

Pós-Graduação em Ciência da Computação

HUGO LEONARDO DA SILVA ARAUJO

A process for sound conformance testing

of Cyber-Physical Systems

Universidade Federal de Pernambuco

posgraduacao@cin.ufpe.br
www.cin.ufpe.br/~posgraduacao

RECIFE

2017

HUGO LEONARDO DA SILVA ARAUJO

A process for sound conformance testing

of Cyber-Physical Systems

Trabalho apresentado ao Programa de Pós-

graduação em Ciência da Computação do Centro

de Informática da Universidade Federal de

pernambuco como requisito parcial para

obtenção do grau de Mestre em Ciência da

Computação.

ORIENTADOR: Prof. Dr. Augusto Cezar

Alves Sampaio

CO-ORIENTADOR: Prof. Dr. Gustavo

Henrique Porto de Carvalho

RECIFE
2017

Catalogação na fonte

Bibliotecária Monick Raquel Silvestre da S. Portes, CRB4-1217

A663p Araujo, Hugo Leonardo da Silva

A process for sound conformance testing of cyber-physical systems / Hugo
Leonardo da Silva Araujo. – 2017.

 63 f.: il., fig., tab.

 Orientador: Augusto Cezar Alves Sampaio.
 Dissertação (Mestrado) – Universidade Federal de Pernambuco. CIn,

Ciência da Computação, Recife, 2017.
 Inclui referências.

 1. Engenharia de software. 2. Métodos formais. I. Carvalho, Gustavo
Henrique Porto de (orientador). II. Título.

 005.1 CDD (23. ed.) UFPE- MEI 2017-245

Hugo Leonardo da Silva Araujo

A Process for Sound Conformance Testing of Cyber-Physical Systems

 Dissertação apresentada ao Programa de

Pós-Graduação em Ciência da Computação

da Universidade Federal de Pernambuco,

como requisito parcial para a obtenção do

título de Mestre em Ciência da Computação.

Aprovado em: 17/08/2017

BANCA EXAMINADORA

__

Prof. Dr. Carlos Alexandre Barros de Mello

Centro de Informática / UFPE

__

Prof. Dr. Marcelo Vinicius Medeiros de Oliveira

Departamento de Informática e Matemática Aplicada / UFRN

Prof. Dr. Augusto Cezar Alves Sampaio

Centro de Informática / UFPE

Acknowledgements

Firstly, I would like to thank my family for all the support that has been given throughout my
life and academic journey. All those years were filled with love, dedication and partnership that
helped moulding my future. I thank them for the incentive to challenge myself and for their
own life history of overcoming difficulties that served as inspiration to me.

I would also like to give deep thanks to my advisor and co-advisor, Augusto Sampaio and
Gustavo Carvalho, for the excellent support and personal attention that was offered during this
work. They were the anchors who provided me with stability and knowledge when the research
difficulties appeared. I’m also very grateful to Mohammad Mousavi who invited me for a brief
stay in Sweden. The joint work we performed ended up being essential for my research.

Thanks to Embraer and Braulio Horta, for providing me with research problems and for the
knowledge we have exchanged. Thanks to Mathias Althoff and Roehm Hendrik for helping
me with CORA and to Arend Aerts and Georgios Fainekos for the meetings we held. I also
thank professors Enrique Droguett and Carlos Mello for their inputs on some of my research
problems.

Furthermore, I express gratitude to the Centro de Informática (UFPE) and all its employees
for the education they have been providing, which made this dissertation possible. The knowl-
edge I acquired throughout the years has proved invaluable to me and I might not have had the
opportunity to perform this work if were not for this centre. Last but not least, thanks to the
financial support provided by CNPq and Motorola.

Thank you all who directly or indirectly contributed to this work.

Abstract

The term Hybrid System is used to describe a modelling formalism of systems that combine
discrete and continuous aspects; for instance, a system where a controller (discrete component)
is connected to a physical system (continuous component). Systems that encompass tightly
integrated digital and physical components and deal with spatial and temporal metrics, besides
involving human interaction, are known as Cyber-Physical Systems (CPS). Model-based testing
of CPSs is a recent subject in the literature, and it is still being actively researched and devel-
oped. The analysis of CPSs is usually complex due to their multidisciplinary nature, with such
systems dealing with aspects of different subject areas such as computer science, physics and
control systems. In this work, we propose a process for sound conformance testing of cyber-
physical systems. The main goal of this process is to provide a practical and semi-automatic
solution to testing CPSs. Some of the steps of our process were mechanized through the use
of a prototype tool that we have developed. This project was conceived during the literature
review in our research when we realized the absence of a structured process with systematic
steps for conformance testing of CPSs. We first focused on studying the existing conformance
testing strategies of hybrid systems and settled on working with (τ , ε)-conformance relation.
In this conformance notion, the outputs of both specification and implementation models are
compared under the same input stimuli. It makes use of temporal (τ) and spatial (ε) margins
of error to determine if the output behaviours are close enough to each other. In conformance
verification strategies based on this relation, an issue related to soundness was brought to our
attention, which made us shift our focus to solve this problem through reachability analysis.
We noticed that the sampling rate, used to observe the system behaviour at discrete points,
was closely related to the soundness problem identified. This motivated the definition and par-
tial automation of a process to support conformance testing of CPSs. The proposed process
involves five steps: (i) automatic sampling rate computation; (ii) margins of error definition
(temporal and spatial); (iii) performing reachability analysis to obtain sound verdicts; (iv) con-
formance testing (test generation, test execution and verdict attainment); (v) result analysis and
parameters tuning. Additionally, we have performed an empirical analysis to shown how our
approach can be used in practice describing a few usage scenarios as well as implementing two
case studies: a combustion engine controller and a pneumatic suspension system.

Keywords: Cyber-physical systems. Hybrid systems. Conformance testing. Reachability
analysis

Resumo

O termo Sistema Híbrido é usado para descrever sistemas que combinam elementos con-
tínuos e discretos; por exemplo, um sistema em que um controlador digital (elemento discreto)
está conectado à um sistema físico (elemento contínuo). Sistemas desse tipo, que envolvem
componentes físicos e digitais altamente integrados e que lidam com métricas temporais e
espaciais, além de envolverem interação humana, são conhecidos como sistemas ciber-físicos
(SCF). Neste contexto, o uso de técnicas de teste baseadas em modelos (do inglês, Model Based
Testing) em sistemas ciber-físicos é um assunto recente e está sendo ativamente pesquisado e
desenvolvido. A análise de SCFs é de alta complexidade devido à multidisciplinaridade de
tais sistemas, que combinam aspectos de diversas áreas como ciência da computação, física e
sistemas de controle. Neste trabalho, nós propomos um processo para teste de conformidade
de sistemas ciber-físicos. O objetivo desse processo é oferecer uma abordagem prática que
provê uma solução semi-automática para o teste de SCFs. Algumas etapas do processo foram
mecanizadas a partir de um protótipo de ferramenta desenvolvido. Este projeto foi concebido
durante a revisão da literatura, quando percebeu-se a falta de um processo estruturado com pas-
sos sistematizados para a realização de testes de conformidade em SCFs. Em primeiro plano, a
pesquisa foi direcionada para o estudo das relações de conformidade existentes, o que resultou
em um foco maior na relação (τ , ε)-conformance. Nesta relação de conformidade, as saídas
dos modelos da especificação e da implementação são comparadas sob o mesmo estímulo de
entrada. Ela faz uso de margens de erro temporais (τ) e espaciais (ε) para determinar se o
comportamento de saída dos modelos estão suficientemente próximas. Em estratégias de ver-
ificação de conformidade com base nesta relação, um problema relacionado à propriedade de
inconsistência (soundness) da relação foi percebido, o que fez com que o foco da pesquisa fosse
voltado a resolver esse problema via análise de alcançabilidade. Identificou-se que a taxa de
amostragem, utilizada para observar o comportamento do sistema em pontos discretos, estava
fortemente relacionada ao problema de inconsistência encontrado. Isto motivou a definição e
automação parcial de um processo para apoiar o teste de conformidade de SCFs. O processo é
organizado em cinco passos: (i) computação automática da taxa de amostragem; (ii) definição
das margens de erro temporais e espaciais (τ e ε , respectivamente); (iii) execução da análise de
alcançabilidade com o objetivo de assegurar a consistência da análise; (iv) teste de conformi-
dade (geração e execução dos testes e obtenção do veredito); (v) análise dos resultados e ajuste
de parâmetros. Além disso, foi realizada uma análise empírica para mostrar como essa abor-
dagem pode ser usada na prática. Descrevemos alguns cenários de uso e dois estudos de caso:
um controlador de um motor de combustão e um sistema de suspensão pneumática.

Palavras-chave: Sistemas ciber-físicos. Sistemas híbridos. Teste de conformidade. Análise
de alcançabilidade

List of Figures

2.1 Model-based testing overview . 16
2.2 Hybrid automaton of the thermostat . 18
2.3 A sample of the continuous dynamics of the thermostat (taken from [MM16a]) . . 18
2.4 (τ,ε)-conformance concept (taken from [AHF+14]) 19
2.5 The output trajectory of the thermostat specification (y) and that of a sample imple-

mentation (yI) (Taken from [MM16a]) . 25

3.1 Process for sound conformance testing . 27
3.2 Frequency response for the thermostat example 29
3.3 Cumulative integration applied to the thermostat 30
3.4 Cumulative integration applied to the thermostat - Zoomed in 30
3.5 Band-limited frequency . 31
3.6 Thermostat - Trajectories for multiple initial states 33
3.7 Thermostat - Overapproximation of reachable set from 0 to t 34
3.8 Iterative construction of a zonotope (taken from [Alt10]) 35
3.9 Thermostat - Zonotopes . 35
3.10 Temperature trajectory . 38
3.11 Temperature trajectory . 39
3.12 Unconforming thermostat implementation . 40

4.1 Graphical User Interface of the tool . 42
4.2 New Graphical User Interface of the tool . 43
4.3 Graphical User Interface modifications . 43
4.4 Suspension system [MS00] . 44
4.5 Hybrid Automaton of the Suspension System . 46
4.6 Hybrid automata representation of the controller [JDK+14] 49

5.1 hioco example [VO06] . 54
5.2 Approximate simulation concept (adapted from [AHF+14]) 55
5.3 S-Taliro architecture [HBA+14] . 56

List of Tables

3.1 Test cases generated from the specification . 38
3.2 Values obtained from the implementation . 38

4.1 Test cases generated from the specification using 0.0375 as period 47
4.2 Values obtained from the implementation using 0.0375 as period 48
4.3 Test cases generated from the specification using 0.03 as period 48
4.4 Values obtained from the implementation using 0.03 as period 48
4.5 Test cases generated from the specification . 50
4.6 Values obtained from the implementation . 50
4.7 Computational time of Step 1 . 51
4.8 Computational time of Step 3 . 52
4.9 Computational time of Step 4a . 52

List of Symbols

7→ Maplet (to denote ordered pairs)

: Set membership

× Cartesian product

ẋ First derivative of variable x

|n| Modulo of a number n

‖v‖ Norm of vector v (e.g. Euclidean norm)

] Disjoint union

Contents

1 INTRODUCTION 12
1.1 OBJECTIVES AND CONTRIBUTIONS . 13
1.2 DISSERTATION STRUCTURE . 13

2 BACKGROUND 15
2.1 MODEL-BASED TESTING . 15
2.2 CYBER-PHYSICAL SYSTEMS . 16
2.2.1 Hybrid automata . 16
2.2.2 Running example . 17
2.2.3 Formal testing approaches to CPS . 18
2.3 (τ,ε)-CONFORMANCE NOTION . 19
2.3.1 Formal definition . 20
2.3.2 (τ ,ε)-conformance testing . 22
2.3.3 Soundness . 23

3 A PROCESS FOR CPS CONFORMANCE TESTING 26
3.1 GENERAL PROCESS STRUCTURE . 26
3.2 DEFINING INITIAL PARAMETERS . 28
3.2.1 Sampling rate . 28
3.2.2 Precision . 31
3.2.3 Closeness . 31
3.3 RESTORING SOUNDNESS VIA REACHABILITY ANALYSIS 32
3.3.1 Reachable sets for hybrid systems . 32
3.3.2 Reachable set representation . 34
3.3.3 Computing the specification maximum change via reachability analysis 35
3.4 RESULT ANALYSIS . 36
3.4.1 Scenario 1 – strictly sound conformance results 37
3.4.2 Scenario 2 – unsound test cases . 38
3.4.3 Scenario 3 - increasing the sampling rate to tighten conformance bounds 39
3.4.4 Scenario 4 - adjusting τ and ε to achieve conformance 40

4 EMPIRICAL ANALYSIS 41
4.1 TOOL OVERVIEW . 41
4.1.1 Tool extension . 42
4.2 CASE STUDY 1: A SUSPENSION SYSTEM 43
4.2.1 Hybrid automaton representation . 45
4.2.2 Conformance testing . 47
4.3 CASE STUDY 2: AUTOMOTIVE AIR-FUEL RATIO CONTROL 48
4.3.1 Hybrid automaton representation . 49
4.3.2 Conformance testing . 50

4.4 PERFORMANCE ANALYSIS . 51

5 CONCLUSION AND FUTURE WORK 53
5.1 RELATED WORKS . 53
5.1.1 Hybrid Input-Output Conformance . 54
5.1.2 Approximate Simulation . 55
5.1.3 S-TaLiRo . 55
5.2 FUTURE WORK . 56

REFERENCES 58

12

1 INTRODUCTION

The incorporation of computational systems in physical environments, also known as Cyber-
Physical Systems (CPSs), has been deemed necessary in modern products such as automobiles
and airplanes [MZ16]. In order to model the continuous and discrete dynamics often present
in CPSs, we make use of hybrid systems models. As an example of a hybrid system, we have
a system where sensors feed input signals to a digital controller (discrete component) attached
to a physical system (continuous component) that outputs different continuous signals.

Such systems are considerably complex since they are usually part of multidisciplinary
critical systems. It is not uncommon for a system component to deal with aspects of different
subject areas such as computer science, physics and control systems [HDS13]. Thus, there is
a natural concern regarding the safety and reliability of such systems, which warrants the need
for further research directed to increasing their credibility.

To this end, Model-Based Testing techniques (MBT) can contribute with an important role
in the verification of these systems by providing precise mathematical assurances [Tre08]. For
instance, one can design a test strategy based on a mathematical relation that decides whether
the System Under Test (SUT) behaves as expected. These mathematical relations are also
known as conformance relations, and their goal is to verify compatibility between the specifi-
cation and the resulting implementation.

