
ar
X

iv
:1

90
8.

01
54

0v
1

 [
cs

.S
E

]
 5

 A
ug

 2
01

9

Mull it over: mutation testing based on LLVM

Alex Denisov

Independent researcher

Berlin, Germany

Email: alex@lowlevelbits.org

Stanislav Pankevich

Independent researcher

Berlin, Germany

Email: s.pankevich@gmail.com

Abstract—This paper describes Mull, an open-source tool for
mutation testing based on the LLVM framework. Mull works
with LLVM IR, a low-level intermediate representation, to per-
form mutations, and uses LLVM JIT for just-in-time compilation.
This design choice enables the following two capabilities of Mull:
language independence and fine-grained control over compilation
and execution of a tested program and its mutations. Mull
can work with code written in any programming language that
supports compilation to LLVM IR, such as C, C++, Rust, or
Swift. Direct manipulation of LLVM IR allows Mull to do less
work to generate mutations: only modified fragments of IR code
are recompiled, and this results in faster processing of mutated
programs. To our knowledge, no existing mutation testing tool
provides these capabilities for compiled programming languages.
We describe the algorithm and implementation details of Mull,
highlight current limitations of Mull, and present the results of
our evaluation of Mull on real-world projects such as RODOS,
OpenSSL, LLVM.

Index Terms—mutation testing, llvm

I. INTRODUCTION

Mutation Testing, a fault-based software testing technique,

serves as a way to evaluate and improve quality of software

tests. A tool for mutation testing creates many slightly modi-

fied versions of original program and then runs a test suite

against each version, which is called a mutant. A mutant

is said to be killed if the test suite detects a change to the

program introduced by this mutant, or survived otherwise.

Each mutation of original program is created based on one of

the predefined rules for program modification called mutation

operators. Each mutant is represented by a mutation point: a

combination of mutation operator and location of a mutation

in the program’s source code. To assess the quality of a test

suite mutation testing uses a metric called mutation score, or

mutation coverage.

Mutation testing is getting interest from the open source

community. More and more open-source mutation testing

tools targeting various programming languages appear [1].

Unfortunately, not all of these tools reach a level of maturity

needed for practical use. While mature implementations of

open-source mutation testing tools definitely exist, with Pitest

[2] and Mutant [3] being strong examples from Java and

Ruby programming language communities, there is still a

lack of usable mutation testing tools for certain compiled

programming languages.

In this paper, we present the Mull project, our attempt to

build a general-purpose mutation testing tool targeting com-

piled languages. Mull is built on top of the LLVM compiler

framework [4]. It uses two components of LLVM: IR, its low-

level intermediate language, to perform mutations and JIT

for runtime compilation and execution of a tested program

and its mutated counterparts. LLVM IR is also referred to

as LLVM Bitcode or simply as bitcode. We use these terms

interchangeably.

We consider the following criteria important for a practical

implementation of mutation testing tool: the tool must be

fast, configurable and easy to set up and use. The tool

should allow smooth integration with build tools. The tool

should be ready for use in mutation testing analysis of real-

world production and open source projects. The tool should

implement a reasonable number of basic mutation operators

to enable the practical use of it in different domains such as

systems programming, application programming, algorithms

and mathematical computations.

Mull is built with all of the above criteria in mind. We

started Mull with a primary focus on C and C++, but due to

LLVM, Mull can work with any other programming language

that compiles to LLVM IR, such as Rust, Swift, Objective-C.

To add a language support one needs to implement adapters

to the test frameworks used by the programming language.

Mull is a command line tool. It takes a configuration file as

an input and produces an SQLite database with the results as

output. Configuration options include a list of tested program’s

bitcode files, a set of mutation operators, a test framework, and

a few other settings. The SQLite database contains information

that Mull gathers while running on a tested program, such as

tests, mutation points, mutants (killed or survived), and more.

