
Speeding-Up Mutation Testing via Data
Compression and State Infection

Qianqian Zhu
Delft University of Technology
Email: qianqian.zhu@tudelft.nl

Annibale Panichella
University of Luxembourg

Email: annibale.panichella@uni.lu

Andy Zaidman
Delft University of Technology
Email: a.e.zaidman@tudelft.nl

Abstract—Mutation testing is widely considered as a high-end
test criterion due to the vast number of mutants it generates.
Although many efforts have been made to reduce the compu-
tational cost of mutation testing, its scalability issue remains in
practice. In this paper, we introduce a novel method to speed up
mutation testing based on state infection information. In addition
to filtering out uninfected test executions, we further select a
subset of mutants and a subset of test cases to run leveraging
data-compression techniques. In particular, we adopt Formal
Concept Analysis (FCA) to group similar mutants together and
then select test cases to cover these mutants. To evaluate our
method, we conducted an experimental study on six open source
Java projects. We used EvoSuite to automatically generate test
cases and to collect mutation data. The initial results show that
our method can reduce the execution time by 83.93% with only
0.257% loss in precision.

I. INTRODUCTION

Mutation testing is a fault-based testing technique that has
been very actively investigated by researchers since the 1970s.
Mutation testing introduces small syntactic changes into the
program to generate faulty versions (mutants) according to
well-defined rules (mutation operators) [1]. Then the quality
of a test suite can be qualified as the percentage of mutants
it distinguishes from the original program (mutation score).
The benefits of mutation testing have been shown in many
empirical studies, e.g. [2], [3].

Despite its well-known advantages, mutation testing is cur-
rently not widely applied. This is due to the computational
cost incurred from executing each mutation against the test
suite to obtain the mutation score and the number of mutants
increasing dramatically with the size of the program.

To address these limitations, several methods have been
proposed in literature, such as mutant sampling [4] and
selective mutation [5]. Differently from the aforementioned
methods that are independent of the program under test,
other procedures have been developed to further optimise
the mutation execution procedure given the program under
test. State-of-the-art techniques falling into this category filter
unnecessary executions based on the dynamic information at
run-time, e.g., line coverage [6] and state infection [7].

In this paper, we further optimise mutation execution using
data compression techniques based on state infection. In
addition to filtering out unnecessary test executions, we “com-
press” mutation execution by selecting a subset of mutants
and a subset of test cases to estimate the mutation score with

minimal loss of precision. We coined our method “ComMT”,
which is short for Compressed Mutation Testing.

II. RELATED WORK

The most well-known techniques for reduction of the com-
putational cost are mutant sampling [4], selective mutation [5],
weak mutation [8] and mutant schema [9]. However, these
methods are independent of the program under test. More re-
cently researchers are targeting to further improve the mutation
execution process by gathering information from the program
at run-time. A widely adopted strategy in this category is to
execute the test suite on the original program before mu-
tation execution to avoid unnecessary executions. Coverage-
based optimisation filters out the test executions when a test
case does not cover the mutated statement; this optimisation
has been used in existing mutation testing tools, such as
JAVALANCHE [6], Major [10] and PIT/PiTest [11]. Also of
interest is infection-based optimisation, which only executes a
test case on a mutant when the test infects the execution state
of the mutant, filtering out weakly live mutants. Just et al. [7]
improved the original infection-based method by combining
propagation information: a test must be executed on a mutant
if the execution state of the mutated expression propagates to
a top-level expression; meanwhile, they partitioned mutants
based on their intermediate results for each test case. Also,
Ma and Kim [12] applied a similar idea to cluster mutants
for each test case by comparing the values of innermost
expressions. Unfortunately, infection-based optimisation has
not been publicly integrated into existing mutation tools.

Mutant clustering is another approach considering the pro-
gram under test. It aims to reduce the number of mutants based
on the similarity of mutants instead of random sampling. It is
introduced by Hussain [13] who applied clustering algorithms
(e.g. K-means) to assemble similar mutants. However, their
methods require the execution of all mutants against all the test
cases, which cannot reduce the runtime overhead during the
mutation execution. Later, Ji et al. [14] measured the similarity
of the mutants using domain analysis. They can divide mutants
directly based on static control flow analysis. But they only
manually analysed the clustering accuracy without indication
of the runtime overhead caused by domain analysis.