A test strategy is said to be sound if when a test fails, it necessarily means that the SUT
does not conform to the specification considering the adopted conformance relation. The work
described in [AHF+14] introduces a practical test strategy for cyber-physical systems based on
the (τ,ε)-conformance relation, which allows for margins of error. In summary, it compares the
output signals of both implementation and specification models under the same input stimuli,
and decides whether the signals are close enough. In other words, the outputs do not need to
be identical. The parametrised margins of error, namely τ and ε , allow for slight temporal and
spatial variation.

It is important to note that, in practice, it is not feasible to check all the points in a contin-
uous signal, since they are infinite. Hence, due to this intrinsic characteristic of cyber-physical
systems, it is often required to sample the system. The sampling process results in dealing
with only a few selected points in the curve. The lower the sampling rate, the more sparse the
points are, and the higher is the data loss. Thus, in [MM16a], the author brings to light that a
test strategy based on the (τ,ε)-conformance relation might yield unsound verdicts (i.e., yield
a fail verdict for conforming implementations) due to the sampling process. In order to restore
soundness, the authors consider an additional margin of error to deal with the sampling loss.

Despite the aforementioned contributions, applying a test strategy, such as the one based
on the (τ,ε)-conformance relation, to analyse the behaviour of a CPS, is not a straightforward
task. Typically, one needs to decide on the value of different testing parameters (e.g., τ , ε , and
the sampling rate), besides taking into account the impact of these decisions.

Therefore, in this work we propose a process for sound conformance testing of cyber-

1.1. OBJECTIVES AND CONTRIBUTIONS 13

physical systems, particularly considering the (τ,ε)-conformance relation.

1.1 OBJECTIVES AND CONTRIBUTIONS

The main goal of this work is to propose a sound process for conformance testing of cyber-
physical systems. We make use of the results we have obtained in [ACS+17a] and embody
them into a potentially scalable and systematic process for checking conformance of CPSs. An
initial version of the process we propose first appeared in [ACS+17b].

The scientific and technological contributions achieved by this work are the following:

• Proposal of a process for sound conformance testing of CPSs;

• Introduction of an automatic strategy for defining a sampling rate that minimizes sam-
pling loss;

• Usage of reachability analysis in order to compute an additional margin of error that
guarantees soundness of the testing strategy;

• Integration of tools for conformance testing and reachability analysis in order to support
the proposed process;

• Application of the proposed process concerning three examples of CPSs: a thermostat
(running example), an automotive air-fuel ratio control system, and an automotive pneu-
matic suspension system.

The first main contribution is the definition of the process itself. The process receives
the specification and implementation models as input and the result is a test suite that only
yields sound verdicts. The process is organized into five steps: (i) automatic sampling rate
computation; (ii) margins of error definition (temporal and spatial); (iii) performing reachability
analysis to obtain sound verdicts; (iv) conformance testing (test generation, test execution and
verdict attainment); (v) result analysis and parameters tuning, which includes verifying whether
the results are acceptable and revise definitions accordingly. We have also shown how this
process can be used discussing possible scenarios, as well as considering two case studies,
besides a running example.

The second main contribution is the implementation of the solution proposed in [MM16a].
We have designed a practical solution involving reachability analysis [Alt10] and applied our
research results, besides extending an existing prototype tool that already considers the (τ ,ε)-
conformance relation in its test strategy.

1.2 DISSERTATION STRUCTURE

This dissertation is organized as follows:

• Chapter 2 provides the necessary background information required to understand the
work we present here.

1.2. DISSERTATION STRUCTURE 14

• Chapter 3 presents our process for sound conformance testing of cyber-physical systems.

• Chapter 4 introduces the tools we have used and developed in order to mechanise our
testing strategy.

• Chapter 5 gives a summary of the results we have achieved and considers related work.
Furthermore, it presents the next steps in our research agenda.

15

2 BACKGROUND

In this chapter, we present the necessary background information required to understand the
work we present here. Section 2.1 gives a brief introduction to formal methods whilst section
2.2 focus on explaining Cyber-Physical Systems (CPSs) and how we formally define them.
Finally, section 2.3.1 presents the notion of conformance that we use in CPSs throughout this
work.

2.1 MODEL-BASED TESTING

Formal methods consist in the application of theoretical fundamentals that aim to aid hard-
ware and software engineers to build more reliable systems supported by mathematically-based
techniques. The use of formal methods is driven by the assurance that proper mathematical
analysis provides robustness and reliability for the design.

One of the technical challenges in formal verification lies in handling large search spaces.
However, when used appropriately, such techniques can be fast, automatic and identify faults
through counterexamples, which usually represent subtle errors in design.

Model-based testing (MBT) is a notion that originates from software and system testing
[UL10, BJK+05], which makes use of formal models in order to generate and execute test
cases and, thus, verifying compliance with system requirements. One of the key purposes of
such a notion is to facilitate the automation of the testing process. Figure 2.1 depicts some
common elements of an MBT approach. The test suite is generated by a tool from the formal
specification model and the requirements are taking into account when creating the model.
Different types of models have been used, such as timed automata [AD94], labelled transitions
systems [Tre96] and process algebras [CFMS12]. The tests are then executed and the verdict
(fail, pass or inconclusive) is used to make adjustments to the System Under Test (SUT). Pass
and fail mean that the testing process found evidence that shows whether the test was successful
or not, respectively. Inconclusive means that no such evidence was found.

Conformance testing is a variation of MBT where the key idea is to verify whether the
SUT conforms to a given specification considering a mathematical relation, also known as
a conformance relation. Moreover, when considering an MBT framework, two concepts are
important to evaluate the quality of the testing framework, namely soundness and completeness.
The former states that if a SUT is correct, a pass verdict is achieved for any generated test suite.
The latter states that, for incorrect models, there will always exist a generated test case that
detects the failure. The last aspect, completeness, is a hard property to achieve in practice,
since it might imply in generating infinite test suites. Several frameworks and tools exist to
perform MBT for software models. For example, in the case of LTSs, a sound and complete
testing framework based on a conformance relation named ‘ioco’ (Input-Output COnformance)
is introduced in [Tre08].

2.2. CYBER-PHYSICAL SYSTEMS 16

In our context of Cyber-Physical Systems, model-based testing is a relatively recent subject
in the literature [ARM16, DDD+15, HBA+14, KM15a] and it is still being actively researched
and developed. Hence, in order to apply MBT on CPSs in this work, state-of-the-art techniques
are adopted and further developed.

In what follows, we first discuss how CPSs can be represented as hybrid automata (Section
2.2). Afterwards, we focus on one of the existing conformance testing strategies for CPSs,
namely (τ,ε)-conformance, which is adopted in this work and explained in more details (Sec-
tion 2.3.1).

Figure 2.1: Model-based testing overview

2.2 CYBER-PHYSICAL SYSTEMS

The term Cyber-Physical System (CPS) represents a combination of discrete and contin-
uous dynamics, often found in systems where a digital controller unit (discrete) is connected
with some physical system (continuous). Particularly, a CPS might involve complex networks
of these elements. also including human interaction. In order to model the continuous and
discrete dynamics often present in CPSs, we make use of hybrid systems models [ACH+95a].

Such systems require special attention since they are usually part of multidisciplinary crit-
ical systems. It is not uncommon for a component to deal with aspects of different subject
areas such as computer science, physics and control systems [HDS13]. Many classes or rep-
resentations of hybrid systems can be found [DSHL+09], due to the wide range of modeling
formalisms in these areas. In this work, we use hybrid automata [ACHH93] to model CPSs
since it is a well-established and solid formalism, with an intuitive semantics, and that can be
processed by several tools.

2.2.1 Hybrid automata

Hybrid Automata can be seen as an extension of discrete event models, more specifically
finite timed automata. Guards, reset maps, invariants and specific dynamics for each location
are added to these kind of models, in order to support continuous dynamics.

2.2. CYBER-PHYSICAL SYSTEMS 17

Definition 1 (Hybrid Automata [GST09]). A hybrid automata is defined as a tuple (Loc, V ,
(l0,v0),→, I, F), where

• Loc is the finite set of locations;

• V =VI]VO is the set of continuous variables, where VI and VO denote the disjoint sets of
input and output variables, respectively;

• l0 denotes the initial location and v0 is an initial valuation of V;

• →⊆ Loc×B(V)×Reset(V)×Loc is the set of jumps where:

– B(V)⊆ Val(V) indicates the guards under which the jump may be performed, and

– Reset(V) =
⋃

V ′⊆V Val(V ′) is the set of value assignments to the variables in V after
the jump;

• I : Loc→B(V) determines the allowed valuation of variables in each location (called the
invariant of the location);

• F : Loc→ B
(
V ∪V̇

)
describes some constraints on variables and their derivatives and

specifies the allowed continuous behavior in each location.

We denote the set of all hybrid automata by H. Following standard notation, we write
l

g,r−→ l′ to denote (l,g,r, l′) ∈→.
Locations are discrete states that operate independently and each one can be viewed as a

purely continuous system. Furthermore, the continuous behaviour of the whole hybrid system
is captured by the valuation of a set V of continuous variables. We assume that V is partitioned
into disjoint sets of input variables, denoted by VI , and output variables, denoted by VO.

A jump represents a change in the current operating location. To perform a jump, the tran-
sition guard always needs to be true. In general, if the guard is true, but the location invariant
also holds, the jump might not be performed; this results in a non-deterministic specification.
Differently, if the invariant becomes false and the guard is true, the jump must be performed.
There is also the situation where both the location invariant and the corresponding transition
are false; this scenario is assumed not to happen. Moreover, a jump is also an immediate ac-
tion, which does not require time to pass. During a jump event, the valuation of the continuous
variables can be reset.

2.2.2 Running example

We use the model of a thermostat [vO09a] as our running example. Consider a thermostat
that has two modes, ON and OFF. The thermostat controls a heater and the temperature of the
room changes towards the temperature represented by the inputs h(t) and i(t). For instance, if
h and i are two constant signals equal to 20 and 0 respectively, when the thermostat is in mode
ON, the temperature of the room would increase towards 20 degrees. Analogously, when it is
in mode OFF, the temperature would decrease towards 0 degrees.

The main goal of the thermostat is to keep the room temperature at 10 degrees. However, to
avoid switching the radiator on an off all the time, there are two thresholds for the minimum and

2.2. CYBER-PHYSICAL SYSTEMS 18

maximum values where the thermostat does not attempt to turn the heater on or off until they
are reached. Therefore, considering the previously mentioned values for h(t) and i(t) (20 and
0, respectively), the thermostat only switches to mode ON when the temperature falls below 2
degrees and to OFF when the temperature rises above 18 degrees.

In Figure 2.2, the hybrid model of the thermostat example is shown, which contains two
discrete states representing its modes, namely, q0 (ON) and q1 (OFF). Moreover, the dynam-
ics of each mode represents the temperature behaviour in the room with the variable x ∈ R
modeling temperature. As previously explained, the temperature is regulated between 2 and 18
degrees, hence the corresponding guard conditions consider these values. .

q0

mode ON

ẋ(t) =−x(t)+h(t)

x(t)≤ h(t)

q1

mode OFF

ẋ(t) =−x(t)+ i(t)

x(t)≥ i(t)

x(t)≤ 2

x(t)≥ 18

Figure 2.2: Hybrid automaton of the thermostat

Example 1. Figure 2.2 shows the hybrid automaton of the thermostat with Loc = {ON,OFF},
VI = {h, i}, VO = {x}, (l0,v0) = (ON,5), I(ON) = x(t)≤ h(t),→= {(ON,x(t)≥ 18,{},OFF),
(OFF,x(t)≤ 2,{},ON)}, I(OFF) = x(t)≥ i(t), F(ON) = ẋ(t) =−x(t)+h(t), and F(OFF) =
ẋ(t) =−x(t)+ i(t).

Figure 2.3, reproduced from [MM16a], shows the output signal of the temperature for the
thermostat example.

0 2 4 6 8 10
0

5

10

15

20

j = 0

j = 1

j = 2

j = 3

j = 4

t

x(
t)

Figure 2.3: A sample of the continuous dynamics of the thermostat (taken from [MM16a])

2.2.3 Formal testing approaches to CPS

Testing and verifying the correctness of all physical and cyber components of a complex
CPS system present a big challenge. A typical research problem is the different approaches to

2.3. (τ,ε)-CONFORMANCE NOTION 19

system modeling and that comes from different areas such as computer science, control theory
and physics. In [Alu11], the author presents an overview of key research works that have been
devoted to formal verification of CPSs.

Since conformance testing based on hybrid-systems models is a relatively recent subject,
it still requires more work on theoretical and practical aspects. A recent survey presented in
[AIH15] concludes that existing model checking and other formal techniques are insufficient to
meet CPS application needs. According to the study participants, there is still a gap in language
between formal models of computing and communications and models of physics that makes
the joint application challenging.

Model verification can be performed by providing the modelled system with test inputs
and evaluating the model output behaviour. Moreover, assuming that the model represents the
overall desired system behaviour, system verification is performed by providing the same test
inputs to both models and evaluating their respective output behaviour based on a conformance
notion.

In what follows, we present the conformance notion proposed in [AHF+14], which we
deem to be one of the main existing proposals for a formal notion of conformance. The (τ,ε)-
conformance notion is, to our knowledge, the most concrete formal notion in both theoretical
and practical aspects, and the one we use in our approach. Thus, in what follows, we formally
describe this notion and its basic concepts. Later, in Chapter 5, we present other conformance
notions as related works. Furthermore, a comparison between these notions of conformance
can be found in [KM15a].

2.3 (τ,ε)-CONFORMANCE NOTION

The authors of [AHF+14, AMF14] propose a conformance relation based on the output
behaviour of a system specification and implementation models. In Figure 2.4, an overview of
this conformance notion is depicted. Briefly speaking, under the same input stimuli u, that is
given for both specification model (uM) and implementation (uI), the difference in the output
behaviour of both systems (yM and yI) is analysed. That is, a distance metric is used to verify
if output behaviours are close enough to each other.

Figure 2.4: (τ,ε)-conformance concept (taken from [AHF+14])

The closeness notion that is used to determine how close two output signals are, in terms of
valuation, is based on a maximum margin of error ε . However, this notion not does not require
the output signals to behave in exact synchronization. In practice, due to un-modelled physical
phenomena such as transport delays or mechanical backlash, implementation behaviour often

2.3. (τ,ε)-CONFORMANCE NOTION 20

deviates in time with respect to the model [AMF14]. Thus, if this notion did not take into
consideration these time shifts, that are natural occurrence in CPSs, it could result in undesired
non-conformance verdicts in scenarios where slight time deviations are acceptable. Hence, in
the (τ,ε)-conformance relation, a maximum temporal error of τ is allowed between the two
output signals yM and yI to permit such time discrepancies.