As a command-line tool, Mull does not show mutation score or

mutation coverage. There is a separate program that generates

an HTML report from the SQLite file.

Mull’s source code is available online [5] under Apache

License, version 2.0 [6].

We organize the rest of the paper as follows. Section II

describes the algorithm of Mull. Section III then goes deeper

and describes what we consider the most interesting imple-

mentation details of Mull. Section IV describes the mutation

operators currently implemented in Mull. Section V describes

our evaluation of the open source projects: RODOS, OpenSSL,

LLVM. Section VI highlights the limitations of Mull. Section

VII discusses future work. Section VIII concludes the paper.

http://arxiv.org/abs/1908.01540v1

II. ALGORITHM

The following are the steps that Mull performs during a

session:

Step 1: Mull loads LLVM Bitcode into memory.

Step 2: Mull inserts instrumentation code into each func-

tion. This code is used to collect code coverage information.

We describe our approach to instrumentation in III.A.

Step 3: Mull compiles instrumented LLVM Bitcode to

machine code and prepares the machine code for execution

by LLVM JIT engine.

Step 4: In the LLVM IR code Mull finds the tests according

to a test framework specified in the configuration file.

Step 5: Mull runs each test using LLVM JIT engine and

collects code coverage information.

Step 6: Mull finds mutations in the LLVM IR code based

on a code coverage information collected for each test. A set

of mutation points is created.

Step 7: For each mutation point, Mull creates a mutant and

runs each test that can kill the mutant. For each mutant, only

part of bitcode is recompiled into machine code. We describe

our approach to runtime compilation in III.B.

Step 8: All information collected during the session is

written to the SQLite database. This is the final step. Mull

finishes its execution at this point.

III. IMPLEMENTATION

A. Instrumentation and Dynamic Call Tree

A typical program has many mutations, but not all of them

are reachable by the program’s tests. We use this fact to

reduce the number of mutants. To know which mutations are

reachable we thus need to know which code is reachable

from a test. To achieve this, we insert instrumentation into

each function and then run a test to gather code coverage

information. From this information, we construct a dynamic

call tree.

The purpose of the call tree is better illustrated by

example. Consider a function test_driver calling

function test which is calling functions testee1

and testee2. The call tree would look like the following:

test_driver -> test -> { testee1, testee2 }.

In this case the code being tested is inside of testee1 and

testee2. Therefore we can inject mutations only into the

subtrees of the test function.

The call tree adds more fine-grained control of the amount

of work via mutation distance. We can define a mutation

distance to be a distance from a test function to a function

with the actual mutation. If function A calls function B and

function B calls function C, then the distance between A and

C is 2. Mutation distance can be used to decrease the number

of mutations: Mull can ignore mutations that are too far from

a test function.

The instrumentation-based approach has an overhead, but

it is necessary to get the right code coverage information.

Initially, we used static code analysis to build the call tree:

Mull iterated through bitcode and followed call instructions to

build the tree. Unfortunately, a function is not always known

until runtime. Typical examples are C function pointers and

C++ virtual function calls. After a few failed attempts we

switched to the dynamic instrumentation. Thus the call tree

became dynamic call tree.

B. JIT and Runtime Compilation

To run a tested program, Mull needs to compile the bitcode

files into object files containing machine code and link them

together into executable, as any compiler would do. To accom-

plish this task Mull utilizes LLVM JIT engine. This approach

has a great advantage: compilation and linking happen in

memory. Thus there is no disk I/O overhead.

When it comes to mutation Mull performs it on a copy

of a single bitcode file, recompiles it and links together with

already compiled object files. Partial recompilation helps to

increase performance. It also helps to decrease memory usage:

mutated bitcode file can be disposed from memory right after

execution.

C. Sandboxing

Mutations can make the code behave in unexpected ways: to

crash, to timeout or to exit prematurely. We use a parent/child

process isolation to achieve a proper sandboxing of a tested

program.