Also, the approach of eliminating redundant mutants has
gained much attention to achieve efficient and scalable muta-
tion analysis. Amongst these studies are mutation subsumption

Fig. 1. Mutation data compression

(e.g. [15]–[17]), which models the subsumption relationships
between mutants in order to reduce the number of mutants for
mutation testing. Besides, test prioritisation and reduction are
also used to speed up mutation testing, e.g. Zhang et al. [18].
The key idea behind their method is to minimise the execution
cost to determine the sets of killed and non-killed mutants.

Our method is a combination of infection-based optimi-
sation and mutant clustering. We group mutants based on
their state infection outcomes which are different from Hus-
sain [13]. To find the groupings of mutants, we only require
one execution of the test suite on the original program. Fur-
thermore, compared to Just et al. [7] and Ma and Kim [12]’s
work, we partition mutants for all test cases instead of targeting
each test case. Thus, we can further reduce the number of test
cases with test selection techniques. Meanwhile, our method
can also be combined with other cost reduction techniques
which require no knowledge of the program under test, such
as selective mutation and mutant schema.

III. MUTATION DATA COMPRESSION

In weak mutation testing, a mutant is killed if its execution
leads to a state change, i.e., the values of variables and class
attributes after the mutated expression differ from the values
in the original class. For example, the expression c=a*b and
its mutated version c=a/b have different outcomes (i.e., the
mutant is weakly killed) if a 6=1 and b6=1. Differently from
strong mutation, weak mutation scores can be computed with
one single execution of each test by instrumenting the mutated
locations to keep track of the execution states [19]. Therefore,
it is widely used as a light-weight mutation score.

ComMT uses weak mutation (or infection state) and data
compression techniques to decide which mutants and which
tests to consider for strong mutation. The overall methodology
of ComMT consists of five stages as illustrated in Figure 1:

• Instrumentation. We generate mutants for the program
under analysis relying on the internal mutation engine in
EvoSuite [19]. Then, we instrument the original program
to keep track of the mutation locations.

• Test execution. Once instrumented, the test suite is ex-
ecuted once to collect data of the infected mutants. In
other words, in this stage we record the mutants that are
weakly killed by the tests.

• Infection analysis. The results of the previous stage are
stored in the mutant-by-test infection matrix. Let P be the
program under analysis and let T be the test suites; let

M be the set of mutants for the programs P generated by
preselected mutation operators. A mutant-by-test infection
matrix is a m × n matrix where m is the number of
mutants, n is the number of test cases in T , and a generic
entry xi,j is a binary value indicating whether the i-th
mutant is weakly killed (i.e., xi,j = 1) or not (i.e., xi,j =
0) by the j-th test ∈ T .

• Formal Concept Analysis (FCA). FCA is applied on the
mutant-by-test infection matrix in order to extract the
hidden relationships (formal concepts) among mutants
and tests according to the infection data.

• Data compression. The extracted concepts are then used
to compress the mutant-by-test infection matrix. The
resulting matrix has a lower number of rows and columns
compared to the original one: the rows denote groups of
mutants belonging to the same formal concepts; similarly,
tests are grouped by concepts to form the columns. Such
a compressed matrix is used then to select mutants and
tests for the strong mutation analysis.

The details of FCA and the data compression procedure are
described in detail in the next sub-sections.

A. FCA grouping

Starting from the mutant-by-test infection matrix, we anal-
yse the conceptual structures among mutants and tests using
FCA. FCA is a data analysis method which has been shown
to be a powerful mathematical technique to convey and sum-
marise large amounts of information [20]. It takes as input the
formal context which is a structure C = (O,A, I) where O is
the set of objects, A is the set of attributes while I ⊆ O×A
is a binary relation between O and A. Then, FCA produces
the concept lattice, which is a collection of formal concepts
in the data ordered by sub-concept relations, i.e., from super-
concepts to sub-concepts. Each formal concept is composed
by (i) a group of objects sharing the same attributes, and (ii)
all attributes that apply to the objects in the concept [20].

