L

v11 Y Y L

v12 Y Y H

v13 Y Y H

v14 Y Y H

v15 Y Y H

v18 Y Y H

v20 Y Y H

v21 Y Y H

v22 Y Y H

v23 Y Y H

v24 Y Y H

v25 Y Y L

v26 Y Y H

53

 v27 Y Y H

tcas

v28 Y Y H

v29 Y Y H

v30 Y Y H

v31 Y Y H

v32 Y Y L

v33 Y Y H

v34 Y Y H

v35 Y Y H

v36 N N L

v37 Y Y L

v38 Y Y L

v39 Y Y L

v40 Y Y H

v41 Y Y L

Table A-8 - continued

54

Table A-9 - replace

Subject

Program

Input Value

Sensitive

Control Flow

Sensitive

Accessibility

Category

replace

v1 Y Y H

v2 Y Y H

v3 Y Y H

v4 Y Y H

v5 Y Y H

v6 Y Y H

v7 Y Y H

v8 Y Y H

v9 Y Y H

v10 Y Y H

v11 Y Y H

v12 Y Y L

v13 N Y L

v14 Y Y L

v15 Y Y H

v16 Y Y H

v17 N Y L

v18 Y Y L

v19 Y Y H

v20 N Y L

55

 v21 Y Y H

 v22 Y Y H

 v23 Y Y H

 v24 Y Y L

 v25 Y Y L

replace v26 Y Y L

 v27 Y Y H

 v28 Y Y H

 v29 Y Y H

 v30 Y Y H

 v31 Y Y L

 v32 Y Y H

Table A - 9 - continued

56

APPENDIX B

EXHAUSTIVE TEST SET - EXECUTION TRACE

57

Table B-1 - Execution trace for Accessibility Example

Program statements T1 T2 T3 T4 T5 T6 T7 T8 T9

1. public int applyDiscount(int

totalPrice,bool member,

char type)

� � � � � � � � �

2. { � � � � � � � � �

3. float discount = 0.00; � � � � � � � � �

4. if(totalPrice>100) //Fault #1

- correct :if(totalPrice>1000)

� � � � � � � � �

5. { � � � � � �

6. if(member == TRUE) � � � � � �

7. { � � � �

8. if(type == “E”) � � � �

9. { � �

10. discount =

(0.25)*totalPrice;

� �

11. totalPrice =

totalPrice-Discount;

� �

12. } � �

13. if(type == “G”) � � � �

14. { � �

15. //Fault # 2 - correct :

Discount = (0.10)*totalPrice;

16. Discount =

(0.07)*totalPrice;

 � �

58

17. totalPrice =

totalPrice-Discount;

 � �

18. } � �

19. } � � � �

20. else � �

21. { � �

22. discount =

(0.05)*totalPrice;

 � �

23. totalPrice = totalPrice-

Discount;

 � �

24. } � �

25. } � � � �

26. } � � � � � � �

Table B - 1 - continued

59

REFERENCES

1. Ghandehari, Laleh Sh, Yu Lei, David Kung, Raghu Kacker, and Ruediger Kuhn.

"Fault localization based on failure-inducing combinations." In Software Reliability

Engineering (ISSRE), 2013 IEEE 24th International Symposium on, pp. 168-177.

IEEE, 2013.

2. Ghandehari, Laleh Shikh Gholamhossein, Yu Lei, Tao Xie, Richard Kuhn, and

Raghu Kacker. "Identifying failure-inducing combinations in a combinatorial test

set." In Software Testing, Verification and Validation (ICST), 2012 IEEE Fifth

International Conference on, pp. 370-379. IEEE, 2012.

3. Ghandehari, Laleh Sh, Jaganmohan Chandrasekaran, Yu Lei, Raghu Kacker,

and D. Richard Kuhn. "BEN: A combinatorial testing-based fault localization tool."

In Software Testing, Verification and Validation Workshops (ICSTW), 2015 IEEE

Eighth International Conference on, pp. 1-4. IEEE, 2015.

4. Hailpern, Brent, and Padmanabhan Santhanam. "Software debugging, testing,

and verification." IBM Systems Journal 41, no. 1 (2002): 4-12.

5. Wong, W. Eric, and Vidroha Debroy. "A survey of software fault localization."

Department of Computer Science, University of Texas at Dallas, Tech. Rep.

UTDCS-45 9 (2009).

6. Jones, James A., and Mary Jean Harrold. "Empirical evaluation of the tarantula

automatic fault-localization technique." In Proceedings of the 20th IEEE/ACM

international Conference on Automated software engineering, pp. 273-282. ACM,

2005.

7. Renieres, Manos, and Steven P. Reiss. "Fault localization with nearest neighbor

queries." In Automated Software Engineering, 2003. Proceedings. 18th IEEE

International Conference on, pp. 30-39. IEEE, 2003.