2.3.1 Formal definition

In this section, we present the formal definition of the conformance relation that is used in
the remainder of our approach, based on [MM16a]. First, we define some preliminary concepts
based on the previous notion of hybrid automata (see Definition 1). Then, we elaborate on the
formal definition of the conformance relation that we use in our process for sound conformance
testing.

The evolution of a hybrid system is defined over a hybrid time domain, defined below.

Definition 2 (Hybrid Time Domain [Abb15]). A hybrid time domain E is a subset of R+×N
defined as

E =
J−1⋃
j=0

[t j, t j+1]×{ j}

where J denotes the maximum number of discrete jumps and 0 = t0 ≤ t1 ≤ t2 ≤ ... ≤ tJ . We
denote the set of all hybrid time domains by T.

Example 2. Figure 2.3 shows the output signal for temperature of the thermostat with a Hybrid
Time Domain E = {(0,0), ...,(2.2,0),(2.2,1), ...,(4.4,1),(4.4,2), ...,(6.6,2),(6.6,3), ...,(8.8,3),
(8.8,4), ...,(10,4)}

The hybrid time domain models the development of a hybrid system regarding the evo-
lution of continuous time intervals ([t j, t j+1]) and discrete jumps (j). In [MM16a], the author
combines the notions of hybrid automata and hybrid time domain to define the solution concept.

Definition 3 (Solution [MM16a]). A solution to a hybrid automaton HA= (Loc,V , (l0,v0),→
, I,F) is a function s : E→ Loc×Val(V), where

• s(0,0) = (l0,v0);

• for each (t, j) ∈ dom(s): x satisfies I(l) and F(l), where (l,x) = s(t, j) is the pair of
location and valuation at time (t, j); and

• for each (t j, j) ∈ dom(s) with j > 0: there exists l
g,r−→ l′ such that x satisfies g and (x,x′)

satisfies r, where (l,x) = s(t j, j− 1) and (l′,x′) = s(t j, j) are the pairs of location and
valuation at times (t j, j−1) and (t j, j), respectively.

• Let V be a set of real-valued variables, Val(V) denotes the set of all valuations of V,
where a valuation of V is a function of type V →R, which assigns a real number to each
variable v ∈V .

2.3. (τ,ε)-CONFORMANCE NOTION 21

Example 3. Considering the Hybrid Time Domain E for the thermostat described in Example
2, a Solution for this example should yield the following values s(0,0) = (ON,5), s(2.2,0) =
(ON,18), s(2.2,1) = (OFF,18), s(4.4,1) = (OFF,2), s(4.4,2) = (ON,2).

The following notion of trajectory captures the evolution of system dynamics isolating it
from the discrete locations.

Definition 4 (Trajectory [Abb15]1). Take a hybrid time domain E and a set of variables V . A
trajectory over E is a function φ : E→ Val(V), where ∀ j,(t,φ(t, j)) is absolutely continuous in
t over the interval I j = {t|(t, j) ∈ E}. The set of all trajectories defined over the variable set V
is denoted by Trajs(V).

Definition 5 (Trajectory for Hybrid Automata [MM16a]). Given a hybrid automaton HA, a
function φ : E → Val(V) is a trajectory for HA, if there exists some solution s to HA for
which ∀(t, j) ∈ E, ∃l ∈ Loc such that (l,φ(t, j)) = s(t, j). The set of all trajectories for HA is
denoted by Trajs(HA).

The trajectory for the temperature in thermostat example is depicted in Figure 2.3. The
notions of trajectory restriction and solution pair are defined in order to distinguish between
input and output trajectories in a solution.

Definition 6 (Trajectory Restriction [KM15b]). Consider a set of variables V . The restriction
of a valuation val ∈ Val(V) to V ′ ⊂V , denoted by val ↓V ′ ∈ Val(V ′), such that ∀v ∈V ′, (val ↓
V ′)(v) = val(v). Further, the restriction of a trajectory φ : E→Val(V) to V ′ ⊂V is a trajectory
E→Val(V ′), denoted by φ ↓V ′, for which (φ ↓V ′)(t, j) = φ(t, j) ↓V ′, ∀(t, j) ∈ dom(φ).

Definition 7 (Solution Pair [Abb15]). Let u and y be two trajectories of types E→Val(VI) and
E→Val(VO), respectively; (u, y) is a solution pair to a hybrid automaton HA if

• dom(u) = dom(y), and

• there exists a trajectory φ for HA such that dom(φ)= dom(u), u= φ ↓VI , and y= φ ↓VO.

The works we based ours on and the tools we describe and use in later sections of this
dissertation do not support non-determinism. Hence, in our work, we focus on deterministic
hybrid automata, defined below.

Definition 8 (Deterministic Hybrid Automata [MM16a]). A hybrid automaton HA with the
set of solution pairs Φ is deterministic if

∀u ∈ E→Val(VI),∀y1,y2 ∈ E→Val(VO),((u,y1) ∈Φ and (u,y2) ∈Φ)⇒ y1 = y2

Finally, the following notion of (τ ,ε)-closeness is defined based on the continuous be-
haviour (solution) associated to a hybrid automaton.

Definition 9 ((τ ,ε)-closeness [Abb15]2). Consider a test duration T ∈R+, a maximum number
of jumps J ∈N, and τ,ε > 0; then two trajectories y1 and y2 are said to be (τ ,ε)-close, denoted
by y1 ≈(τ,ε) y2, if

1Called Activity in [ACH+95b] and Hybrid Arc in [Abb15]
2Unlike [Abb15], here we allow different jump numbers (i.e. i 6= j) in the definition of (τ ,ε)-closeness.

2.3. (τ,ε)-CONFORMANCE NOTION 22

1. for all (t, i) ∈ dom(y1) with t ≤ T, i≤ J, there exists (s, j) ∈ dom(y2) such that |t− s| ≤ τ

and ‖y1(t, i)− y2(s, j)‖ ≤ ε , and

2. for all (t, i) ∈ dom(y2) with t ≤ T, i≤ J, there exists (s, j) ∈ dom(y1) such that |t− s| ≤ τ

and ‖y2(t, i)− y1(s, j)‖ ≤ ε .

Definition 10 (Conformance Relation [Abb15]). Consider two hybrid automata HA1 and HA2.
Given a test duration T ∈R+, a maximum number of jumps J ∈N, and τ,ε > 0, HA2 conforms
to HA1, denoted by HA2 ≈(τ,ε) HA1, if and only if for all solution pairs (u,y1) of HA1, there
exists a solution pair (u,y2) of HA2 such that the corresponding output trajectories y1 and y2
are (τ ,ε)-close.

For this conformance relation, we assume that both the specification and the implementation
can be modelled in the form of a hybrid automata; this is normally referred to as the test
hyphothesis.

2.3.2 (τ ,ε)-conformance testing

Conformance relations are typically defined in a theoretical framework involving the formal
semantics of the specification model and the formal semantics of the SUT. However, the latter
is practically impossible to obtain for sufficiently large systems. Hence, in practice, one checks
conformance using test cases that are generated from the model and executed on the system
under test. The result of this test execution must then be compared with the expected results of
the model up to the specified conformance bounds.

As previously stated, based on the same input stimuli, (τ ,ε)-conformance testing checks for
conformance based on the output behaviour of both the specification model and the implemen-
tation. However, it assumes access to all points in the output continuous dynamics, which is
not a realistic assumption in practice. Hence, discretised sampling of input/output trajectories
is considered. To this end, in [AHF+14], a notion of timed state sequences is proposed as the
basic starting point for conformance testing.

Definition 11 (Hybrid-Timed State Sequence (TSS) [AHF+14]). Let N ∈ N and V be a set of
variables. A hybrid-timed state sequence (TSS) is defined as a function x : R+×N→ Val(V),
with dom(x)∈ (R+×N)N . The value of function x at a specific point (t, j)∈ dom(x) is denoted
by x(t, j). Also, we denote the set of all TSSs defined over the set of variables V by TSS(V).

As observed in the above definition, a TSS contains a list of variable valuations indexed by
the corresponding time stamps.

In [MM16a], the authors define a sampling function, notions of test suite and test case
for hybrid automaton and propose a verdict algorithm based on the (τ,ε)-conformance notion
defined in Definition 10.

Definition 12 (Sampling Function [MM16a]). Consider N ∈ N. Any P ∈ (R+×N)N is called
a set of sampling points. Take a set of trajectories Y with a set of variables V . Given a set
of sampling points P, a sampling function over Y is defined as πP : Y → TSS(V), for which,
ys = πP(y) only if

2.3. (τ,ε)-CONFORMANCE NOTION 23

• dom(ys) = dom(y)∩P

• ∀(t, j) ∈ dom(ys)• ys(t, j) = y(t, j)

Given an input trajectory and a sampling function, a test case (test suite) provides the ex-
pected output valuations at the specified sampling points.

Definition 13 (Test Suite and Test Case [MM16a]). A test suite is defined as a finite set TS ⊂
Trajs(VI)×TSS(VO). A test suite TS is a valid one for a given hybrid automaton HA only
if, for any (u,y) ∈ TS there exists a sampling point set P such that y = πP(outHA(u)). Each
member of a valid test suite is called a test case.

A sampling function is periodic when its sampling points are equally distanced. Further-
more, in this situation, it is possible to define periodic test cases. In this work, we limit our-
selves to using periodic sampling functions and test cases for simplicity. This is because, in
practical scenarios, samples are extracted at a fixed rate since they lead to more consistent
results.

Definition 14 (Periodic Test Case [MM16a]). A test case (u,y) is periodic with period p if
dom(y) is a periodic set of sampling points with period p.

Furthermore, we use Algorithm 1 [MM16a] as the test oracle for conformance testing of
cyber-physical systems in our tool presented in Chapter 4. In summary, the algorithm compares
the expected outcome of the test suit TS with the samples of the output trajectories of HAI . It
testes whether each element in TS is within T and E (which represent the spatial and temporal
bounds, namely, τ and ε) distance of any sampling points provided by the output trajectory of
HAI .

As for the verdict itself, a Fail verdict means that the algorithm found evidence that the
implementation does not conform to the specification, while a Pass verdict means that no such
evidence was found. A test case with a Pass verdict is also inconclusive unless it is part of an
exhaustive test suite. Thus, we do not include Inconclusive in the verdicts.

2.3.3 Soundness

It is possible to use Algorithm 1 as a direct application of (τ,ε)-conformance testing. How-
ever, as we show in this subsection, passing the exact values of τ and ε as parameters for
Algorithm 1 (as values for T and E, respectively) can result in unsound verdicts. In the remain-
der of this subsection, we present the basic definitions for soundness in hybrid systems and the
required formal conditions to achieve it. Then, in Chapter 3 we present a systematic process
for CPS conformance testing that guarantees sound results.

In [MM16a], the authors define soundness for hybrid systems as follows:

Definition 15 (Soundness [MM16a]). Considering a specification HA, a test suite TS is sound
under a specified test verdict algorithm if the following proposition holds

∀HAI :
(
HAI ≈(τ,ε) HA

)
⇒HAI passes TS (2.1)

2.3. (τ,ε)-CONFORMANCE NOTION 24

Algorithm 1 Test Verdict Algorithm [MM16a]: Given a test suite, a hybrid system implemen-
tation and conformance testing parameters, it determines whether the implementation passes or
fails the test suite.

1: inputs: A test suite TS; A hybrid automaton HAI; Conformance parameters T,E
2: output: Pass or Fail
3: for each (u,y) ∈ TS do
4: yI ← outHAI(u)
5: P← dom(y)
6: ys

I ← πP(yI)
7: for each (t, j) ∈ dom(ys

I) do
8: It = [t−T, t +T]∩{t | ∃ j : (t, j) ∈ dom(y) }
9: if ∃t ′ ∈ It s.t. ‖y(t ′, i)− ys

I(t,k)‖ ≤ E then
10: continue;
11: else
12: return Fail
13: end if
14: end for
15: end for
16: return Pass

This definition proposes that, for a test suite to be considered sound, the following con-
dition must hold: if the implementation model (τ,ε)-conforms to the specification, then the
implementation should pass the test suit. In summary, a test suit is sound if all Fail verdicts are
correct.

Using τ and ε as arguments for Algorithm 1 can produce unsound results for all practical
specifications. The following example (inspired by [MM16a]), illustrates this problem.

Example 4. Consider the example of the thermostat described in Section 2.2.2. We can find
an implementation such that its trajectory is similar to the specification one but it occurs with a
delay of 0.1 time units and it is shifted in value by 4 degrees. An example of both trajectories
is shown in Figure 2.5, with the specification output trajectory being labelled as y whereas
the implementation is labelled as yI . Note that y reaches its maximum value (18 degrees)
when t = 2.0 and, similarly, yI reaches its respective maximum value (22 degrees) when t =
2.1. Considering τ = 0.1 and ε = 4 the implementation should satisfy the (τ,ε)− closeness
condition and therefore it (τ,ε)−conforms with the specification. However, as stated, in order
to test this in practice, the system should be sampled. If we use 0.03 as sampling rate, then
t = 2.1 will belong to the set of points in the sampling pool whereas t = 2.0 will not. This
results in the sampling function not capturing the specification trajectory’s peak (18 degrees)
and only capturing the surrounding values, which are lower than 18. Hence, when comparing
the point in which the implementation is at its peak (22 degrees), Algorithm 1 will not find a
single point in the specification that respects the margin of error ε = 4. This leads to a fail
verdict and therefore an unsound one, since it won’t satisfy the closeness condition when it
should.

The issue arises due to the sampling rate not selecting the points in the specification trajec-

2.3. (τ,ε)-CONFORMANCE NOTION 25

0 1 2 3 4
0

5

10

15

20

25

y

ε

yI

t

x(
t)

Figure 2.5: The output trajectory of the thermostat specification (y) and that of a sample imple-
mentation (yI) (Taken from [MM16a])

tory that make the conformance to hold. This can happen when there is a sudden large variation
in the trajectories, which causes the discretisation process not to capture this behaviour.

In order to reinstate soundness, [MM16a] introduces a new measure based on the specifica-
tion. The Specification Maximum Change (Definition 16) takes into consideration the sampling
period to compute the maximum spatial variation the specification achieves within each sam-
pling interval.

Definition 16 (Specification Maximum Change [MM16a]). Given a specification HA, a peri-
odic test case (u,y) for it with period p > 0, and a test duration T , the maximum change of HA

with respect to (u,y) and T is defined as ∆p = maxt∈T ∆p(t), where

∆p(t) = max
s∈[t−p/2,t+p/2]

y(s)− min
s∈[t−p/2,t+p/2]

y(s).