In our context, the objects in O are the mutants, the
attributes in A are the test cases, and I is our mutant-by-
test infection matrix. Then, FCA derives formal concepts that
represent groups of mutants that are weakly killed by the
same subset of tests. In other words, the output of FCA can
be viewed as two-way clustering since mutants and tests are
grouped in concepts such that all mutants in the same concept
c are weakly killed by all tests in c.

To provide a more practical description, let us consider
the mutant-by-test infection matrix with six mutants and
four tests reported in Figure 2. The mutant-by-test infection
matrix can be viewed as a formal context for FCA with
O = {m1,m2,m3,m4,m5,m6}, A = {t1, t2, t3, t4} and
I corresponding to the matrix entries. For this example,
FCA returns the concept lattice depicted in the right side of
Figure 2. We can observe that FCA derives one formal concept
with mutants {m5,m6} and tests {t1, t2} meanings that the
two mutants can be weakly killed by the two tests. While
m5 and m6 are not necessary overlapping (i.e. functionally
identical), we argue that if t1 (or t2) kills m5 then it likely

Fig. 2. A toy program and its concept lattice

kills m6 as well in strong mutation. Therefore, for this concept
we can select only one mutant (e.g., m5) and/or one test (e.g.,
t1) to represent the whole concept.

Among all concepts in the formal lattice, we select for
data compression only those that are directly connected to the
exit point in the lattice hierarchy that we refer to as maximal
groupings. In our example in Figure 2, there are three maximal
groupings, which are {m5,m6|t1, t2}, {m4|t3}, and {m3|t4}.
The other concepts in the lattice (e.g., {m2,m5,m6|t1} in
Figure 2) are already included in the maximal grouping by
sub-concept relation which is graphically represented by the
hierarchy in the lattice. Then, the maximal groupings are used
to compress the mutant-by-test infection matrix by condensing
the rows of mutants from the same maximal group into
one single row that represents the whole concept. A similar
compression can be performed on the columns of the mutant-
by-test infection matrix according to how tests are grouped
in maximal groupings. Using this compressed matrix we can
reduce the number of mutants and tests to run for strong
mutation analysis.

B. Test case selection

After obtaining the maximal groupings from the concept
lattice, we first compress the mutant-by-test infection matrix
by condensing the rows, i.e., we select one mutant from each
maximal grouping. Then to further perform the compression
on the columns, we propose three approaches for test case
selection:

1) FCA-based selection: In each formal concept c, we have
a set of mutants which share a set of attributes, i.e., test
cases. Tests in c weakly kill all mutants in the same concept
c, from which follows our assumption that tests in the same
concepts also exhibit similar behaviour. Thus, we select one
test from each formal concept to further condense the columns
of the original matrix. More specifically, this strategy is a rigid
way to bi-cluster the mutant-by-test infection matrix based on
maximal groupings of the concept lattice.

2) Set cover using greedy algorithm: After selecting one
mutant from each maximal grouping, instead of condensing
the columns through FCA-based selection, we try to find a
sufficient subset of test cases that weakly kill all possible
mutants. This becomes the set cover problem. Considering that
the set cover problem is a well-known NP-hard problem, we
adopt a greedy algorithm for polynomial time approximation
of this problem. Based on our assumptions in Section III-A,
if one test can weakly kill one mutant in a maximal grouping,

TABLE I
SUBJECT PROGRAMS

Project Full name LOC # Classes # Test # Mutants # Killed
cases mutants

jsecurity Jsecurity 13,135 197 313 2,384 2,036
summa summa 69,339 512 470 8,201 3,895
db-everywhere DB-Everywhere 7,125 97 84 302 168
noen dynamic analysis

& test
18,867 382 767 5,222 4,069

jtailgui JTailPlus 2020 43 147 1246 776
caloriecount CalorieCount 61,544 596 4,699 49,925 26,122

Overall 172,030 1,827 6,480 67,280 37,066

then the test is very likely to weakly kill the rest. Thus, we
consider one maximal grouping as basic element to be covered
in the set cover problem. Our set cover-based selection is as
follows: at each stage, we choose the test that weakly kills the
largest number of uncovered maximal groupings.