Mull, which is a parent process, runs each test in a separate

child process. The fork system call is used to create a child

process, mmap system call is used to share memory between

the parent process and the child process.

Mull handles exit status of a child process according to the

following policy:

1) Normal execution (test has passed or failed): We use a

conventional exit code 227 to indicate if a test has run without

any issues. If child process exits with code 227, Mull knows

that a test has either succeeded or failed and that nothing

extraordinary like in one of the following cases has happened.

2) Timeout: Mutated code might never finish its execution

in a child process. To handle this case Mull sets an alarm in a

child process that exits with a conventional timeout code 239

after a certain time interval. We use ualarm function to set

the alarm.

3) Crash: Mutated code can crash with a child process

executing it. We use WIFSIGNALED() to detect a crash of

a child process.

4) Abnormal exit: Mutated code exits prematurely from a

child process and this does not let a test to finish. This scenario

is a reason for the existence of the custom exit code 227 from

the case 1) because Mull needs to distinguish between normal

exit and abnormal exit from a child process.

D. Dry Run

It is not known in advance how many mutations a project

has and how much time does it take Mull to run it. To

remove uncertainty, we introduce dry run mode. In this mode,

Mull collects information about mutations but does not run

tests against them. Therefore no partial recompilation and no

sandboxing are needed.

Additionally, Mull gives a pessimistic approximation of the

run time: it calculates how much time would be needed if

each mutant times out. Real execution time is lower than the

approximation, but it gives a good hint of expected run time.

E. Test Framework: plugin architecture

Mull can work with any test framework. The only require-

ment is that Mull can run a single test independently from the

other tests in a test suite.

Each test framework plugin consists of two components:

test finder and test runner. Mull uses test finder to find the

tests in a bitcode of a tested program, and it uses test runner

to run one test according to the calling conventions of a given

test framework.

Test finder takes all bitcode files as an input and gives back

a list of test functions. Examples: for SimpleTestFinder

a test is simply a C function whose name starts with

test, for GoogleTestFinder a search algorithm ex-

tracts the information about the test functions from

internal::MakeAndRegisterTestInfo registration

call of a GoogleTest framework.

Test runner runs one test and returns the result of its execu-

tion. Running a test can be as easy as calling a test function

and checking its return value: for SimpleTestRunner test

passes if its test function returns 1 and fails if it returns

0. For GoogleTest framework GoogleTestRunner has to

emulate the work of GoogleTest’s main() function: to run

one test GoogleTestRunner runs a test suite in a ”focused

mode” with a filter set to a name of this test’s function

(--gtest_filter=TestFunctionName).

Many projects have their custom test suites. Examples

are Musl, OpenSSL, glibc, openlibm. While it is possible

to create a dedicated pair of test finder and test runner

for each of these projects like OpenSSLTestFinder and

OpenSSLTestRunner, we created a general solution called

CustomTestFramework to enable testing of these projects.

To use CustomTestFramework with a given project one

has to provide the custom test definitions in a configuration

file. Here is an example for OpenSSL project:

test_framework: CustomTest

custom_tests:

- name: test_bio_enc_aes_128_cbc

method: test_bio_enc_aes_128_cbc

program: bio_enc_test

arguments: [test_bio_enc_aes_128_cbc]

In this case CustomTestFinder treats a function

called test_bio_enc_aes_128_cbc as a test, and

CustomTestRunner runs the program using specified ar-

guments.

F. Fail Fast mode

In the worst case a tested program with N tests and M

mutations requires N * M test runs. Mull has an option to

decrease the amount of test runs: fail fast mode. For example,

if a mutation is reached from 20 tests and the very first test

kills the mutant, then there is no need to run the remaining

19 tests. The fail fast mode is disabled by default and can be

enabled in the configuration file.