Moreover, the concept of robust test suites is also introduced and in [MM16a] it is proved
that a robust test case is always sound, according to the definition of soundness presented in
Definition 15.

Definition 17 (Robust Test Suites [MM16a]). Given τ,ε > 0, assume that we use Algorithm 1
with parameter assignment of T = τ and E = ε +∆, where ∆ > 0. Then, given a specification
HA, a test case tc = (u,y) ∈ TS with a sampling period p is said to be robust if

∆≥ ∆p

This definition states that if we can find the boundaries respected by the specification, then
we can have robust test suites by extending the margins of error of these bounds. Thus, achiev-
ing sound results. Furthermore, it is possible to compute the values for ∆p based on the formal
specification of the system. We elaborate on this computation process in Chapter 3.

26

3 A PROCESS FOR CPS CONFORMANCE TESTING

In the previous chapter, we presented a conformance testing algorithm for CPSs, based on the
(τ ,ε)-conformance notion defined in [AHF+14, AMF14]. We have shown that conformance
verification for this notion is sensitive to the dynamics of the system model and to the sampling
rate. Additionally, we described the work in [MM16a] that specifies the error bounds for a given
model and the additional margin of error that is proved to ensure soundness of conformance
testing. Here, these previous results are embodied into a potentially scalable, more general and
systematic process for checking conformance of CPSs. An initial version of the process we
propose first appeared in [ACS+17b].

This chapter is structured as follows: in Section 3.1, we give an overview of the process
and briefly describe its steps. In Section 3.2, we elaborate on defining the initial parameters
for the process, such as the conformance bounds (i.e. τ and ε) and the sampling rate. Section
3.3 describes our strategy to compute ∆p (Definition 16) based on reachability analysis and,
thus, reinstate soundness. Section 3.4 focuses on describing the last step of the process, which
involves result analysis and parameter tuning.

3.1 GENERAL PROCESS STRUCTURE

The main motivation behind this process is to develop a practical approach that guarantees
the strategy described in Section 2.3.2 to be sound. Particularly, we have explicitly defined the
parameters of a modularised process, split into five steps, with the aim of providing support for
an engineer to adopt a systematic strategy.

Figure 3.1 depicts the main steps of the process. The general idea is to offer a semi-
automatic solution to achieve conformance testing. While most steps are mechanised, some
steps require user interaction and knowledge of the system.

Regarding inputs, the process requires a hybrid model of a cyber-physical system in which
the correct behaviour of the system (at its interface level) is specified. Such a model should cap-
ture both discrete behaviour and evolution of continuous dynamics of the system. The imple-
mentation model is also required, to which the test suite should be applied. Both specification
and implementation models should be hybrid automata.

The first two steps of our proposed process is to determine the initial parameters (the sam-
pling rate and the conformance bounds, respectively), which are based on the specification
model. For the first step (Figure 3.1-step 1), we propose an automatic process for finding a
sampling rate that is likely to achieve a good balance between precision and processing cost.
For instance, changing the period from 0.2 to 0.1 doubles the amount of points to process
but does not necessarily mean it also doubles the processing time, since this depends on the
complexity of the system and its equations. Therefore, the sampling rate computed in this pro-
cess should be considered as a starting point and it can be fine-tuned in case the results need

3.1. GENERAL PROCESS STRUCTURE 27

Figure 3.1: Process for sound conformance testing

adjustment. Section 3.2 describes in more details the process for computing the sampling rate.
In the second step (Figure 3.1-step 2), the conformance bounds, namely the τ and ε param-

eters, are the margins of error considered by the conforming testing strategy. Defining them is
a manual step that requires a certain degree of knowledge of the system and its components.
For instance, to properly define them, one should ideally take into consideration precision of
sensors to account for input/output delay, noise and other small disturbances, thus making it
impractical for our process to automatically compute such parameters.

The next step in our process (Figure 3.1-step 3) is automatically performed and involves
another precision parameter for error mitigation. In this case, it is to accommodate for data loss
in the sampling process. In summary, the discretisation step is lossy by nature and, thus, our
strategy requires another layer of margin of error to guarantee that our conformance analysis is
sound (see Section 2.3.3). Thus, we perform reachability analysis on the specification model
and compute ∆p, which should be added to ε when passing the spatial error argument (E =
ε +∆p) for the conformance algorithm (Algorithm 1), as shown in Definition 16 . See Section
3.3 for a detailed description of the reachability analysis process.

Then, the user should decide whether or not such a margin, i.e. E, is acceptable for testing
the system. If positive, then the user should be able to perform conformance testing and verify
whether the implementation (τ ,ε)-conforms to the specification (Figure 3.1-step 4a). In the

3.2. DEFINING INITIAL PARAMETERS 28

event that the test suite fails, the user must revise the models in order to find the problem
(Figure 3.1-step 5) and then restart the process. If the test suite passes, the system model of the
SUT is consider to (τ ,ε)-conform to the specification model.

However, the final value of E, i.e. ε in addition to ∆p, might not be realistic, that is, this
margin of error might be too big to be acceptable. In this case, we suggest the user to revise
the initial parameters (Figure 3.1-step 4b). One option is to increase the sampling rate, which
results in a lower ∆p but affects processing cost. A second alternative is to revise and possibly
reduce the conformance bounds τ and ε , which should also lower the value of E. We further
develop on these options and consequences in Section 3.4.

3.2 DEFINING INITIAL PARAMETERS

Since conformance testing inherently involves comparing continuous dynamics, the key pa-
rameters of the process are (i) finding and adjusting the sampling rate of the dynamic behaviour,
and (ii) defining the conformance bounds, i.e. margins of error, which determine whether two
signals are sufficiently close to each other. The final parameter of this process is (iii) a method
to measure closeness when comparing continuous signals.

3.2.1 Sampling rate

As stated before, discrete sampling of continuous signals is often a necessary step when
dealing with CPSs and is closely related to the error margin involved in the discretisation step
[MM16b]. The efficacy of conformance testing relies on choosing appropriate sampling rates
that are proportional to the pace of changes in system dynamics; otherwise, as discussed in
Section 2.3.3 conformance testing may yield unsound results due to the sampling function
missing sharp signal variations.

For example, it is possible for the value of the signal to abruptly increase and decrease
between two sampling points, causing the sampling function not to capture this behaviour. The
strategy described in Section 2.3.3 consists of increasing the spatial error margin to take into
consideration these sharp variations.

The process to define an adequate sampling rate requires an intricate analysis of the system
dynamics. We propose a strategy to find a suitable period by inspecting the system in the
frequency domain and defining a frequency limit from which the system ceases to provide
significant responses. Once the signal is band-limited, we can apply the Nyquist-Shannon
theorem [Sha49, Sha01], which is explained later, to find a suitable period.

Hence, the first step of our process to find a suitable sampling rate is to analyse the output
signal in the frequency domain, which allows the use of techniques that can determine the
system stability.

There are a few ways to do this. A practical and common one is to apply the Fourier
transform [BB86] to a signal. However, in the Matlab environment (see Chapter 4 for imple-
mentation details), we can only compute the Discrete Fourier Transform, which only works on
sampled signals. This means that our signal would have to be already sampled for Fourier to
work. Another method that does not share this restriction, and the one we use, is the Bode plot

3.2. DEFINING INITIAL PARAMETERS 29

[Yar10].
The advantage of this method is that it works based on the system specification instead of

the sampled output signals. Figure 3.2 shows the thermostat example analysed in the frequency
domain acquired via Bode plot. The y-axis represents the waves amplitude and the x-axis
represents its frequency. The former is a measurement of how big the waves are and the latter
represents the number of wave cycles passing a point in a time unit. In cyber-physical systems,
the lower frequencies tend to have higher amplitude and thus are more relevant.

Figure 3.2: Frequency response for the thermostat example

The next step is to define the frequency threshold where the system’s frequency response
begins to be reduced, so we can apply the Nyquist-Shannon theorem. For that, we compute the
cumulative energy percentage via cumulative integration. This value represents the percentage
(from 0 to 1) at which the energy flowing through the system attenuates to negligible values.
Figures 3.3 and 3.4 show the frequency response (continuous line) along with the cumulative
energy (dotted line).

In our strategy, we use the cumulative energy limit of 0.999. Thus we limit the system
frequency at the same point in which the cumulative integration reaches 0.999. Once we have
a frequency limit, i.e. the system is band-limited, we can finally apply the Nyquist-Shannon
theorem.

The theorem states that, for band-limited signals, a suitable period must be equal to, or
greater than, twice the highest frequency component. Consider the signal depicted in Figure
3.5, which is band-limited at frequency B. According to the Nyquist-Shannon theorem, an
adequate period p would be p = 1

2B .
We have applied this process on the thermostat twice, using different input signals each

time. On the first run we fixed the inputs to h(t) = 20 and i(t) = 0. For this particular set of
inputs, using 0.999% as cumulative energy threshold, the yielded cutoff frequency is 14.6 Hz.

3.2. DEFINING INITIAL PARAMETERS 30

Figure 3.3: Cumulative integration applied to the thermostat

Figure 3.4: Cumulative integration applied to the thermostat - Zoomed in

Using the Nyquist rate (2 times the cutoff frequency), the sampling rate for the system should
be approximately 0.034.

On the second run, the input signals are variable in time, increasing at a fixed rate. This
affects how fast the temperature of the room changes. Using 0.999% as cumulative energy
threshold as well, we reach the cutoff frequency of 18.4 Hz. Thus, the Nyquist rate yields
approximately 0.027 as an adequate sampling rate. This shows, as expected, that the greater

3.2. DEFINING INITIAL PARAMETERS 31

Figure 3.5: Band-limited frequency

the output variation over time, the lower the sampling rate value needs to be.

3.2.2 Precision

Our conformance testing strategy involves observing the system behaviour on a finite num-
ber of points and, hence, involves reducing the comparison of continuous behaviours to com-
parison of discretised samples; this process inherently deviates from the precise comparison of
continuous signals. Moreover, conformance testing needs to take into account measurement
errors introduced by sensors and noise in general, such that the smallest disturbance in the sig-
nal will not necessarily yield unsound conformance results. For these reasons we have opted to
adopt the (τ,ε)-conformance in our strategy.

Another precision component was detailed in Section 2.3.3. There, we have shown that in
order to generate sound test cases for the (τ,ε)-conformance relation, one has to incorporate a
second layer of error mitigation (∆p) that is inversely proportional to the rate of changes of the
dynamics in the specification within the sampling intervals, i.e., the higher the sampling rate,
the lower the error margin. This parameter has a direct impact on the applicability of the test
strategy, since the imprudent increase of error margins can render the results inadmissible.

In our process, the τ and ε parameters are manually defined. The definition of these param-
eters requires intricate knowledge of the system, which renders an automatic definition difficult.
However, for ∆p, it is possible to define a mechanical process to find its value. The theoreti-
cal and practical details regarding its computation are discussed in Section 3.3 and Chapter 4,
respectively.

3.2.3 Closeness

When comparing physical systems, it is often necessary to measure how “close” they are
from each other. In conformance testing of CPSs, that can mean measuring the distance be-
tween two output signals or computing the intersection of a signal with a region. The most
common approach considers Euclidean distance [DD09], which is a widely known method for
computing the distance between points in a geometrical space.

In the process proposed in this chapter, although we consider Euclidean distance by de-
fault, it is possible to adopt other closeness notions, as well. In particular, we consider the
(τ,ε)-conformance relation (Section 2.3.1), which takes the Euclidean measure for closeness

3.3. RESTORING SOUNDNESS VIA REACHABILITY ANALYSIS 32

of signals..
In addition to the Euclidean distance, other approaches have also been reported in the liter-

ature. In [DMP15] and [CB02], Skorokhod distance is used to measure the closeness between
continuous signals with promising results. In [DMP15], the author argues that Skorokhod is
well suited for conformance checking and also provides benchmarks using a prototype tool that
mechanises his strategy. In [CB02], however, the author questions the use of Skhorokod in a
multiple input system and also in unstable systems.

3.3 RESTORING SOUNDNESS VIA REACHABILITY ANALYSIS

Reachability analysis is a technique to explore the state space of a system in order to de-
termine whether a particular set of states is reachable from a given set of initial states. It is
often used to overcome the complexity of model checking safety properties by calculating an
over-approximation of the reachable set of states (through a less computationally intensive al-
gorithm); then, once this over-approximation satisfies the safety property, the actual system is
also proven safe. In case a spurious counter-example is detected, the over-approximation is
refined to exclude such a counter-example and the procedure is repeated until either safety is
proven or a real counter-example is found. This approach (i.e., combining reachability with
counter-example guided abstraction refinement) has proven useful in model checking hybrid
systems were basic problems are often intractable [LPY01].

In our context, we use reachability analysis to provide an over-approximation of the changes
in the system dynamics around the sampling points. This will in turn provide us with an over-
approximation for the value of ∆p used in the adopted conformance testing algorithm. To this
end, we use the reachability analysis algorithm and tool developed by Matthias Althoff [Alt10].

In Section 3.3.1, we present an overview of the work regarding reachable sets for hybrid
systems [Alt10, AK11]. In Section 3.3.2, we present the definition of zonotopes, which are
the geometric forms used to represent reachable sets. Afterwards, in Section 3.3.3, we show
how we use reachability analysis to obtain sound test cases, taking advantage of the results
presented in Section 2.3.3. An initial version of this strategy was first described in [ACS+17a].

3.3.1 Reachable sets for hybrid systems

Reachable sets for hybrid systems are defined to capture both the discrete (Rz(t)) and the
continuous (Re(t)) behaviour for a given absolute point in time t [Alt10]. Concerning the
discrete behaviour, Rz(t), the calculation of its reachable sets is required only for the discrete
jumps. This can be achieved by verifying which guard sets are reached by the continuous
dynamics. This is done by computing possible intersections between the reachable sets that
represent the trajectories bounds and the guard sets. Since discrete reachable sets yield the
reachable locations of the associated hybrid automaton, and in testing we can typically observe
only the valuations of the continuous variables, we restrict our focus to continuous reachable
sets.

Regarding the continuous dynamics, the computation of the reachable set is performed
considering how the system variables evolve with time. We have adapted the formal definition

3.3. RESTORING SOUNDNESS VIA REACHABILITY ANALYSIS 33

of the continuous reachable sets presented in [Alt10], in order to be used in our context, which
involves a slight variation on the formal definition of hybrid automata. For instance, instead
of using just the absolute time point t, we generalise it for a super-dense time domain (with
jumps).