3) Sorting by maximal groupings: Instead of selecting a
minimal subset of test cases that weakly kill all possible
mutants, we sort the test cases by the number of maximal
groupings it belongs to. The key idea behind this strategy is:
test cases belonging to more maximal groupings means they
can weakly cover more mutants, thereby, they are more likely
to strongly kill more mutants. In particular, we select the test
cases with the largest number of maximal groupings at each
stage until all the possible mutants are covered.

IV. EXPERIMENTAL STUDY

To evaluate the effectiveness of our method, we conduct an
initial experimental study on a set of open source programs.
In the following sections, we describe our experimental setup.

A. Research questions

We first explored whether FCA is suitable for compressing
the infection matrix. This leads to:

RQ1: Can FCA find maximal groupings in the infection
matrix?

After generating the maximal groupings, we set out to
investigate the similarity of mutants in each maximal grouping,
especially their outcomes in terms of strong mutation. RQ2
addresses exactly this:

RQ2: How frequently do mutants in a maximal grouping
generated by FCA have same outcome in strong mutation?

To further compress the mutation data, in RQ3 we examine
test case selection based on FCA grouping to cover the
selected mutants:

RQ3: Does test case selection based on FCA grouping yield
a smaller number of tests on average?

Our method’s aim is to reduce execution time while main-
taining the precision of mutation testing. This leads to RQ4:

RQ4: What is the trade-off between the mutation score and
the execution time using ComMT?

B. Experimental setup

We evaluated ComMT using six open source projects which
come from SF110 [21]. Table I shows the basic information
of subject programs used in our experimental study.

Fig. 3. Overall workflow of experimental study

To carry out the experiment, we used EvoSuite to automat-
ically generate tests and mutants for each subject program.
Although EvoSuite supports different criteria (e.g., branch
coverage), in this study we used the strong-mutation criterion.
With this setting, EvoSuite creates mutants for the class under
test using its own mutation engine. Such mutants become
coverage targets to reach (kill) in the test case generation
process. For the search, we set the budget to 30 seconds
for each class in the subject program under test. At the end,
EvoSuite provides the generated test suite with assertions and
the list of mutants that are strongly killed by each test in
the suite. In addition to strong mutation data, we used the
instrumentation framework in EvoSuite to collect the infection
data for each mutant such to have the weak mutation data
as well. Finally, we collected the average execution time of
tests from EvoSuite; this is used to estimate the execution
time of mutation testing. The overall workflow of the test
data generation and data collection from EvoSuite can be seen
in Figure 3. After obtaining the infection matrix, we applied
ConExp [22] for FCA processing.

To answer RQ1 we use ConExp to build the concept
lattices from the infection matrix and then extract the maximal
groupings. We then calculate the number of mutants in each
maximal grouping and we summarise the size of the maximal
groupings across all projects to determine whether FCA is
suitable for compressing the infection matrix.

To answer RQ2, we calculated the approximation of killed
mutants to evaluate the similarity of mutants in strong mu-
tation. Firstly, we randomly select one mutant from each
maximal grouping and use the outcome of this mutant in
strong mutation (whether the mutant is strongly killed or not)
to represent the whole group. To minimise the random error,
we carry out the process of the mutant selection 100 times
for each project, and compare the error rate, i.e. the ratio of
mistakenly predicated mutants in strong mutation, as shown
in Equation 1. For this experiment, we used all test cases.

error rate =
#estimated killed mutants−#actual killed mutants

#actual killed mutants
(1)

To answer RQ3, we compared three strategies of test
case selection (as mentioned in Section III-B) based on the
results of FCA. For each subset of test cases generated by
ComMT, we mainly analysed its size and the number of killed
mutants. For FCA-based test case selection, we need to select
one test case from each maximal grouping randomly; we
treat each maximal grouping equally. Similarly to RQ2, we
ran the process of FCA-based test case selection 100 times
independently to eliminate the random error. For set cover-
based and sorting-based test case selection, we choose one
test case based on previously selected information, so we
recorded the test case number and killed mutant number at
each iteration.