60

8. Input models for the subject programs.,

http://barbie.uta.edu/~laleh/BEN/models.html

9. Advanced Combinatorial Testing System (ACTS)

http://csrc.nist.gov/groups/SNS/acts/documents/comparison-report.html

10. L. Ghandehari, Y. Lei, R. Kacker, R, Kuhn. A Combinatorial Testing-Based

Approach to Fault localization [Under preparation].

11. Abreu, Rui, Peter Zoeteweij, and Arjan JC Van Gemund. "On the accuracy of

spectrum-based fault localization." In Testing: Academic and Industrial

Conference Practice and Research Techniques-MUTATION, 2007. TAICPART-

MUTATION 2007, pp. 89-98. IEEE, 2007.

12. Bandyopadhyay, Aritra, and Sudipto Ghosh. "On the Effectiveness of the

Tarantula Fault Localization Technique for Different Fault Classes." In High-

Assurance Systems Engineering (HASE), 2011 IEEE 13th International

Symposium on, pp. 317-324. IEEE, 2011.

13. Baudry, Benoit, Franck Fleurey, and Yves Le Traon. "Improving test suites for

efficient fault localization." In Proceedings of the 28th international conference on

Software engineering, pp. 82-91. ACM, 2006.

14. Yu, Yanbing, James A. Jones, and Mary Jean Harrold. "An empirical study of the

effects of test-suite reduction on fault localization." In Proceedings of the 30th

international conference on Software engineering, pp. 201-210. ACM, 2008.

15. Renieres, Manos, and Steven P. Reiss. "Fault localization with nearest neighbor

queries." In Automated Software Engineering, 2003. Proceedings. 18th IEEE

International Conference on, pp. 30-39. IEEE, 2003.

16. Subject programs - http://sir.unl.edu

61

17. Abreu, Rui, Peter Zoeteweij, and Arjan JC Van Gemund. "An evaluation of

similarity coefficients for software fault localization." In Dependable Computing,

2006. PRDC'06. 12th Pacific Rim International Symposium on, pp. 39-46. IEEE,

2006.

18. Ghandehari, Laleh Sh, Jacek Czerwonka, Yu Lei, Soheil Shafiee, Raghu Kacker,

and Ruediger Kuhn. "An empirical comparison of combinatorial and random

testing." In Software Testing, Verification and Validation Workshops (ICSTW),

2014 IEEE Seventh International Conference on, pp. 68-77. IEEE, 2014.

19. Jones, James A., Mary Jean Harrold, and John Stasko. "Visualization of test

information to assist fault localization." In Proceedings of the 24th international

conference on Software engineering, pp. 467-477. ACM, 2002.

20. Cleve, Holger, and Andreas Zeller. "Locating causes of program failures." In

Proceedings of the 27th international conference on Software engineering, pp.

342-351. ACM, 2005.

21. Chen, Mike Y., Emre Kiciman, Eugene Fratkin, Armando Fox, and Eric Brewer.

"Pinpoint: Problem determination in large, dynamic internet services." In

Dependable Systems and Networks, 2002. DSN 2002. Proceedings.

International Conference on, pp. 595-604. IEEE, 2002.

22. Dallmeier, Valentin, Christian Lindig, and Andreas Zeller. "Lightweight defect

localization for java." In ECOOP 2005-Object-Oriented Programming, pp. 528-

550. Springer Berlin Heidelberg, 2005.

23. Rothermel, Gregg, and Mary Jean Harrold. "Empirical studies of a safe

regression test selection technique." Software Engineering, IEEE Transactions

on 24, no. 6 (1998): 401-419.

62

24. Hutchins, Monica, Herb Foster, Tarak Goradia, and Thomas Ostrand.

"Experiments of the effectiveness of dataflow-and controlflow-based test

adequacy criteria." In Proceedings of the 16th international conference on

Software engineering, pp. 191-200. IEEE Computer Society Press, 1994.

25. Liblit, Ben, Mayur Naik, Alice X. Zheng, Alex Aiken, and Michael I. Jordan.

"Scalable statistical bug isolation." In ACM SIGPLAN Notices, vol. 40, no. 6, pp.

15-26. ACM, 2005.

26. Agrawal, Hiraral, Joseph Horgan, Saul London, and W. Wong. "Fault localization

using execution slices and dataflow tests." Proceedings of IEEE Software

Reliability Engineering (1995): 143-151.

27. Pan, Hsin, and Eugene H. Spafford. "Heuristics for automatic localization of

software faults." World Wide Web (1992).

63

BIOGRAPHICAL INFORMATION

Jaganmohan Chandrasekaran received his Bachelors of Technology in

Information Technology in 2008 from Anna University, Chennai, India. He worked in the

industry for 2 years and ten months. He started his Masters in Computer Science at The

University of Texas at Arlington in Fall 2013 and joined the Dr.Jeff Lei’s group in Spring

2014. His areas of interest are Software Engineering, Software Design Patterns,

Automatic Fault Localization, Software Quality and Artificial Intelligence