Definition 18 (Exact Continuous Reachable Set for Hybrid Automata). The continuous reach-
able set Re of a hybrid automaton HA at a time t is defined as:

Re(t) =
{

φ(t, j) ↓VO | φ ∈ Tra js(HA)∧ j ∈ N
}

Each element in the above set is a valuation (at time t after j jumps) restricted to the output
variables. Recall that φ(t, j) ↓ VO denotes the trajectory restriction (see Definition 6). The set
contains all such elements, for all trajectories of the automaton HA. Figure 3.6 illustrates the
temperature trajectory of the thermostat example (see Figure 2.2) starting from multiple initial
states. It also depicts the exact continuous reachable set at a time t, namely, Re(t).

Figure 3.6: Thermostat - Trajectories for multiple initial states

In practice, however, exact reachable sets are only computable for some restricted forms
of dynamical systems [LPY01]. Therefore, over-approximations of the exact reachable sets,
represented by R(t) ⊇ Re(t), are used. The details of the computation of R(t) is out of the
scope of this work, since we use the approach proposed by Althoff [Alt10, AK11] and refer to
it for more details. Moreover, the definition of R(t) can be lifted to time intervals: R([0, t]).

Definition 19 (Reachable Set of a Time Interval [Alt10]). The reachable set of a time interval
is the union of reachable sets at points in time within the interval t ′ ∈ [0, t]:

R([0, t]) =
⋃

t ′∈[0,t]
R(t ′).

Concerning the thermostat example, Figure 3.7 shows the computed over-approximated
reachable set of a time interval. In this case, it represents the reachable set R([0, t]). The central

3.3. RESTORING SOUNDNESS VIA REACHABILITY ANALYSIS 34

lines are the system behaviour and the surrounding area corresponds to the over-approximated
reachable sets.

Figure 3.7: Thermostat - Overapproximation of reachable set from 0 to t

3.3.2 Reachable set representation

There are several ways to represent reachable sets; ellipsoids [Che15], orthogonal polyhedra
[BMP99] and oriented rectangular hulls [SK03] have been tried in the past. In this work,
reachable sets are represented in the form of zonotopes, which consist of a series of points
that characterise geometric forms. Zonotopes are a compact and efficient way to portray high-
dimensional sets due to their efficient computability [AK11].

However, using zonotopes has a downside when it comes to calculating intersections with
other geometric forms (e.g., guard sets). Some techniques for over-approximating zonotopes
[ASB10, GG08] cope with time intervals and intersections.

The generator representation (G-representation) of a zonotope is defined by a centre c, and
a set of points, i.e., the generators:

Definition 20 (G-representation of a zonotope [Alt10]). A zonotope is a set

Z=
{

z ∈ Rn|z = c+
e

∑
i=1

βi ·g(i),−1≤ βi ≤ 1
}
,

with c,g(1), ...,g(e) ∈ Rn.

In this definition, c represents the centre point, g(i) are the generator points and βi represents
the values in the [−1,1] interval. The product resulting from [−1,1] · g(i) is a line l̂i as can be
seen in Figure 3.8(a), which illustrates the iterative construction of a zonotope. Note that adding
generators, and therefore lines, results in better defined forms at each step.

Definition 20 can be interpreted as the Minkowski sum of a finite set of line segments,
where l̂i = [−1,1] ·g(i). The Minkowski sum is a geometric operation used to add sets of points

3.3. RESTORING SOUNDNESS VIA REACHABILITY ANALYSIS 35

Figure 3.8: Iterative construction of a zonotope (taken from [Alt10])

that represent shapes. The general formula is given by A⊕B = {a+ b | a ∈ A,b ∈ B}. For
instance, the Mikowski sum of two sets of points forming triangles A = {(1,0),(0,1),(0,−1)}
and B = {(0,0),(1,1),(1,−1)} would result in a shape similar to an hexagon represented by
the set of points {(1,0),(2,1),(2,−1),(0,1),(1,2),(0,−1),(1,−2)}.

Figure 3.9 illustrates the zonotope representation of those reachable sets of the thermostat
example. The geometric forms enclosing the central line are the computed zonotopes.

Figure 3.9: Thermostat - Zonotopes

3.3.3 Computing the specification maximum change via reachability analysis

In this section, we explain how to use reachable sets to compute the specification maximum
change described in Definition 16. Our approach consists of calculating the reachable sets
for time intervals [t− p/2, t + p/2], where p stands for the period of a periodic test case (see
Definition 16), considering every point in the set of sampling points.

To restore the soundness of our testing strategy, we need to compute the maximum value
deviation within the obtained reachable sets. In order to compute this maximum value, we find

3.4. RESULT ANALYSIS 36

the extreme points of each reachable set and calculate their difference. Once we have computed
the maximum changes of the specification, we can obtain sound results (see Definition 17).

We define the specification maximum change in terms of its reachable sets.

Definition 21 (Specification Maximum Change based on Reachable Sets). Given a specifica-
tion HA, a period p > 0, and a test duration T , the maximum change of HA with respect to
(u,y) and T is defined as ∆RS

p = maxt∈T ∆RS
p (t), where

∆
RS
p (t) = max(R([t− p/2, t + p/2]))−min(R([t− p/2, t + p/2]))

Considering that the result represents an over-approximation of the trajectory boundaries,
we can assume that the actual specification maximum change (i.e., ∆p) will be contained within
the zonotopes. It is safe to infer that the distance between the extreme points of a zonotope will
be at least equal to the distance between the extreme points in the specification trajectory itself.
Therefore, we conclude that ∆RS

p ≥ ∆p for all hybrid automata. Thus, if we consider ∆RS
p ,

computed via reachability analysis, we also achieve a sound conformance testing strategy.
Algorithm 2 gives an overview of the ∆RS

p computation process. The specification model
serves as input, which is fed into an external tool (see Chapter 4) where the zonotope compu-
tation is handled (line 3). Then, we iterate over the results in order to determine the difference
between the extreme points in each zonotope (lines 4-6). The resulting ∆RS

p yields from the
zonotope with the greatest vertical amplitude (lines 8-15).

Algorithm 2 ∆RS
p Computation

1: inputs: A hybrid automaton HA, a period p, an input stimuli u;
2: output: ∆RS

p
3: Zonotopes = computeReachableSets(HA, p, u)
4: for each zt ∈ Zonotopes do
5: ∆RS

p (t) = max(zt)−min(zt)
6: end for
7: ∆RS

p = 0
8: t = 0
9: while t ≤ T do

10: if ∆RS
p (t)> ∆RS

p then
11: ∆RS

p = ∆RS
p (t)

12: end if
13: t = t + p
14: end while
15: return ∆RS

p

3.4 RESULT ANALYSIS

In this section, we present four possible scenarios based on our running example (Section
2.2.2). Using these scenarios, we demonstrate different possible outcomes of conformance

3.4. RESULT ANALYSIS 37

testing using our process, as well as their interaction with the steps for guaranteeing soundness.
To obtain these results, we have used a prototype tool for conformance testing of hybrid

systems. The tool generates test cases, performs reachability analysis to compute ∆RS
P and

applies the generated test suite in order to verify if the (τ ,ε)-conformance holds. We refer to
Chapter 4 for more details on the tool development, as well as other case studies more complex
than the thermostat example. Here, we abstract from implementation details to focus on the
aspects concerning our process.

The scenarios presented in the following sections reflect aspects of steps 4 and 5 of the
proposed process. Implementation 1 (Section 3.4.1) represents the best case scenario, where
the implementation passes the test with the strict error margins τ and ε , without the need of
∆RS

P . However, this scenario is not necessarily the usual case. Then, in Section 3.4.2, we
present Implementation 2 (Figure 3.1-step 4a), where the test suite fails (i.e., at least one test
case yields a fail verdict), but the failure is not due to a non-conforming implementation, but
rather unsoundness of the test suite with respect to the chosen sampling rate and conformance
bounds. Hence, the conformance testing algorithm takes into account ε +∆RS

P as the value of
E.

In Section 3.4.3 we consider Implementation 3 (Figure 3.1-step 4b), in which the adjusted
sound bounds are deemed unacceptable, which leads to the revision of the initial parame-
ters. In this case, the sampling rate is increased resulting in tighter and acceptable bounds.
In Section 3.4.4, Implementation 4 (Figure 3.1-step 5) represents the case where the adjusted
sound bounds are considered acceptable, but even then, the implementation is found to be non-
conforming and, hence, the bounds have to be relaxed by the user. This approach can provide
the user with a quantitative degree of how incorrect the implementation is.

For all implementations, the test case generation is performed on the specification presented
in Example 1 by simulating the specification model with a fixed sampling rate and a fixed input
trajectory. For the sake of simplicity, the inputs (h(t) and i(t) – see Figure 2.2) are constant
signals whose values are selected at the start of the simulation. In other words, the input values
never change once selected. Additionally, all models described in this section use the same set
of input values, namely h(t) = 20.0 and i(t) = 0.0.

3.4.1 Scenario 1 – strictly sound conformance results

The first case concerns an implementation that is a modified version of the specification
(see Example 1) in such a way that its temperature trajectory is shifted 3 degrees below and
0.1 seconds to the left compared to the specification’s behaviour. Thus, the implementation
is (τ ,ε)-conforming with respect to the specification, once we take τ = 0.1 and ε = 3. Both
trajectories are shown in Figure 3.10.

For a fixed implementation, it is possible to find an adequate sampling rate that leads only
to sound test cases. For this particular example, we have considered a sampling rate of 0.01
seconds, resulting in 1000 test cases. This example represents the best case scenario, where,
due to an appropriate choice of sampling rate, only sound test vectors are generated.

Table 3.1 displays some of the test vectors we have obtained from the specification, whereas
Table 3.2 displays the temperature values for the corresponding implementation sample points.

The difference in output values between the specification and the implementation for all

3.4. RESULT ANALYSIS 38

Figure 3.10: Temperature trajectory

Tra js(VI) TSS(VO)

t h(t) i(t) x(t)
1.00 20 0 14.48
4.00 20 0 4.18
7.00 20 0 6.49

10.00 20 0 17.74

Table 3.1: Test cases generated from the specification

Tra js(VI) TSS(VO)

t h(t) i(t) x(t)
0.90 20 0 11.48
3.90 20 0 1.18
6.90 20 0 3.49
9.90 20 0 14.74

Table 3.2: Values obtained from the implementation

sample points is within the conformance bounds (τ = 0.1 and ε = 3) and therefore the imple-
mentation passes the test suite.

3.4.2 Scenario 2 – unsound test cases

As shown in Section 2.3.3, taking the strict bounds of τ and ε may result in unsound confor-
mance verdicts. Considering the thermostat example, assume that we use the higher sampling
rate of 0.03 for the same implementation. At 2.04 seconds of simulation time, the tempera-
ture in the specification trajectory reaches the value of 18.049 degrees, which triggers a dis-
crete change and the temperature starts to fall. In a similar way, the implementation trajectory
reaches 15.049 degrees at 1.94 seconds and should also start to decrease. This can be seen in

3.4. RESULT ANALYSIS 39

Figure 3.10. These values are the expected ones and are still within the conformance bounds.
However, since we set the sampling period to 0.03, it means that 2.04 belongs to the set of

sampled points, whereas 1.94 does not. At exactly 2.04 seconds, the closest sampling point to
1.94 that respects the 0.1 seconds margin (value of τ) is 1.95. At this moment, the temperature
in the implementation has already started to decrease and has a value of 14.448 degrees, which
makes it non-conforming because this value is outside the 3 degrees margin (value of ε).

Note that we have demonstrated that the implementation under test is indeed (τ , ε)-conforming
to the specification (for a given τ = 0.1 and ε = 3); hence, the verdict is clearly unsound. Figure
3.11 depicts this unsound non-conforming example.

Figure 3.11: Temperature trajectory

As stated earlier, this issue is caused by the lossy discretisation process. A solution that
guarantees soundness regardless of the sampling rate is to find the value that represents the
maximum possible theoretical deviation of the specification trajectory between samples i.e.,
find ∆p. For that, our tool uses reachability analysis (for implementation details, see Chapter
4). For the thermostat example, this automatic process yields ∆RS

P = 0.984 degrees as a result.
Thus, for this example, by extending the error margin, ε , of 0.984, we obtain sound results

(see Definition 17). Therefore, setting the error margin value to 3.984 instead of 3, results in a
pass verdict. This occurs because 3.984 is greater than the difference between the temperature
value in the specification and implementation samples, 18.049 and 14.448 respectively, yielding
a sound verdict.

3.4.3 Scenario 3 - increasing the sampling rate to tighten conformance bounds

Consider the same implementation used in Case 2. In light of the pass verdict, the resulting
error margin value of 3.984 might be considered inadmissible (i.e., too high). Considering that
the original margin of error was 3.0, with this greater value, certain implementations that would
otherwise result in fail verdicts, might now result in pass.

It is possible to mitigate this issue by increasing the sampling rate and, thus, lowering the
∆RS

P value and, consequently, E. For instance, in this case, a sampling rate of 0.001, yields 0.437

3.4. RESULT ANALYSIS 40

as ∆p. Note that choosing a higher rate leads to increased hardware usage and the maximum
possible value might be limited by system or environment constraints.

Finally, it should also be possible to find the smaller sampling rate that results in sound
verdicts, given a fixed ∆RS

P . For example, one might be interested in the minimum sampling
rate that achieves soundness for a ∆p value of 0.5. However, this approach was left unexplored
and open for further study.

3.4.4 Scenario 4 - adjusting τ and ε to achieve conformance

For some non-conforming implementations, even if one extends the margins with ∆p, the
implementation will fail the conformance testing. In such a case, one might want to adjust the
conformance parameters τ and ε in order to find the degree of non-conformance between the
implementation and the specification.

Figure 3.12: Unconforming thermostat implementation

Consider the faulty implementation depicted in Figure 3.12 that leads to a trajectory which,
at some points, does not respect the intended conformance bounds of 3 value units and 0.1 time
units. Even after adjusting the bounds with ∆RS

P , the specification and the implementation are
found to be non-conforming; then, it is possible to adjust the parameters τ and ε gradually until
the implementation is considered (τ,ε)-conforming. This can be used to determine the degree
of (non-)conformance of the current implementation with respect to the specification.

For the implementation depicted in Figure 3.12, if we fix τ = 0.1, the minimum value for
ε that makes the implementation conforming with respect to the implementation is 3.6021.
Similarly, with a fixed ε = 3, the minimum value for τ is 1.5. These margins might not be
practically admissible and, hence, the implementation may be rejected altogether.

However, it is worth noting that, depending on the dynamics and the chosen fixed value for
ε , it is possible that there is no value for τ that results in a conforming verdict. For instance,
considering the thermostat implementation described in Section 3.4.1, if one fixes ε = 2.5,
there are certain points in the specification signal (e.g., the peaks of the signal) that will never
be conforming, regardless of τ .