To answer RQ4, we mainly studied the relationship between
execution time and error rate when adopting the ComMT
approach. Here the execution time is estimated by the data
collected from EvoSuite. To simulate the actual mutation
execution process, test cases are executed depending on the se-
lected sequence. For FCA-based selection, there is no selected
sequence, as each maximal grouping is treated equally. So
when calculating the execution time for FCA-based selection,
we adopted the default sequence in the original test suite. As
soon as the mutant is killed by a test case, the rest of the
unexecuted tests are no longer run against this mutant. In order
to further quantify the optimisation results from ComMT, we
compared our method with the other two optimisation con-
figurations mentioned in Section II, i.e., coverage-based and
infection-based optimisation. For these two optimisation ap-
proaches and our methods, we need to collect the reachability
and necessity condition from a single execution of the whole
test suite. In addition to one single execution of the whole
test suite, ComMT requires extra time for data compression.
Here we do not take data compression into consideration as
the compression process is fairly quick (within 10 seconds).
Therefore, we assume that the pre-processing overhead of
these three methods is similar, and we can simply compare
their execution time during the mutation execution procedure.

V. RESULTS

A. RQ1: FCA grouping

Table II summarises the number of maximal groupings and
the compression ratio for each project. The compression ratio
is defined as the number of mutants divided by the number of
groupings. We can see that on average there are 8.48 mutants
in each maximal grouping; this means FCA can compress the
original size of mutants by 88.2%. Thereby, we can conclude
that FCA can find maximal groupings from the infection
matrix and also significantly reduce the number of mutants
that need to be executed.

B. RQ2: Mutant similarity

To quantify the similarity of mutants in each maximal
grouping, we compared the approximation result of mutant
selection to the actual results of strong mutation. We plotted
the selection results in Figure 4 using box plots. The error

TABLE II
TEST CASE REDUCTION AND MUTANT COMPRESSION

Test case reduction (%) Mutant compression ratio by FCA

Project Set FCA Sorting # # Compression
cover Mutants Groupings ratio

jsecurity 67.09 37.23 15.34 2,384 442 5.39
summa 64.26 38.25 17.23 8,201 573 14.31
db-everywhere 73.81 60.71 47.62 302 54 5.59
noen 62.19 40.54 12.91 5,222 738 7.08
jtailgui 52.38 38.37 24.49 1246 161 7.74
caloriecount 69.16 49.05 25.45 49,925 4,640 10.76

Overall 64.82 44.03 23.84 11,213.33 1,101.33 8.48

rate of the approximation results can be both positive (overes-
timation) or negative (underestimation). This is caused by the
overall trend: whether the randomly selected mutant from each
FCA grouping overestimates the killed mutants for the whole
grouping or not. The average error rate is around zero among
all the projects; this shows that the mutants in a maximal
grouping exhibit similar behaviours in strong mutation on
average. Moreover, the mutants in a maximal grouping are
the ones whose execution states are infected by the same
group of test cases. In terms of weak mutation, these mutants
are killed by a same group of test cases; this leads to an
interesting finding: mutants which have the same outcome in
weak mutation against all the test cases (weakly overlapping)
are very likely to have the same outcome in strong mutation.

However, the error rate distribution varies greatly between
projects: for jtailgui it varies most, ranging from -33.1%
to 39.9%. For projects noen and caloriecount, the distri-
bution ranges between respectively -4.9% to 6.6% and -7.9%
to 7.2%. We speculate that this difference is due to the size of
the original test cases. We group mutants by observation from
their weak mutation behaviour against the test cases. What
we do in fact is judge whether two mutants are overlapping
in terms of weak mutation, which is a typical undecidable
problem. Therefore, the confidence of whether mutants are
weakly overlapping is determined by how many test cases are
involved in the judgement. This reveals a potential limitation
of the FCA groupings approach: projects with a relatively
small test suite are more likely to have low clustering accuracy.

