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Abstract—Due to rapid improvements in the area of embed-
ded processing hardware, the complexity of developed systems
constantly increases. In order to ensure a high quality level of
such systems, related quality assurance concepts have to evolve.
The introduction of Model-Based Testing (MBT) approaches has
shown promising results by automating and abstracting multiple
activities of the software testing life cycle. Nevertheless, there is
a strong need for approaches supporting scoped test models, i.e.
subsets of test cases, reflecting specific test purposes driven by
risk-oriented development strategies. Therefore, we developed an
integrated and model-based approach supporting test case man-
agement, which incorporates the beneficial aspects of abstract
development methodologies with predominant research for test
case management in non-model-based scenarios. Based on a new
model artifact, the integration model, tasks like cross-domain
information mapping and the integration of domain-specific KPIs
derived by analyses favor the subsequently applied constraint-
based mechanism for test case management. Further, a prototypi-
cal implementation of these concepts within the Architecture And
Analysis Framework (A3F) is elaborated and further evaluated
based on representative application scenarios. A comparative
view on related work leads to a conclusive statement regarding
our future work.

Index Terms—Model-Based Testing, Test Case Management,
Test Selection, Test Prioritization, Test Suite Reduction, Test
Model Scoping

[. INTRODUCTION

The continuously increasing resources and processing power
of embedded hardware enable developers to accomplish more
complex tasks than in the early days of embedded computing.
Moreover, the rising task-complexity of advanced applica-
tions may hardly be engineered by entrenched development
techniques. In order to reduce the induced complexity to a
manageable level, the concepts of abstraction and automation
have to be applied, leading to model-based approaches.

Besides the pure system/software development approaches,
an appropriate testing methodology is necessary. Especially in
the embedded domain, the requirements for sufficient testing
are much harder to achieve compared to non-embedded soft-
ware applications, e.g. in the business domain. Here, the over-
head for deploying new software to already released products,
altogether with greater efforts for simulation, debugging and
testing during development, reflect an excerpt of the domains
challenges. In order to raise the quality of the currently manual
testing efforts and reducing the overall complexity of testing,
companies, no matter if software development is carried out in
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a model-based fashion or not, tend to switch over to Model-
Based Testing (MBT) approaches [1].

On the one hand, these approaches mitigate the risk for
weak testing, by serializing and strongly structuring the tester’s
mindset. Furthermore, the potential for automated test case
generation and subsequent execution opens up new application
scenarios that integrate such technologies into continuous
integration (CI) and testing toolchains.

On the other hand, Pretschner and Philipps identified some
methodological issues in MBT, potentially invalidating in-
stantiations of such approaches [2]. One of these issues is
related to the lack of redundancy and separation of concerns
in the underlying model basis, leading to slightly divergent or
unforeseen side effects. For example, a single model artifact
used for automated code as well as test generation inevitably
leads to tests for the applied code generator instead of tests for
the developed functionality. Apart from that, fixing the redun-
dancy concept on the model level introduces new challenges
for the integration of participating model artifacts. Especially,
processing steps evaluating data from various domain-specific
models! artifacts, such as test case selection or intermediate
impact analyses in the context of model evolution, may not
easily be performed using such a modeling principle.

A. Problem Statement

Besides the methodological pitfalls of MBT in general, the
pure adaption of traditional approaches for test case selection,
prioritization, as well as reduction, to the context of MBT
will probably fail or even perform worse, due to the following
observations.

Firstly, state-of-the-art approaches in non-MBT scenarios
are mostly limited to a very specific application context, as
Engstrom et al.’s review reveals for the domain of regression
testing [3]. Its internal adequacy criteria mostly focus on
a small subset of development artifacts, such as the test
specification or models of the system under development. Due
to the limited context of these adequacy criteria, data modeled
apart from these artifacts, potentially improving the overall
result, may not even be taken into account. Although, the
predominant approaches show promising results, extending the
set of incorporated information is expected to perform better.