1This result was found with the tool’s assistance, by iteratively increasing the parameter and checking confor-
mance

41

4 EMPIRICAL ANALYSIS

In this section, we describe a prototype implementation of the ideas that are present in the
previous chapter. This prototype is an extension of a previously developed tool for confor-
mance testing of hybrid systems [AMR15a]. We give a brief explanation of the tool, but, we
focus mostly on the new aspects concerning soundness of conformance testing. In addition
to test case generation and conformance analysis, already implemented in the tool presented
in [AMR15a], the tool now interacts with a reachability analysis tool called CORA [Alt15] to
calculate sound conformance analysis margins.

CORA (COntinuous Reachability Analizer) [Alt15] is a Matlab toolbox for reachability
analysis of continuous and hybrid systems. It is used in our tool to compute the specification
maximum change, considering a given sampling rate.

4.1 TOOL OVERVIEW

The overall goal of the tool is to perform conformance testing in three stages, namely, test
case generation, test case execution, and conformance analysis. To this end, it samples the
specification considering an input signal and a given sampling rate, calculates the appropriate
error margins (for sound analysis), executes the test cases on the system under test and, finally,
reaches a verdict analysing the results with respect to the given conformance bounds and the
calculated error margin. The starting point is, hence, models representing the specification and
the system under test.

The application of test case generation and execution methods results in generating input-
output data for both the model and the implementation under test. The application of the
conformance analysis is based on the notion described in Definition 10. This results in a con-
formance verdict, possibly accompanied with a counter-example for conformance violation,
which is fed into the GUI (see Figure 4.1).

To explain the general usage of the tool we have partitioned Figure 4.1 in 3 areas. The
area marked as 1 is the area where the user selects the models for input and also where the
output console is located, which serves to exhibit messages to the user. Area 2 is for executing
commands and parameter definition. Here, the user can generate and execute test cases and
perform conformance analysis. The analysis can only be done once the user defines the ε and
τ in the appropriate fields. In area 3, the user can select which output he wants to inspect. If
the tool finds a counterexample during the conformance analysis for this output, the signal and
the error are displayed here as well. We refer to [AMR15a], for further details on this tool.

4.1. TOOL OVERVIEW 42

Figure 4.1: Graphical User Interface of the tool

4.1.1 Tool extension

In order to apply the strategy described in Section 3.3, our tool executes CORA in back-
ground to perform reachability analysis. The seamless integration of the tools is made pos-
sible because both are implemented in the Matlab environment. However, the specification
model format required by our tool and the one required by CORA are different, so an addi-
tional CORA-readable model is required for performing the reachability analysis. Currently,
although it is possible to mechanise, there is no method for automatic translation. Moreover,
it is also expected that the name of variables and the sampling period in both models are the
same.

Figure 4.2 shows the new tool interface extended with new features. For instance, there is
a new button on the top right side to start the CORA process in the background and perform
the reachability analysis as shown in Figure 4.3. The results of this computation will appear
in the Delta (∆p) field and is added automatically to Epsilon (ε) resulting in the value of the
parameter E of the verdict algorithm (Algorithm 1 - Section 2.3.2).

Once given an input model, CORA calculates the trajectory bounds for the respective
model. These bounds are meant to delineate over-approximations of the reachable sets of the
trajectories. CORA uses zonotopes for reachable sets representation. In summary, CORA
calculates and returns to our tool the zonotopes obtained from the input model.

Zonotope manipulation is done via the Matlab toolbox named Multi-Parametic Toolbox
(MPT) [KGB04]. Using this toolbox, we find the extreme points for each zonotope, i.e., the
minimum and maximum values contained in the reachable sets. These values are used to find
the maximum variation possible within the trajectory, as shown in Definition 21. Each reach-
able set accounts for the region delimited by the time constraints t− p/2 and t + p/2, where
each t belongs to the set of sampling points.

4.2. CASE STUDY 1: A SUSPENSION SYSTEM 43

Figure 4.2: New Graphical User Interface of the tool

Figure 4.3: Graphical User Interface modifications

Once the specification maximum change is calculated, its value is displayed to the user, and
it is automatically added to the value of Epsilon, as previously said. The user can then determine
whether the calculated margin is tight enough to yield practically meaningful conformance
results or whether he should increase the sampling rate to obtain tighter margins. We have
illustrated these possibilities in examples described in Section 3.4, when we computed ∆RS

P for
certain scenarios. Now, with the aid of the extension we implemented in the aforementioned
tool, we present two case studies where we apply the process for sound conformance testing
proposed in this work.

4.2 CASE STUDY 1: A SUSPENSION SYSTEM

This section presents the applicability of our strategy considering a more complex case
study: an automotive pneumatic suspension system [MS00] that can be modelled as a hybrid
automaton. The system’s goal is to increase driving comfort by adjusting the chassis level to

4.2. CASE STUDY 1: A SUSPENSION SYSTEM 44

compensate for road disturbances. This is achieved by a pneumatic suspension that connects
the valves attached to each wheel to a compressor and an escape valve (see Figure 4.4a).

The system aims to keep the chassis level as close as possible to a defined set point in
each of the four wheels. Sensors can measure the deviation and those values are passed to a
controller. The controller reads these values and operates the compressor and the escape valve
to either pump air into or blow air off one of the wheel’s valves. For example, to increase the
level at the front right wheel, the compressor has to be turned on, the escape valve must be
closed and the valve connected to the suspension of the front right wheel must be opened.

This decision to increase or decrease chassis level is based on tolerance intervals defined for
each wheel (see Figure 4.4b). Whenever the chassis height exceeds the outer tolerance interval
(oti) for one wheel, the controller decreases the chassis level by opening the escape valve and
the wheel’s valve. Once the chassis level is below the upper limit of the inner tolerance interval
(iti), the controller closes both valves. The process to increase the chassis level is performed
analogously using the compressor instead of the escape valve.

Furthermore, an input signal informs the controller whether the car is driving through a
bend. If so, the compressor and escape valve must be switched off, as the priority is given to
different stability controllers over this one that keeps chassis level within tolerance intervals.
In this example, only two operating modes, namely driving and bend, are modelled. However,
one could easily implement other modes such as stopped that could work similar to driving.
Additionally, we consider [sp + otl,sp + otu] and [sp + itl,sp + itu] as the outer and inner
tolerance interval in mode driving, respectively. Here, sp represents the set point which is the
target value the chassis level and otl, otu, itl and itu represents the tolerance thresholds as seen
in Figure 4.4b.

(a) The mechanic system (b) The tolerance inter-
vals

Figure 4.4: Suspension system [MS00]

4.2. CASE STUDY 1: A SUSPENSION SYSTEM 45

4.2.1 Hybrid automaton representation

The automaton we present here is a modified version of the original one presented in
[MS00]. We have made a few changes so that the example can work in the tools we use, since
the original model contains certain unsupported features. For instance, it comprises several
smaller modules that are supposed to work in parallel via labelled synchronisation. Addition-
ally, the model contains non-deterministic differential equations where the variables derivative
receive an interval instead of a direct value assignment, as we normally see and use in our
examples.

Thus, we have modified the example in such a way to remove the parallelism but keeping
the overall behaviour intact (i.e., computing the parallel product of the constituent hybrid au-
tomata). Additionally, we have removed the non-determinism by adding inputs that can assume
the same values contained in the aforementioned intervals and are assigned directly to the cor-
responding variable derivative. The model we present here contains 4 locations with several
differential equations each, as it can be seen in Figure 4.5. Note that, in this figure, there is a
transition from a ’super-state’ to the state bend. This is a concept not supported in the tools
we use. We chose to portrait the figure this way to simplify visualisation. In the actual model,
there is a transition from each state to the state bend.

The system receives 4 inputs and it outputs the current chassis level c. The inputs are bend,
dist, cp and ev. The first (bend) triggers the change between operating modes, e.g., switching
from driving to bend. The second (dist) corresponds to the disturbance level coming from the
environment, which indicates road perturbations such as small depressions or elevations. The
last two (cp and ev) dictate the change in chassis level performed by the compressor and the
escape valve, respectively.

This automata works as follows. The system starts on the in_tolerance state, which rep-
resents the state where the chassis is within the tolerance interval and all valves are closed as
well as the compressor. Whenever the controller needs to increase the chassis level, the system
switches to the up state. Analogously, the system switches to the down state when the chassis
level needs to be decreased. The fourth state is called bend and it represents the bend operating
mode that is triggered whenever the car is driving through a bend.

In order to switch locations, a transition guard must hold. For instance, the transition from
in_tolerance to up is only performed when (1) the car is not driving through a bend, (2) the
filtered chassis level f is less than the outer tolerance interval and (3) the timer t is equal to
the sampling period t_sample. The first condition checks whether there is a change in the
operating mode. Whenever the bend signal is equal to 1 the system switches to the bend state,
regardless of the current state. Thus, this verification is performed in every transition. The
second condition compares the filtered chassis level against the tolerance intervals, which is
the major prerogative for a change in the chassis level and thus a change of location. The
third condition also occurs in all transitions of the system and is there to guarantee that these
transitions will only happen within the sampling points. Additionally, the timer t is always
reset to 0 after any transition so that the third condition can be checked again during future
transitions.

Almost all transitions follow this same pattern. There is a bend condition followed by a
chassis level check to verify whether it warrants a state change. Finally, the timer needs to be

4.2. CASE STUDY 1: A SUSPENSION SYSTEM 46

Figure 4.5: Hybrid Automaton of the Suspension System

equal to the system period for the transition to occur. Two exceptions to this pattern occur in
transitions coming from up and down, and going to in_tolerance. In these cases, there is an
additional operation, which is when the filtered chassis level is reset to the set point. The other
exceptions are transitions involving the bend state; the reason for this is because the change to
or from this state is triggered regardless of the chassis level.

Each location also has an invariant followed by 5 differential equations. The invariant
checks if the timer is still less than the period, while the equations represent the required
changes in the internal system variables as well as the output c. In the up and down states,

4.2. CASE STUDY 1: A SUSPENSION SYSTEM 47

the chassis level changes are dictated by the compressor and escape valve inputs, respectively.
However, it remains constant on the in_tolerance and bend states. Furthermore, we note that
the system uses the filtered chassis level f instead of the current chassis level c on its guards.
The f computation uses a combination of the current chassis level, environmental disturbances
and a filter constant T .

4.2.2 Conformance testing

In order to simulate the hybrid automaton model, it is necessary to model how the system
inputs change over time. To mimic the system execution in a normal environment, we have
simulated it using dynamic inputs. With the exception of the bend, the other inputs change
over time while respecting their constraints. In this example, bend is always equal to 0. The
reason behind this decision is because when the system is operating in the bend mode, the
chassis level remains stationary, which negates the data loss that happens during the sampling
process. Thus, there is no unsound verdict when the output trajectory is constant. In what
follows, we apply the process steps in order to achieve sound results.

The first step in the process is to find a suitable period for the system. Using the steps
described in Section 3.2.1, we have analysed the system in the frequency domain and used
0.999 as the limit value for cumulative energy. Hence, the cutoff frequency for this example
is 13.3 Hz, leading to an approximate sampling rate of 0.0375, after applying the Nyquist-
Shannon theorem. Similar to the thermostat example (Section 3.4), we have also created mod-
ified implementations by shifting the output trajectory Fc. However, in this case study, we have
only considered a time-shift (τ) of 0.3 seconds. Thus, the implementation should be (τ ,ε)-
conforming when using τ = 0.3 and ε = 0. Considering these values, a sound conformance
analysis should lead to a pass verdict.

However, this is not the case and there are a few counter-examples as it can be seen in Tables
4.1 and 4.2. Despite using the same input trajectories, the output value in the implementation
is different from the expected one, given by the specification. Since the implementation only
had a time-shift, the values should remain the same 0.3 time units later, which did not happen.
As we explained in Example 4, this discrepancy occurs because the values obtained from the
specification do not belong to the sampling points taken from the implementation.

Tra js(VI) TSS(VO)

t bend dist cp ev c
2.96 0 -0.49 2.31 0 4.86
5.32 0 0.54 0 1.57 3.71
8.85 0 -0.87 3.28 0 5.14

Table 4.1: Test cases generated from the specification using 0.0375 as period

As explained in details in Section 3.3, we computed ∆RS
p using reachability analysis in

order to restore the soundness of our conformance analysis. For this particular example, the
resulting value is 0.102, and adding ∆RS

p to ε , before the conformance check, resulted in a pass
verdict, as expected.

4.3. CASE STUDY 2: AUTOMOTIVE AIR-FUEL RATIO CONTROL 48

Tra js(VI) TSS(VO)

t bend dist cp ev c
3.26 0 -0.49 2.31 0 4.81
5.62 0 0.54 0 1.57 3.77
9.15 0 -0.87 3.28 0 5.08

Table 4.2: Values obtained from the implementation using 0.0375 as period

Now, consider that the user finds the ∆RS
p value too high. One way to lower it is to increase

the sampling rate. Suppose that, the system uses a period of 0.03 instead of 0.0375. In this
case, the unsoundness issue still persists at similar points in the trajectory as presented in tables
4.3 and 4.4. However, this time the reachability analysis leads to a ∆RS

p of 0.074.

Tra js(VI) TSS(VO)

t bend dist cp ev c
2.94 0 -0.48 2.29 0 4.82
5.31 0 0.55 0 1.59 3.75
8.85 0 -0.87 3.28 0 5.14

Table 4.3: Test cases generated from the specification using 0.03 as period

Tra js(VI) TSS(VO)

t bend dist cp ev c
3.24 0 -0.48 2.29 0 4.77
5.61 0 0.55 0 1.59 3.81
9.15 0 -0.87 3.28 0 5.08

Table 4.4: Values obtained from the implementation using 0.03 as period

4.3 CASE STUDY 2: AUTOMOTIVE AIR-FUEL RATIO CONTROL

This second case study is based on a model of a controller for an automotive air-fuel ratio
(AFR) control system [CSB+06]. The AFR is an important measure in an internal combustion
engine, which directly affects its performance and pollution.

In its formal model [JDK+14], the full system is comprised of two subsystems, namely,
the plant and the controller. The plant captures and manipulates the physical aspects of certain
components of the engine, such as the throttle and the intake manifold. It is a complex system
that relies on time constraints and has a high degree of non-linear dynamics, which makes the
application of formal techniques without significant simplifications non-trivial. The controller,
however, can be viewed as a hybrid system that considers continuous inputs and outputs and
switches the operating mode as required.

4.3. CASE STUDY 2: AUTOMOTIVE AIR-FUEL RATIO CONTROL 49

In this section, we focus on modeling and analysing the controller’s behaviour. In what
follows, we present a hybrid automaton representation of the controller and then we consider
all steps of the proposed process for sound conformance verification discussed in the previous
chapter.