C. RQ3: test case selection

The detailed iteration results of the three test selection
strategies for jsecurity are shown in Figure 5. The other
projects show a similar tendency; details for the other five
projects are in [23]. Test case selection based on FCA gener-
ates a solution distributed in a small area: its test case number
is around a constant value, and the average number of killed
mutants is near the actual results of strong mutation. For set
cover-based selection, the killed mutant number initially grows
quickly as the test case number increases. As soon as the
mutants are all covered by the selected test cases, the method
stops adding new test cases, thus ending up with a relatively
small set of test cases. However, we see that the optimal
solution generated by the set cover-based selection can never
reach to actual number of killed mutants. This reflects that a
minimum set of test cases that weakly kills all the mutants is

js
ec

ur
ity

su
m

m
a

db
-e

ve
ry

w
he

re
no

en

jta
ilg

ui

ca
lo

rie
co

un
t

projects

-20

0

20

40

er
ro

r
ra

te
 (

%
)

mean

Fig. 4. Error rate of mutant selection based on FCA

not enough to predict the strong mutation score. The sorting-
based selection has the same trend as the set cover-based one:
it increases slowly compared to the set cover-based strategy,
but it reaches the level of actual killed mutants in the end.

Table II compares the final sub-test suites generated by the
three strategies in terms of the suite size reduction. The set
cover-based selection produces the smallest set of test cases
of the three. FCA-based selection can reduce the test size by
44.03% on average. For the sorting-based selection, the subset
is the largest, yet still 23.84% reduced compared to the original
test suite. Together with the observations from Figure 5, we
conclude that test case selection based on FCA grouping yields
a smaller number of tests compared to the original test suite.

D. RQ4: trade-offs

Table III summarises the comparison of three methods in
terms of execution time reduction and error rate. To calculate
the execution time reduction, we used coverage-based opti-
misation as a baseline. For the coverage-based optimisation,
we see that the execution time ranges from 0.02 to 19.21
minutes. Overall, the infection-based optimisation which uses
weak mutation as filtering strategy to select the mutants for
strong mutation reduces runtime by 11.37%, while ComMT
reaches at least 83.93%, which is a ≥7 time speed-up.

Moreover, for ComMT, we compared four test case selection
strategies based on selected mutants: no selection, set cover-
based, FCA-based and sorting-based selection. We observe
that ComMT with mutant compression alone achieves a sig-
nificant reduction in runtime. By applying test case selection
based on FCA groupings, the improvement in execution time
reduction is small: at most 5.89%.

0 100 200 300

#test case

0

200

400

600

800

1000

1200

#
k

il
le

d
 m

u
ta

n
t

fca

set cover

sorting

#actual killed mutant

Fig. 5. Comparison of test case selection in each iteration for jsecurity

TABLE III
TRADE-OFFS BETWEEN EXECUTION TIME REDUCTION & ERROR RATE (%)

Project
Cov. Inf. ComMT

based based

No selection Set cover FCA Sorting

Exec. Red. Red. Err. Red. Err. Red. Err. Red. Err.

jsecurity 1.39 16.78 87.71 0.13 90.27 -17.42 88.55 -2.46 87.31 -0.04
summa 1.54 13.57 90.97 0.74 93.58 -14.1 92.18 -2.25 90.87 0.69
db-everywhere 0.02 3.65 59.29 -0.26 80.81 -18.83 70.43 -6.22 63.95 -0.26
noen 1.58 6.09 88.52 0.30 91.08 -30.69 89.52 -7.29 87.98 0.14
jtailgui 0.31 18.7 87.66 0.07 91.33 -13.11 89.86 -3.42 87.89 0.07
caloriecount 19.21 9.39 89.44 0.04 91.83 -21.99 90.5 -6.89 89.06 -0.38

Overall - 11.37 83.93 0.257 89.82 -19.36 86.84 -4.76 84.51 0.262

For the three test case selection strategies, we see that the
execution time for set cover-based selection is the least, but the
loss of precision is the most (−19.36%). FCA-based selection
reduces execution time by 86.84%, while the error rate is
−4.76%. For sorting-based selection, the execution time is
the largest, but its error rate is the lowest, almost equalling
the actual results of strong mutation. Comparing sorting-based
selection to the situation without test case selection, we can
see the error rate is similar, but the execution time is slightly
less (0.58%). One thing must be noted: we select test cases
based on mutants grouped by FCA. Thus, the error rate of
the selected test cases is largely dependent on the selected
mutants. When the selected mutants overestimate the killed
mutants, i.e., the error rate of the approximation is positive,
less test cases (causing negative impact on error rate) might
slightly improve the overall error rate. Take project summa for
example: without any test case selection, the overall error rate
is 0.74%. After applying sorting-based test case selection, the
overall error rate changes to 0.69%, an 0.05% improvement.