G. Caching

Mull uses JIT and Runtime Compilation for better perfor-

mance. However, sometimes it is faster to read object file from

disk than to compile it in memory from LLVM Bitcode. In

this regard, Mull supports on-disk cache. Before compiling a

bitcode file Mull attempts to get an object file from disk. If

there is none, then Mull compiles the bitcode file and saves

resulting object file on-disk for later usage. When Mull runs

next time, it can use an object file from the previous session.

To avoid a use of outdated object files, Mull encodes

checksum of original bitcode file into the name of a cached

object file. Object files for mutants also contain a unique

identifier of the mutation point.

IV. SUPPORTED MUTATION OPERATORS

Mull performs mutations on the LLVM IR code, so its

implementation of mutation operators is largely determined

by the specification of LLVM language and in particular its

Instruction Reference [7]. We also used Pitest’s documentation

of its mutation operators [8] to decide which operators to

implement first.

The following is the list of mutation operators currently

supported by Mull. All of the instructions referenced below

can be found in the LLVM IR language manual.

A. Math: Add, Sub, Mul, Div

This group of operators performs mutations of basic arith-

metic operators: ”+” to ”-”, ”-” to ”+”, ”*” to ”/”, ”/” to ”*”.

Math Add replaces an add instruction, which returns the

sum of its two operands, with a sub instruction, which returns

the difference of its two operands. Math Add also works with

the floating equivalent of add instruction: fadd which is

replaced with fsub.

Math Sub operator performs the same kind of mutation as

Math Add but in opposite direction: from sub to add and

fsub to fadd. Math Mul and Div work with mul, fmul

and div, fdiv instructions respectively.

B. Negate Condition

Negate Condition operator works with icmp instruction

(comparison of integer operands) and fcmp instruction (com-

parison of floating-point operands). Both instructions accept

three operands of which ”the first operand is the condition

code indicating the kind of comparison to perform”. This

first operand is a conventional code that represents a type

of comparison, for example: ”unsigned equal” to ”signed

less than”. Negate Condition modifies the code to achieve a

complete negation of a condition: from ”equal” to ”not equal”,

from ”signed less” to ”signed greater than or equal”, etc.

C. Remove Void Function

This operator removes a call to a void function from LLVM

IR code. The void function calls can be represented by two

instructions in LLVM IR: call and invoke. The difference

between these instructions is related to the details of exception

handling and is hidden well behind LLVM IR API making this

difference irrelevant to Mull.

D. Replace Call

This operator replaces a function call, whose return value is

an integer or floating-point scalar value, with an arbitrary value

according to the following simple rule: the function call is

replaced with a value forty-two (42) of a corresponding integer

or floating-point type. Like Remove Void Function operator,

this operator works with call and invoke instructions.

E. Scalar Value Replacement

This operator replaces an integer or floating-point scalar

value with a predetermined value according to the following

simple rule: non-zero value is replaced with a zero value (0) of

the corresponding integer or floating-point type, zero value is

replaced with a value of one (1) of the corresponding integer

or floating-point type. Scalar values can appear as operands

of many different instructions in LLVM IR language: binary

arithmetic instructions like add or mul, comparison instruc-

tions icmp and fcmp, return instruction ret, function call

instructions call and invoke and some others. Scalar Value

operator maintains a list of such instructions that determines

if a particular instruction can be a target of a Scalar Value

mutation.

V. EVALUATION

In this section, we describe our experience of applying

Mull on real-world projects. We focus on ease of integration,

performance, and a practical applicability of Mull, rather than

on concrete results such as found bugs or shallow tests. For

this paper we picked three open-source projects: RODOS [9],

OpenSSL [10] and LLVM [11]. Table I describes some prop-

erties of these projects. The number of lines of code represents

size and scale of a project. However, more representative

metric is a number and an overall weight of bitcode files:

it has a direct impact on performance because all this code

has to be loaded into memory, analyzed, compiled, and linked

together.

Measurements for OpenSSL and LLVM were made on

macOS 10.13 with 16GB of RAM and Intel i7 3.1GHz CPU.