4.3.1 Hybrid automaton representation

The controller receives 5 inputs from the outside components: the inlet air mass flow rate
measurement (ṁa f), the air-fuel ratio (λm), the throttle angle (θ), the engine speed (ω) and
the sensor failure event (f ail_event). It outputs only the commanded fuel (Fc), which serves
as input to the plant. It also makes use of internal variables, which are the rate of air mass
pumped into the cylinder (pe) and the integrator state for the PI controller (i). Its dynamics also
considers several coefficients that are detailed in its formal model [JDK+14].

Figure 4.6: Hybrid automata representation of the controller [JDK+14]

A visual representation of the controller hybrid automaton is shown in Figure 4.6 (taken
from [JDK+14]). The explanation for the discrete states of the controller are as follows:

• Startup mode. The controller operates in this mode whilst the engine is below a cer-
tain temperature threshold. In our model, we simulate this behaviour by using a timer.
Whenever the timer condition is met, the controller switches to the normal mode.

• Normal mode. The controller remains in this mode whenever all components and vari-
ables are operating within the expected bounds.

4.3. CASE STUDY 2: AUTOMOTIVE AIR-FUEL RATIO CONTROL 50

• Power enrichment mode. The controller enters this mode whenever the engine has to
operate in a high powered mode. The conditions to switch from and to this mode are
based on the throttle angle (θ) being below or above a certain limit.

• Sensor fail mode. This mode represents the situation when a problem is detected in the
system and a failure signal is sent to the controller. Once this situation occurs, the system
cannot recover, which means that the controller will remain indefinitely in this mode.

As shown in Figure 4.6, the controller remains in the startup mode up to t1 seconds, when
it switches to the normal mode. The transition to the power enrichment mode is triggered
whenever the throttle angle input (θ) is greater than 70°, and it remains there until θ drops
below 50°. The controller can also enter and shall remain in the failed mode if a failure event
is detected.

4.3.2 Conformance testing

Now, we present how we have applied our process for sound conformance testing in this
example. As previously said, the first step is to find a suitable period for the system. Applying
the strategy described in Section 3.2.1, it yields a cutoff frequency of 19,8 Hz, which results in
a sampling rate of approximately 0.025 when using the Nyquist-Shannon theorem.

Similar to the other examples, we have also found an implementation that leads to a un-
sound verdict, which was a result of an intentional shift in the output trajectory. Thus, the
implementation has a time-shift of 0.5 seconds with respect to the specification model. Thus,
considering τ = 0.5 and ε = 0, a sound conformance analysis should lead to a pass verdict.

The tables below illustrate the unsound case. The results presented in Tables 4.5 and 4.6
were obtained under the same input stimuli.

Tra js(VI) TSS(VO)

t ṁa f (t) λm(t) θ ω f ail Fc(t)
0.32 0.32 14.7 35 2577 0 9.86
1.14 0.67 14.7 64 2853 0 11.73
4.57 0.85 12.5 75 3245 0 15.68

Table 4.5: Test cases generated from the specification

Tra js(VI) TSS(VO)

t ṁa f (t) λm(t) θ ω f ail Fc(t)
0.82 0.32 14.7 35 2577 0 9.79
1.64 0.67 14.7 64 2853 0 11.64
5.07 0.85 12.5 75 3245 0 15.55

Table 4.6: Values obtained from the implementation

Since the implementation only had a time-shift, the values should have remained the same
0.5 time units later, which did not happen due to mismatching sampling points. Thus, this

4.4. PERFORMANCE ANALYSIS 51

implementation requires that we compute ∆RS
p to obtain a sound verdict. We have used our

extension with Reachability Analysis for this computation and the value obtained for ∆RS
P was

0.153. As expected, considering this value yields a pass verdict. Considering the low value
of ∆p in this case, it is possible to accept these results if the sampling rate cannot be lowered
further. Otherwise, using lower values for the periodic sampling might yield lower values of E.

4.4 PERFORMANCE ANALYSIS

We present the metrics for generating test scenarios using the examples presented in this
work, namely the thermostat, the suspension system and the AFR controller. This empirical
evaluation analyses the automatic steps in the proposed process and measure the time it takes
for them to complete. We have also examined the use of different sampling rates and how it
affects performance.

We focus on the metrics related to (i) the time taken to find a suitable sampling rate given
a specification, which is the first step in the proposed process (Figure 3.1 - Step 1); (ii) the
time taken for computing ∆RS

p (Figure 3.1 - Step 3); (iii) the time taken to generate and execute
the test cases and reach the conformance verdict (Figure 3.1 - Step 4a). In all tables presented
below, we show the time in seconds.

The data in Table 4.7 is related to Step 1. We have noticed that the time it takes for com-
puting a sampling rate is mostly constant. The slight difference in time seems to be affected by
the amount of states and differential equations which are also shown in the table. However, we
have not explored systems with a really large amount of states to reach a final conclusion and
this is left for future work.

Example States Equations Time
Thermostat 2 2 0.12 s

AFR Controller 4 8 0.13 s
Suspension System 4 20 0.16 s

Table 4.7: Computational time of Step 1

As for Steps 2 and 3, we have noticed that the computational time of ∆RS
p is directly related

to the sampling rate of the input model. Table 4.8 displays the average amount of time, in
seconds, that the tool takes to compute ∆RS

p for the thermostat, the AFR controller and the
suspension system. Analogously, Table 4.9 displays the time for generating and executing test
cases and reaching a verdict.

As expected, the smaller the period, the slower it takes to yield a result. Nonetheless, the
time seems to grow linearly, even when using more complex examples.

4.4. PERFORMANCE ANALYSIS 52

Time
Period Thermostat AFR Controller Suspension System

0.5 2.3 s 4.3 s 5.7 s
0.1 3.9 s 6.8 s 8.3 s
0.03 5.8 s 8.4 s 10.7 s
0.01 7.1 s 10.2 s 12.8 s

Table 4.8: Computational time of Step 3

Time
Period Thermostat AFR Controller Suspension System

0.5 3.5 s 5.2 s 6.6 s
0.1 5.1 s 8.3 s 9.5 s
0.03 6.4 s 10.1 s 12.2 s
0.01 8.9 s 11.9 s 13.8 s

Table 4.9: Computational time of Step 4a

53

5 CONCLUSION AND FUTURE WORK

In this dissertation, we have proposed a process for sound conformance testing of hybrid sys-
tems. For that, we have used state-of-the-art results that include the conformance notion pro-
posed in [AHF+14] and the tools presented in [AMR15b] and in [Alt15]. We have also used
and implemented the strategy described in [MM16a] to guarantee that our strategy for confor-
mance testing is sound.

This project was conceived when we realised the absence of a structured process with well-
defined steps for conformance testing of hybrid systems. This project involved four stages,
three of them being research-related and one implementation part. The first research subject
was the study of existing conformance testing strategies for hybrid systems. When we had
settled on working with (τ,ε)-conformance, the soundness issue was brought to our atten-
tion. That was when we shifted the focus to solve this problem through reachability analysis.
The third stage was the implementation of our strategy. We have applied our research results
regarding reachability analysis and extended an existing prototype tool that already used the
(τ,ε)-conformance relation in its testing strategy. The final research component was designing
the process itself and its inner aspects, such as finding a suitable sampling rate.

As stated earlier, the proposed process consists of 5 steps: sampling rate computation,
parameters definition, reachability analysis, conformance analysis and specification/parameters
review. While some steps are manual due to requiring some intricate analysis on the system,
it was possible to automate some steps (sampling rate computation, reachability analysis, and
conformance analysis) and, thus, they were implemented in the form of a tool extension. The
implementation was fully done in Matlab, which is a well known language/environment for
control systems analysis. This also allowed for a seamless integration with the external tool we
use for reachability analysis (CORA).

We have also shown how our approach can be used discussing possible scenarios, as well
as implementing two case studies: the pneumatic suspension system and the AFR controller.
We have shown that the tool’s performance is inversely proportional to the sampling rate of the
system and the complexity seems to be linear. Although we believe the results are satisfactory,
there is room for improvement. Next we discuss related work and then some topics for future
research opportunities.

5.1 RELATED WORKS

During our literature review, we were not able to find any work that proposes a process for
conformance testing as we do here. This is not surprising considering we are dealing with a
relatively new subject and state-of-the-art strategies. Thus, we describe here two other confor-
mance notions for hybrid systems that we could have considered, namely hybriod ioco [vO09b]
and Approximate Simulation [GJP08]. Later, we also present S-TaLiRo [LFS], which is an-

5.1. RELATED WORKS 54

other tool for conformance testing of hybrid systems, and highlight its key features.

5.1.1 Hybrid Input-Output Conformance

In [VO06], the author presents the hybrid input-output conformance relation (hioco) based
on the already existing discrete-event input-output conformance relation of Tretmans [Tre08].
Input-output conformance testing refers to testing whether a system conforms to a model of the
system itself based on input and output activity.

In short, hioco states that the output behaviour of the implementation model is a subset of
the output behaviour of the specification model, but restricted to what has been specified. In
other words, the implementation is free to exhibit any behaviour after inputs that have not been
considered by the specification model. Figure 5.1 illustrates the hioco relation.

Model H1 contains two states S0 and S1, and an output trajectory that triggers the transition
from the initial state S0 to S1. A second and identical output trajectory, originating from S1,
does not cause a change in state. Model H2 contains a similar behaviour. However, it has one
additional output action (a1), which triggers a transition from the initial state u0 to state u1.
Subsequently, the output trajectory σ1 results in a self loop of the state u1.

Figure 5.1: hioco example [VO06]

Based on the hioco notion, a bilateral conformance verdict is provided, as observed in
Figure 5.1. Considering that all behaviour of H1 is contained in H2, H1 conforms to H2.
Differently, H2 does not conform to H1 since the model H2 includes behaviour that is not
contained or permitted in model H1. Note that, in this example, the non-conforming behaviour
is due to the fact that a1 is an output action. However, after new inputs, the implementation
should be free to perform any actions without violating the conformance rules. For instance, if
we consider that a1 is an input, then H2 conforms to H1, but H2 does not conform to H1.

In hioco, the dynamical behaviour of an implementation should be precisely captured in the
specification to establish conformance; any divergence of implementation behaviour (e.g., due
to sensor disturbances) is evaluated as a non-conforming behaviour. This property discourages
the application of the hioco notion in practice, since disturbances and imprecision are typically
part of continuous dynamics.

5.1. RELATED WORKS 55

5.1.2 Approximate Simulation

The authors of [GJP08, GP11] propose a conformance relation based on the output be-
haviour of CPSs. In this case, however, it deals with systems modeled by Metric Transition
Systems (MTSs) [KM15b]. In Figure 5.2, this conformance notion is depicted. In summary,
similar to the (τ,ε)-conformance notion, approximate simulation compares the output signals
of both implementation and specification models under and decides whether the signals are
close enough, based on a closeness notion.

Figure 5.2: Approximate simulation concept (adapted from [AHF+14])

To compare the outputs yM and yI , a distance metric needs to be defined over the output
space of both systems [GJP08]. The closeness notion that is used to determine how close two
output signals are, in terms of valuation, is based on a maximum margin of error ε . Moreover,
the output signals yM and yI are generated by two corresponding input signals, namely uM
and uI , respectively. As a result, approximate simulation also requires that both input signals
have a maximum difference of γ , similar to the output comparison. Thus, if these conditions
are satisfied, then the implementation approximately simulates the specification model with
precision (ε ,γ). Analogously, to the (τ,ε)-conformance notion, the reliability degree of the
verdict is determined by how lenient is the valuation of its parameters.

Thus, compared to (τ ,ε)-conformance, Approximate Simulation differs in two ways, namely
in its input signal dependency and its closeness notion. Firstly, the test suite executed on both
model and implementation are not necessarily the same. Secondly, the closeness notion that
is used to determine how near two output signals are (in terms of valuation) is based only on
spatial margin of error and does not consider temporal margin of error.

5.1.3 S-TaLiRo

S-TaLiRo [LFS] is a Matlab toolbox that performs temporal verification and conformance
testing of Hybrid Systems. In this case, temporal verification is used to prove or falsify temporal
logic properties of the system by searching for system behaviours that falsify the specification,
i.e., counterexamples to Metric Temporal Logic (MTL) properties.

In Figure 5.3, the tool architecture is depicted. When combined, the Stochastic Optimiza-
tion Engine block, the Generate Input Signals block, the System Simulator Engine block, and
the TaLiRo block form a closed loop. This loop represents the MTL falsification solution.
More specifically, the Stochastic Optimization Engine and the Generate Input Signals compo-
nents form the test case generation block of Figure 5.3, while the TaLiRo block represents the
MTL robustness computation [FP09].

5.2. FUTURE WORK 56

As for conformance testing, the tool uses the (τ,ε)-conformance notion, which was pro-
posed by the same authors and, although it focuses on analysing Simulink models, it also woks
with hybrid automata. Furthermore, it uses randomised testing based on stochastic optimisation
techniques for input selection and test generation.

Although we consider S-TaLiRo as one of the main existing tools for conformance testing
of hybrid systems, we have decided to extend the tool presented in [AMR15b] because of the
support we have received from the people behind the latter tool. This support led to a joint
research work and a cooperation that has been fruitful. Furthermore, S-TaLiRo also uses a
slightly different hybrid automata. For instance, the tool does not support reset maps in the
automata. It would require some initial work just to support some of the desired features.

Figure 5.3: S-Taliro architecture [HBA+14]

5.2 FUTURE WORK

In what follows, we outline some future work to complement the research presented here.

• Build a CORA model from the specification model
In the current state of the tool, the interface with CORA requires a separate model for
reachability analysis. Although CORA’s input model is nearly identical to the model we
use for test case generation, there are some distinctions due to the way these tools work
internally. Thus, we plan to automate the translation from the hybrid automaton model
we use to the one expected by CORA.

• Support for dynamic sampling rate
We believe that with some modifications to our conformance testing strategy and algo-
rithms, we could make use of dynamic sampling. In this case, this technique should

5.2. FUTURE WORK 57

allows us to use different rates to deal with different behaviours of the specification tra-
jectories. For example, it could be possible to assign a sampling rate to each location in
the automata and, therefore, compute its corresponding specification maximum change
as well. This would allow us to achieve tighter error bounds in general.

• Facilitate parameter tuning
One of the the last steps of our process (Figure 3.1 - Step 4b) is a manual revision of the
parameters in order to reduce the error bounds. It is possible to reduce manual labour
by performing certain analyses on the system and providing relevant data. For instance,
given a fixed margin of error (ε), we could find the minimum sampling rate with which
our strategy still guarantees soundness.