To summarise, ComMT can reduce the execution time by
83.93% using mutant compression alone with only 0.257%
precision loss.

VI. THREATS TO VALIDITY

Threats to external validity: First, our experimental study
only evaluated our method based on automatically generated
test cases from EvoSuite, which might not be generalisable
to other (manually written) test suites. Second, our results are
based on mutants generated by embedded mutation operators
of EvoSuite; these results might be different when using other
mutation tools. With regard to subject selection, we chose
six open source projects from a well-known corpus (SF110)
differing in size and domain.

Threats to internal validity: The main threat to internal
validity for our study is that there might be faults in our im-
plementation of ComMT and the experiments. As we mainly
relied on existing software (EvoSuite and ConExp) and this
software is considered reliable, we reduce internal threats to
a large extent. Moreover, we carefully reviewed and tested all
code for our study to eliminate faults in our implementation.

Threats to construct validity: The main threat to construct
validity is the measurement we used to evaluate out methods.
To minimise the threat, we used estimated execution time to
assess the cost of our techniques. A possible issue is whether

the estimated execution time is representative of the actual one.
Yet, as we are only comparing estimated execution times and
not actual execution times, the relationship between estimated
runtime and actual runtime is less critical. Also, we used error
rate to measure the approximation by our method.

VII. CONCLUSION & FUTURE WORK

In this paper, we have presented an approach to speed-up
mutation testing using data compression techniques based on
state infection information. We have adopted Formal Concept
Analysis (FCA) to group the mutants together which have the
highest similarity in state infection against all test cases. By
analysing the behaviour of mutants grouped by FCA, we found
that the mutants in a group show similar behaviours in strong
mutation on average. We have further explored the trade-offs
between execution time and precision loss by applying FCA
to compress mutation testing. The method we have adopted
is to select one mutant from each FCA grouping and then
select test cases to cover the mutants. The overall results show
that our method can reduce the execution time by 83.93%-
84.51%, with a loss of precision between 0.257%-0.262% on
average. This provides one promising solution to reduce the
high computational cost of mutation testing.

While our current results are encouraging, we envision the
following future work:

• Generalise to other test suites, e.g. manually written ones.
• Investigate other data compression methods, such as

Principal Component Analysis (PCA).
• Implement our method on top of an existing mutation

testing tool.
• Examine ways to control the clustering accuracy in the

light of small test suites.

REFERENCES

[1] J. Offutt, “A mutation carol: Past, present and future,” Information and
Software Technology, vol. 53, no. 10, pp. 1098–1107, 2011.

[2] A. P. Mathur and W. E. Wong, “An empirical comparison of data flow
and mutation-based test adequacy criteria,” Software Testing, Verification
and Reliability, vol. 4, no. 1, pp. 9–31, 1994.

[3] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an appropriate
tool for testing experiments?” in Proc. ICSE. IEEE, 2005, pp. 402–411.

[4] A. T. Acree Jr, “On mutation.” DTIC Document, Tech. Rep., 1980.
[5] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf, “An

experimental determination of sufficient mutant operators,” ACM Trans.
Softw. Eng. Methodol., vol. 5, no. 2, pp. 99–118, 1996.

[6] D. Schuler and A. Zeller, “Javalanche: efficient mutation testing for
java,” in Proc. ESEC/FSE. ACM, 2009, pp. 297–298.

[7] R. Just, M. D. Ernst, and G. Fraser, “Efficient mutation analysis by
propagating and partitioning infected execution states,” in Int’l Symp.
on Software Testing and Analysis (ISSTA). ACM, 2014, pp. 315–326.