Measurements for RODOS were made on the same machine,

but inside of VirtualBox running Ubuntu 16.04, 32 bit. 4GB

of RAM and two cores of the Intel i7, 3.1GHz were allocated

for the virtual machine.

For this experiment we used three mutation operators: Math

Add (IV-A), Negate Condition (IV-B), and Remove Void

Function (IV-C). All tests were run with the Fail Fast mode

(III-F) and Caching (III-G) enabled. We ran each group of

tests twice: a cold run, without cache in place, and a hot run,

with cache in place.

TABLE I
PROJECTS

Lines Bitcode Bitcode Average time
Project of code files size per test run

RODOS 125,127 32 407 KB 23 ms

OpenSSL 311,293 630 11 MB 42 ms

LLVM 1,324,567 224 242 MB 31 ms

For each project we measure how many tests a test suite has,

how many mutants Mull detects given the mutation operators

mentioned above, total amount of test runs executed during

analysis, and the total execution time for both cold and hot

runs.

A. RODOS

RODOS [9] is a real-time operating system developed by

the German Aerospace Center. It is written in C and C++ and

uses CppUnit test framework [12] for its test suite. Among

several bare-metal platforms, it can be run on Linux and other

POSIX-compliant operating systems.

RODOS has many small test suites, each of

them covering very specific part of the system.

Examples are: matrix4d_test, quaternion_test,

filesystem_test, hal_gpio_test. Each test suite

is designed to run only one single test per compilation: to

run a test one has to compile the test suite enabling a test

by providing a macro definition. We have to change this to

control the test selection at runtime rather than at compile

time. Once the test suite is compiled, it can run either all

tests, or the one specified via command-line arguments

(argv). Original test driver always exits with exit code 0.

To check if tests failed or not one has to either observe the

output or check a test report that is written into XML file.

We have to add a small change here as well: exit code should

represent amount of failed tests. If all tests pass, then exit

code is 0, otherwise some positive number. This is a widely

used approach. RODOS uses Makefiles to build and run its

test suites, we have to change compiler flags (CXXFLAGS) to

emit LLVM Bitcode.

Two more workarounds are required to run Mull against

RODOS. Some parts of the system are written in assembly

so they are compiled directly into machine code. We have to

point Mull to them using object_file_list configura-

tion option. Since RODOS uses CppUnit we also have to point

it to the libcppunit.so via dynamic_library_list

configuration option.

Once these preparations are done, we can run Mull against

RODOS. For this experiment, we pick five test suites based on

amount of tests in each of them. Table II contains the results.

B. OpenSSL

OpenSSL [10] is a well-known implementation of TLS and

SSL protocols. It is written in C. It uses custom test framework

for its tests. OpenSSL has a mix of unit and integration tests.

We have to look at each test suite to identify if it is a unit test

suite or an integration test suite. Test suites with unit tests are

TABLE II
RESULTS FOR RODOS

Test Total time
Test suite Tests Mutants runs Distance (cold / hot)

linkinterfaceuart 11 19 186 2 4s / 2s

stdlib pico 10 36 356 2 5s / 4s

thread 10 57 196 3 5s / 3s

sortedlist 9 16 85 4 2s / 2s

linkinterfacecan 8 18 471 5 19s / 12s

TABLE III
RESULTS FOR OPENSSL

Test Total time
Test suite Tests Mutants runs Distance (cold / hot)

packettest 22 67 173 3 30s / 14s

destest 20 274 1256 3 47s / 29s

test test 19 102 214 4 31s / 17s

igetest 10 118 709 2 29s / 18s

bio enc test 6 708 2667 12 3m8s / 2m45s

simple programs that are compiled into an executable. Each

test suite can only run all tests at once. We have to change

them to run one test based on command line arguments, or to

run all of them if no arguments are given, to preserve original

behavior. We also have to extract information about each test

manually. To set up CustomTestFramework Mull needs

to know which function is a test and which command line

arguments to pass to run this very specific test.