• Integration with NAT2TEST
It is in our research agenda to provide test case generation from specifications written in
natural language. Thus, we would like to integrate our strategy into the NAT2TEST tool
[CBC+15]. This tool already generates test cases from natural language requirements
based on different formalisms such as CSP [CSM13] and SCR [CFB+13] and allows
simulation of hybrid systems from requirements that express discrete and continuous
aspects [OCSM17]. We intend to extend these facilities to support conformance testing
of CPS.

• New conformance relation
We plan to define a new conformance relation for hybrid systems. We have noted that
the existing relations do not have all the features we are looking for, such as support for
partial specifications, discrete actions, margins of error and non-determinism. Certain
notions support a few of these features but not all. Hybrid ioco, for example, allows for
partial specifications and non-determinism but lacks support for margins of error, which
makes it unfit for testing system in practical scenarios.

58

REFERENCES

[Abb15] Houssam Y Abbas. Test-Based Falsification and Conformance Testing for Cyber-
Physical Systems. PhD thesis, Arizona State University, 2015.

[ACH+95a] Rajeev Alur, Costas Courcoubetis, Nicolas Halbwachs, Thomas A Henzinger, P-
H Ho, Xavier Nicollin, Alfredo Olivero, Joseph Sifakis, and Sergio Yovine. The
algorithmic analysis of hybrid systems. Theoretical computer science, 138(1):3–
34, 1995.

[ACH+95b] Rajeev Alur, Costas Courcoubetis, Nicolas Halbwachs, Thomas A. Henzinger,
Pei-Hsin Ho, Xavier Nicollin, Alfredo Olivero, Joseph Sifakis, and Sergio Yovine.
The algorithmic analysis of hybrid systems. Theoretical Computer Science,
138:3–34, 1995.

[ACHH93] Rajeev Alur, Costas Courcoubetis, Thomas A Henzinger, and Pei-Hsin Ho. Hy-
brid automata: An algorithmic approach to the specification and verification of
hybrid systems. In Hybrid systems, pages 209–229. Springer, 1993.

[ACS+17a] Hugo Araujo, Gustavo Carvalho, Augusto Sampaio, Mohammad Reza Mousavi,
and Morteza Mohaqeqi. Sound conformance testing for cyber-physical systems:
Theory and implementation. Science of Computer Programming, 2017. To Ap-
pear.

[ACS+17b] Hugo Araujo, Gustavo Carvalho, Augusto Sampaio, Mohammad Reza Mousavi,
and Masoumeh Taromirad. A process for sound conformance testing of cyber-
physical systems. In Software Testing, Verification and Validation Workshops
(ICSTW), 2017 IEEE International Conference on, pages 46–50. IEEE, 2017.

[AD94] Rajeev Alur and David L Dill. A theory of timed automata. Theoretical computer
science, 126(2):183–235, 1994.

[AHF+14] Houssam Abbas, Bardh Hoxha, Georgios Fainekos, Jyotirmoy V Deshmukh,
James Kapinski, and Koichi Ueda. Conformance testing as falsification for cyber-
physical systems. arXiv preprint arXiv:1401.5200, 2014.

[AIH15] Sara Abbaspour Asadollah, Rafia Inam, and Hans Hansson. A survey on testing
for cyber physical system. In IFIP International Conference on Testing Software
and Systems, pages 194–207. Springer, 2015.

[AK11] M. Althoff and B. H. Krogh. Zonotope bundles for the efficient computation
of reachable sets. In 2011 50th IEEE Conference on Decision and Control and
European Control Conference, pages 6814–6821, Dec 2011.

59

[Alt10] Matthias Althoff. Reachability Analysis and its Application to the Safety As-
sessment of Autonomous Cars. Dissertation, Technische Universitat Munchen,
MÃ¼nchen, 2010.

[Alt15] M. Althoff. An introduction to CORA 2015. In Proc. of the Workshop on Applied
Verification for Continuous and Hybrid Systems, 2015.

[Alu11] Rajeev Alur. Formal verification of hybrid systems. In Embedded Software (EM-
SOFT), 2011 Proceedings of the International Conference on, pages 273–278.
IEEE, 2011.

[AMF14] Houssam Abbas, Hans Mittelmann, and Georgios Fainekos. Formal property ver-
ification in a conformance testing framework. In Formal methods and models for
codesign (memocode), 2014 twelfth acm/ieee international conference on, pages
155–164. IEEE, 2014.

[AMR15a] Arend Aerts, Mohammad Reza Mousavi, and Michel Reniers. A tool prototype
for model-based testing of cyber-physical systems. In Martin Leucker, Camilo
Rueda, and Frank D. Valencia, editors, Proceedings of the 12th International
Colloquium on Theoretical Aspects of Computing (ICTAC 2015), volume 9399
of Lecture Notes in Computer Science, pages 563–572. Springer International
Publishing, 2015.

[AMR15b] Arend Aerts, Mohammad Reza Mousavi, and Michel Reniers. A tool prototype
for model-based testing of cyber-physical systems. In International Colloquium
on Theoretical Aspects of Computing, pages 563–572. Springer, 2015.

[ARM16] Arend Aerts, Michel A Reniers, and Mohammad Reza Mousavi. Model-based
testing of cyber-physical systems. 2016.

[ASB10] Matthias Althoff, Olaf Stursberg, and Martin Buss. Computing reachable sets
of hybrid systems using a combination of zonotopes and polytopes. Nonlinear
Analysis: Hybrid Systems, 4(2):233 – 249, 2010. {IFAC} World Congress 2008.

[BB86] Ronald Newbold Bracewell and Ronald N Bracewell. The Fourier transform and
its applications, volume 31999. McGraw-Hill New York, 1986.

[BJK+05] Manfred Broy, Bengt Jonsson, Joost-Pieter Katoen, Martin Leucker, and Alexan-
der Pretschner. Model-based testing of reactive systems: advanced lectures, vol-
ume 3472. Springer, 2005.

[BMP99] Olivier Bournez, Oded Maler, and Amir Pnueli. Orthogonal polyhedra: Repre-
sentation and computation. In Schuppen (Eds.), Hybrid Systems: Computation
and Control, LNCS 1569, pages 46–60. Springer, 1999.

[CB02] Paul Caspi and Albert Benveniste. Toward an Approximation Theory for Comput-
erised Control, pages 294–304. Springer Berlin Heidelberg, Berlin, Heidelberg,
2002.

60

[CBC+15] Gustavo Carvalho, Flávia Barros, Ana Carvalho, Ana Cavalcanti, Alexandre
Mota, and Augusto Sampaio. Nat2test tool: From natural language requirements
to test cases based on csp. In Software Engineering and Formal Methods, pages
283–290. Springer, 2015.

[CFB+13] Gustavo Carvalho, Diogo Falcão, Flávia Barros, Augusto Sampaio, Alexandre
Mota, Leonardo Motta, and Mark Blackburn. Test case generation from natural
language requirements based on scr specifications. In Proceedings of the 28th
Annual ACM Symposium on Applied Computing, pages 1217–1222. ACM, 2013.

[CFMS12] Gustavo Carvalho, Diogo Falcão, Alexandre Mota, and Augusto Sampaio. A
process algebra based strategy for generating test vectors from scr specifications.
In SBMF, pages 67–82. Springer, 2012.

[Che15] Xin Chen. Reachability Analysis of Non-Linear Hybrid Systems Using Taylor
Models. PhD thesis, RWTH Aachen University, 2015.

[CSB+06] Jeffrey A Cook, Jing Sun, Julia H Buckland, Ilya V Kolmanovsky, Huei Peng,
and Jessy W Grizzle. Automotive powertrain control - a survey. Asian Journal of
Control, 8(3):237–260, 2006.

[CSM13] Gustavo Carvalho, Augusto Sampaio, and Alexandre Mota. A csp timed input-
output relation and a strategy for mechanised conformance verification. In Inter-
national Conference on Formal Engineering Methods, pages 148–164. Springer,
2013.

[DD09] Michel Marie Deza and Elena Deza. Encyclopedia of distances. In Encyclopedia
of Distances, page 94. Springer, 2009.

[DDD+15] Tommaso Dreossi, Thao Dang, Alexandre Donzé, James Kapinski, Xiaoqing Jin,
and Jyotirmoy V Deshmukh. Efficient guiding strategies for testing of temporal
properties of hybrid systems. In NASA Formal Methods Symposium, pages 127–
142. Springer, 2015.

[DMP15] Jyotirmoy V. Deshmukh, Rupak Majumdar, and Vinayak S. Prabhu. Quantifying
Conformance Using the Skorokhod Metric, pages 234–250. Springer International
Publishing, Cham, 2015.

[DSHL+09] B De Schutter, WPMH Heemels, J Lunze, Christophe Prieur, et al. Survey of
modeling, analysis, and control of hybrid systems. Handbook of Hybrid Systems
Control–Theory, Tools, Applications, pages 31–55, 2009.

[FP09] Georgios E Fainekos and George J Pappas. Robustness of temporal logic
specifications for continuous-time signals. Theoretical Computer Science,
410(42):4262–4291, 2009.

61

[GG08] Antoine Girard and Colas Guernic. Zonotope/hyperplane intersection for hybrid
systems reachability analysis. In Proceedings of the 11th International Workshop
on Hybrid Systems: Computation and Control, HSCC ’08, pages 215–228, Berlin,
Heidelberg, 2008. Springer-Verlag.

[GJP08] Antoine Girard, A Agung Julius, and George J Pappas. Approximate simulation
relations for hybrid systems. Discrete event dynamic systems, 18(2):163–179,
2008.

[GP11] Antoine Girard and George J Pappas. Approximate bisimulation: A bridge be-
tween computer science and control theory. European Journal of Control, 17(5-
6):568–578, 2011.

[GST09] Rafal Goebel, Ricardo G Sanfelice, and Andrew R Teel. Hybrid dynamical sys-
tems. IEEE Control Systems, 29(2):28–93, 2009.

[HBA+14] Bardh Hoxha, Hoang Bach, Houssam Abbas, Adel Dokhanchi, Yoshihiro
Kobayashi, and Georgios Fainekos. Towards formal specification visualization
for testing and monitoring of cyber-physical systems. In Int. Workshop on Design
and Implementation of Formal Tools and Systems, 2014.

[HDS13] WPMH Heemels and B De Schutter. Modeling and control of hybrid dynamical
systems. TU/e, Lecture notes course 4K160, 2013.

[JDK+14] Xiaoqing Jin, Jyotirmoy V Deshmukh, James Kapinski, Koichi Ueda, and Ken
Butts. Powertrain control verification benchmark. In Proceedings of the 17th in-
ternational conference on Hybrid systems: computation and control, pages 253–
262. ACM, 2014.

[KGB04] M. Kvasnica, P. Grieder, and M. Baotić. Multi-Parametric Toolbox (MPT), 2004.

[KM15a] Narges Khakpour and Mohammad Reza Mousavi. Notions of conformance test-
ing for cyber-physical systems: Overview and roadmap. In LIPIcs-Leibniz In-
ternational Proceedings in Informatics, volume 42. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2015.

[KM15b] Narges Khakpour and Mohammad Reza Mousavi. Notions of conformance test-
ing for cyber-physical systems: Overview and roadmap (invited paper). In Proc.
of the 26th International Conference on Concurrency Theory, CONCUR 2015,
volume 42 of LIPIcs, pages 18–40. Schloss Dagstuhl - Leibniz-Zentrum fuer In-
formatik, 2015.

[LFS] Che Liu, Georgios E Fainekos, and Sriram Sankaranarayanan. S-taliro: A tool for
temporal logic falsification for hybrid systems. Springer.

[LPY01] Gerardo Lafferriere, George J. Pappas, and Sergio Yovine. Symbolic reachability
computation for families of linear vector fields. J. Symb. Comput., 32(3):231–253,
September 2001.

62

[MM16a] Morteza Mohaqeqi and Mohammad Reza Mousavi. Sound test-suites for cyber-
physical systems. In Theoretical Aspects of Software Engineering (TASE), 2016
10th International Symposium on, pages 42–48. IEEE, 2016.

[MM16b] Morteza Mohaqeqi and Mohammad Reza Mousavi. Sound test-suites for cyber-
physical systems. In 10th International Symposium on Theoretical Aspects of
Software Engineering (TASE 2016), IEEE Computer Society, 2016.

[MS00] Olaf Müller and Thomas Stauner. Modelling and verification using linear hybrid
automata–a case study. Mathematical and Computer Modelling of Dynamical
Systems, 6(1):71–89, 2000.

[MZ16] Pieter J Mosterman and Justyna Zander. Cyber-physical systems challenges: a
needs analysis for collaborating embedded software systems. Software & Systems
Modeling, 15(1):5–16, 2016.

[OCSM17] Bruno Oliveira, Gustavo Carvalho, Augusto Sampaio, and Mohammad Reza
Mousavi. Simulation of hybrid systems from natural-language requirements. 13th
IEEE Conference on Automation Science and Engineering (CASE), 2017. To Ap-
pear.

[Sha49] Claude Elwood Shannon. Communication in the presence of noise. Proceedings
of the IRE, 37(1):10–21, 1949.

[Sha01] Claude E Shannon. A mathematical theory of communication. ACM SIGMOBILE
Mobile Computing and Communications Review, 5(1):3–55, 2001.

[SK03] Olaf Stursberg and Bruce H. Krogh. Efficient representation and computation
of reachable sets for hybrid systems. In Proceedings of the 6th International
Conference on Hybrid Systems: Computation and Control, HSCC’03, pages 482–
497, Berlin, Heidelberg, 2003. Springer-Verlag.

[Tre96] Jan Tretmans. Conformance testing with labelled transition systems: Imple-
mentation relations and test generation. Computer networks and ISDN systems,
29(1):49–79, 1996.

[Tre08] Jan Tretmans. Model based testing with labelled transition systems. Formal
methods and testing, pages 1–38, 2008.

[UL10] Mark Utting and Bruno Legeard. Practical model-based testing: a tools ap-
proach. Morgan Kaufmann, 2010.

[VO06] Michiel Van Osch. Hybrid input-output conformance and test generation. In
Formal Approaches to Software Testing and Runtime Verification, pages 70–84.
Springer, 2006.

[vO09a] Michiel van Osch. Automated Model-based Testing of Hybrid Systems. PhD
thesis, Eindhoven University of Technology, The Netherlands, 2009.

63

[vO09b] Michiel Pieter Willem Jacob van Osch. Automated model-based testing of hybrid
systems. Eindhoven University of Technology, 2009.

[Yar10] RK Rao Yarlagadda. Analog and digital signals and systems. Springer Science
& Business Media, 2010.