[8] W. E. Howden, “Weak mutation testing and completeness of test sets,”
IEEE Trans. Software Eng., no. 4, pp. 371–379, 1982.

[9] R. H. Untch, “Mutation-based software testing using program schemata,”
in Proc. annual Southeast regional conf. ACM, 1992, pp. 285–291.

[10] R. Just, F. Schweiggert, and G. M. Kapfhammer, “MAJOR: An efficient
and extensible tool for mutation analysis in a java compiler,” in Int’l
Conf. Automated Softw. Engineering (ASE). IEEE, 2011, pp. 612–615.

[11] “Available mutation operations (PIT),” http://pitest.org/quickstart/
mutators/, [Online; accessed 10-August-2016].

[12] Y.-S. Ma and S.-W. Kim, “Mutation testing cost reduction by clustering
overlapped mutants,” J. Systems and Software, vol. 115, pp. 18–30, 2016.

[13] S. Hussain, “Mutation clustering,” Ms. Th., Kings College London,
Strand, London, 2008.

http://pitest.org/quickstart/mutators/
http://pitest.org/quickstart/mutators/

[14] C. Ji, Z. Chen, B. Xu, and Z. Zhao, “A novel method of mutation
clustering based on domain analysis.” in SEKE, 2009, pp. 422–425.

[15] R. Just, G. M. Kapfhammer, and F. Schweiggert, “Using non-redundant
mutation operators and test suite prioritization to achieve efficient and
scalable mutation analysis,” in Software Reliability Engineering (ISSRE),
2012 IEEE 23rd International Symposium on. IEEE, 2012, pp. 11–20.

[16] B. Kurtz, P. Ammann, M. E. Delamaro, J. Offutt, and L. Deng, “Mutant
subsumption graphs,” in Software testing, verification and validation
workshops (ICSTW), 2014 IEEE seventh international conference on.
IEEE, 2014, pp. 176–185.

[17] P. Ammann, M. E. Delamaro, and J. Offutt, “Establishing theoretical
minimal sets of mutants,” in Software Testing, Verification and Validation
(ICST), 2014 IEEE Seventh International Conference on. IEEE, 2014,
pp. 21–30.

[18] L. Zhang, D. Marinov, and S. Khurshid, “Faster mutation testing inspired
by test prioritization and reduction,” in Proc. Int’l. Symp. on Software

Testing and Analysis (ISSTA). ACM, 2013, pp. 235–245.
[19] G. Fraser and A. Arcuri, “Achieving scalable mutation-based generation

of whole test suites,” Empirical Software Engineering, vol. 20, no. 3,
pp. 783–812, 2015.

[20] R. Wille, “Formal concept analysis as mathematical theory of concepts
and concept hierarchies,” in Formal concept analysis. Springer, 2005,
pp. 1–33.

[21] G. Fraser and A. Arcuri, “A large scale evaluation of automated unit test
generation using evosuite,” ACM Trans. Softw. Eng. Methodol., vol. 24,
no. 2, p. 8, 2014.

[22] S. A. Yevtushenko, “System of data analysis concept explorer,” in Proc.
of the national conference on Artificial Intelligence KII, vol. 2000, 2000.

[23] Q. Zhu, A. Panichella, and A. Zaidman, “Speeding-up mutation testing
via data compression and state infection,” PeerJ Preprints, 12 2016.
[Online]. Available: https://doi.org/10.7287/peerj.preprints.2632v1

https://doi.org/10.7287/peerj.preprints.2632v1

	I Introduction
	II Related Work
	III Mutation data compression
	III-A FCA grouping
	III-B Test case selection
	III-B1 FCA-based selection
	III-B2 Set cover using greedy algorithm
	III-B3 Sorting by maximal groupings

	IV Experimental study
	IV-A Research questions
	IV-B Experimental setup

	V Results
	V-A RQ1: FCA grouping
	V-B RQ2: Mutant similarity
	V-C RQ3: test case selection
	V-D RQ4: trade-offs

	VI Threats to Validity
	VII Conclusion & Future Work
	References