Obtaining LLVM Bitcode is trivial. To compile OpenSSL

one has to invoke configure script to prepare build system.

configure accepts additional parameters that are used as

CFLAGS. We invoke the script by passing -flto to enable

LTO [13], which produces bitcode files instead of object files

as build artifacts. Then we compile test suites of interest and

construct separate configuration files for each of them.

Results of this experiment can be found in Table III.

C. LLVM

The LLVM [11] compiler infrastructure project is the

biggest project we have analyzed so far. LLVM is written in

C++. It uses GoogleTest [14] as a test framework. It has several

unit test suites of various sizes targeting different subsystems

of LLVM. For this experiment, we use ADTTests: a test suite

that covers specific abstract data types used in LLVM such

as arrays, strings, maps, integers, floats, etc. Additionally, in

this test suite, we focus only on normal tests and exclude tests

which are based on Typed Tests feature of GoogleTest that

GoogleTestFinder does not support yet.

Obtaining Bitcode is trivial for LLVM: it has a build setting

that enables LTO [13], which produces bitcode files instead of

object files as build artifacts. We use only one workaround

to get LLVM’s tests running: LLVM JIT does not support

Thread-Local Storage [15] so we have to exclude one source

file that uses TLS from the compilation. Fortunately, this file

is not used in the test suite so its absence does not affect the

analysis.

TABLE IV
RESULTS FOR LLVM

Test Total time
Test suite Tests Mutants runs Dist. (cold / hot)

All Tests 550 11779 60325 25 3h46m / 1h54m

All Tests 550 5508 13601 2 1h52m / 47m46s

APFloat 70 1894 22010 25 41m1s / 18m21s

APFloat 70 361 1622 2 14m13s / 4m32s

StringExtras 5 160 165 7 4m44s / 3m2s

StringExtras 5 93 98 2 4m36s / 2m24s

LLVM is a big project. It this case it is recommended

to launch Mull in Dry Run mode (III-D) to get information

about tested program. Dry run shows that Mull detected 550

tests and found 11779 mutants, it also shows that there are

60325 test runs according to III-F. The report also shows

approximation of execution time: full run may take about 9

hours at maximum. It helps to see the order: hours, not days

in the worst case. The approximation is very pessimistic: Mull

assumes that every mutant fails because of a timeout. In fact,

real execution time was 3 hours 46 minutes.

Table IV shows the results for different configurations. We

use three groups of tests of different size and different mutation

distance (III-A) for each of them to show applicability of Mull

even for big projects. The execution time of almost four hours

on the whole test suite is impractical for iterative development

process as opposed to two minutes for a subset of tests.

VI. CURRENT LIMITATIONS

A. Junk and stray mutations

A mutation can exist in bitcode, but cannot be achieved

by changing original source code. Such mutation is called

junk mutation. The term was first coined by Henry Coles

[16]. A good example of such mutation in C++ is a

std::vector::push_back method call: one line of C++

code produces around 200 LLVM IR instructions. Depending

on mutation operator Mull finds mutations in those instructions

even though there is no equivalent in the original source code.

Some mutation operators require advanced pattern matching to

avoid this issue, for others, we did not find a robust solution

yet.

Another issue is C and C++ code from their standard

libraries. Compiler inlines code from macros and templates

into resulting bitcode. Mull finds mutations in this code as

well, but they are not relevant to a tested program. We call

such mutations stray mutations. Fortunately, there is a simple

workaround: Mull can filter out mutations based on their

location in a source code using exclude_locations con-

figuration option. This approach also helps to avoid mutation

of third-party code.

B. Current limitations of LLVM JIT

Mull uses LLVM JIT from which it gets its power as

well as some of its limitations. The following are two major

limitations we encountered: LLVM JIT does not work with

projects using Thread Local Storage [15], and it does not

support Objective-C Runtime [17]. The latter limitation is the

only reason why Mull does not yet fully support Objective-C

and Swift programming languages. Both problems are solvable

and are waiting for their solution.

VII. FUTURE WORK

There is a lot of work to be done to get Mull closer to

its use in production. Below, we outline the three major (and

most obvious) parts of our work: performance improvements,

integration with modern IDE’s, further exploration of the real-

world projects.

One direction of work is further performance optimizations:

parallelization and even better control over recompilation of

bitcode. Mull still runs only one child process at a time so

the work with multiple child processes is one of the nearest

optimizations we are planning. Recompilation of mutated

function instead of a whole bitcode file that contains it can

improve performance of Mull on projects with large bitcode

files.

Integration with existing IDE’s is yet another important part

of work to make Mull practical for daily use. While Mull

works perfectly as a command-line tool that produces HTML

reports, we also see it natural to be a part of a workflow

provided by the modern IDE’s.

Another direction of work is a further exploration of the

real-world projects that will drive the implementation of new

test framework adapters like Catch for C++, better support

of programming languages like Rust and Swift, running Mull

on BSD and Windows systems. In this regard, we especially

look forward to the proper support of Objective-C Runtime by

LLVM JIT because it will open Mull the door to the world of

desktop and mobile application development on macOS and

iOS platforms.

We are aware that other mutation testing tools for compiled

programming languages exist [18] and we assume that a proper

comparison between Mull and these tools should be a topic

of separate research.

VIII. CONCLUSION

Our choice of LLVM as a base for an implementation of a

mutation testing tool was based on an experiment with LLVM

IR and LLVM JIT libraries that had produced results superior

to those from any of our previous attempts to implement a

solution working on source code or AST levels. So far, we

did not encounter a single critical problem that would turn

us away from our decision to base Mull on LLVM with its

intermediate language and infrastructure. Quite to the opposite,

Mull satisfies all criteria that we consider important for an

implementation of mutation testing tool. It has a great number

of applications and a large room for further improvement.

To test Mull on real-world projects and to explore possible

limitations of our approach we applied it to as many different

projects, programming languages, test frameworks and operat-

ing systems as was possible with our capacity. The following

is the list of the projects we analyzed:

• LLVM (C/C++, GoogleTest, macOS)

• OpenSSL (C/C++, custom test suite, macOS)

• RODOS (C/C++, CppUnit, Linux)

• openlibm (C, custom test suite, macOS)

• newlib’s libm (C, custom test suite, Linux)

• fmt (C++, GoogleTest, macOS)

• CryptoSwift (Swift, XCTest, Linux)

• rustc-demangle (Rust, Rust’s test framework, macOS)

• Mull (autoanalysis) (C++, GoogleTest, macOS)

Our long-term goal is to get Mull to the point where it can

be used by industry as a drop-in solution for mutation testing.

Also, we expect Mull to find a use in research, including

interaction with other tools and approaches, that would find

solutions to speed up the normally slow process of mutation

testing with automatic test generation.

ACKNOWLEDGEMENTS

We thank Henry Coles and Markus Schirp for fruitful

discussions and their helpful advice at the early stage of

development of Mull.

We thank Yue Jia and Mark Harman for their Analysis and

Survey [19] that gave us a theoretical background for our work.

We thank Tobias Grosser for the hint about LTO option that

helps to get LLVM Bitcode from a project’s source code.

REFERENCES

[1] “Github topics: Mutation testing.” [Online]. Available:
https://github.com/topics/mutation-testing

[2] H. Coles, “Pitest.” [Online]. Available: http://pitest.org
[3] M. Schirp, “Mutant.” [Online]. Available: https://github.com/mbj/mutant
[4] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong

program analysis & transformation,” in Proceedings of the International

Symposium on Code Generation and Optimization: Feedback-directed

and Runtime Optimization, ser. CGO ’04. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 75–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=977395.977673

[5] A. Denisov and S. Pankevich, “Mull.” [Online]. Available:
https://github.com/mull-project/mull

[6] “Apache license,” Apache Software Foundation. [Online]. Available:
https://www.apache.org/licenses/LICENSE-2.0

[7] “LLVM Language Reference Manual: In-
struction Reference.” [Online]. Available:
https://releases.llvm.org/3.9.0/docs/LangRef.html#instruction-reference

[8] H. Coles, “Pitest: Available mutation operations.” [Online]. Available:
http://pitest.org/quickstart/mutators/

[9] “RODOS.” [Online]. Available:
https://en.wikipedia.org/wiki/Rodos (operating system)

[10] “OpenSSL.” [Online]. Available: https://www.openssl.org
[11] “LLVM.” [Online]. Available: https://llvm.org
[12] “CppUnit.” [Online]. Available: https://sourceforge.net/projects/cppunit/
[13] “LLVM Link Time Optimization: Design and Implementation.”

[Online]. Available: https://llvm.org/docs/LinkTimeOptimization.html
[14] “GoogleTest.” [Online]. Available: https://github.com/google/googletest
[15] “MCJIT TLS support: Cannot select: X86ISD::WrapperRIP.” [Online].

Available: https://bugs.llvm.org/show bug.cgi?id=21431
[16] H. Coles, “Junk Mutations.” [Online]. Available:

https://twitter.com/0hjc/status/478896988784963584
[17] “[llvm-dev] Is it possible to execute Objective-

C code via LLVM JIT?” [Online]. Available:
http://lists.llvm.org/pipermail/llvm-dev/2016-October/106218.html

[18] P. Delgado-Prez, I. Medina-Bulo, F. Palomo-Lozano, A. Garca-
Domnguez, and J. Domnguez-Jimnez, “Assessment of class mutation
operators for c++ with the mucpp mutation system,” vol. 81, p. 169184,
01 2017.

[19] Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” IEEE Transactions on Software Engineering, vol. 37,
no. 5, pp. 649–678, Sept 2011.

https://github.com/topics/mutation-testing
http://pitest.org
https://github.com/mbj/mutant
http://dl.acm.org/citation.cfm?id=977395.977673
https://github.com/mull-project/mull
https://www.apache.org/licenses/LICENSE-2.0
https://releases.llvm.org/3.9.0/docs/LangRef.html#instruction-reference
http://pitest.org/quickstart/mutators/
https://en.wikipedia.org/wiki/Rodos_(operating_system)
https://www.openssl.org
https://llvm.org
https://sourceforge.net/projects/cppunit/
https://llvm.org/docs/LinkTimeOptimization.html
https://github.com/google/googletest
https://bugs.llvm.org/show_bug.cgi?id=21431
https://twitter.com/0hjc/status/478896988784963584
http://lists.llvm.org/pipermail/llvm-dev/2016-October/106218.html

	I Introduction
	II Algorithm
	III Implementation
	III-A Instrumentation and Dynamic Call Tree
	III-B JIT and Runtime Compilation
	III-C Sandboxing
	III-C1 Normal execution (test has passed or failed)
	III-C2 Timeout
	III-C3 Crash
	III-C4 Abnormal exit

	III-D Dry Run
	III-E Test Framework: plugin architecture
	III-F Fail Fast mode
	III-G Caching

	IV Supported mutation operators
	IV-A Math: Add, Sub, Mul, Div
	IV-B Negate Condition
	IV-C Remove Void Function
	IV-D Replace Call
	IV-E Scalar Value Replacement

	V Evaluation
	V-A RODOS
	V-B OpenSSL
	V-C LLVM

	VI Current limitations
	VI-A Junk and stray mutations
	VI-B Current limitations of LLVM JIT

	VII Future work
	VIII Conclusion
	References