!domain-specific model: a purpose- and problem-specific development
artifact



Secondly, the state-of-the-art arrangement of test case man-
agement related tasks in the testing life cycle, which are widely
adapted from non-MBT scenarios, intensifies the complexity
challenge. Nearly every state-of-the-art approach does the se-
lection, prioritization, or reduction of the test suite, right before
or during the generation of concrete test cases. While there
are heuristic and algorithmic techniques for MBT scenarios to
improve this subsequent concrete test case generation, there is
no data-driven approach for test case management known to
us, which is applied to the underlying model artifacts. [4]

As a consequence, the starting point for the predomi-
nant heuristic and algorithmic approaches may further be
optimized, in terms of the pure size of the solution space.
Therefore, a fix to the order or extension of processing steps is
expected to mitigate this weakness and play off the beneficial
effects of model-based approaches concerning the complexity
challenge.

To overcome the identified problems in a model-based
development and testing scenario, we aim for an extensible
and model-based test case management methodology, which
is based on an integrated heterogeneous set of domain-specific
model artifacts. The information integration respecting the
domain separation finally leads to manageable and highly
specific sets of test cases, apart from that favoring analyses
supporting a controlled co-evolution of models or even impact
analyses for subsequent model-based debugging or regressing
testing.

Based on our previous work addressing the applica-
tion context-independent foundations of an integrated set of
domain-specific model artifacts, this contribution focuses on
the beneficial use of the underlying model basis in the context
of model-based test case management [5]. Moreover, the
herein proposed approach covers an intermediate process step
of our vision of a consistently model-based Software Testing
Life Cycle (STLC) [6].

B. Outline

The contribution addressing the challenges identified in the
previous section outlines as follows: Section II baselines the
set-up of conventional development processes and sets the in-
tended integrated model basis in relation, additionally drawing
a high-level sketch of the solution. In section III the abstract
solution is transferred to a set of metamodels alongside with
a methodology, leading to the prototypical implementation
within the Architecture And Analysis Framework. Section IV
further demonstrates the application along with a running
example. In order to reveal pursuing applications of this
approach, a heterogeneous set of scenarios is discussed in
section V. Section VI sets the contribution in relation to
predominant work of affected research domains. Finally, a
conclusive statement together with future research of this area
is arranged in section VIIL.

II. THE GENERIC APPROACH

Addressing the previously defined problem statement with
regard to state-of-the-art development processes, we present
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Fig. 1. The Omni Model and its relation to common development setups

an integrated model-based test case management approach
incorporating heterogeneous domain-specific models.

Starting off with specifying requirements, every develop-
ment process builds up its very first domain-specific model
artifact, the requirements model. Based on this data, subse-
quent process steps, on the one hand, emerge the systems’
architecture and functionality, on the other hand, verify and
validate the development artifacts, to raise the belief in the
softwares’ correctness and appropriateness.

As shown in fig. 1, these three areas mark the basic building
blocks of every software development setup. Depending on the
systems’ application environment, e.g. in an avionics, automo-
tive or railway context, additional development artifacts are
mandatory, in order to meet the requirements imposed. That
means the set of model artifacts incorporated in a development
process may vary.

Nevertheless, from a testers point of view, all of this infor-
mation includes guiding information for subsequent testing ac-
tivities. However, respecting the separation of concerns on the
model level, for reasons of meaningful MBT efforts, prevents
the tester from effectively using this information. To overcome
this shortcoming, an additional domain-independent model
artifact, namely the Integration Model (IM), is introduced.
Taking a test-centric view of the integration model, the new
model artifact serves multiple purposes:

First, this model artifact tries to close the gap illustrated in
fig. 1, by making up an intermediate representation of the
system under development and test. Further, this structural
breakdown of the instantiated system into components allows
to explicitly link information across the heterogencous land-
scape of domain-specific models. The so far inaccessible infor-
mation may thereby be used for several purposes throughout
the development and testing lifecycle.

Second, the integration model is meant to give developers
the possibility to attach data, which is produced by analyses of
domain-specific artifacts, such as results of risk assessments
based on reliability models of the system. The input and output



data of such analyses should not compulsorily be mixed up,
in order to preserve the separation of concerns on another
level and its emerging beneficial effects. Beyond the pure
serialization of such data, subsequent development steps may
base upon these results to perform better, which leads us to
the next purpose of the integration model.

Third, the previously mentioned analysis result data may
serve as another information basis for automated test model
processing, which is driven by the integration model. The
processed model artifact is meant to reflect the testers focus,
specified by a flexible set of aspects, which are taken into
account. Further, supporting the vision of a largely automated
and effective model-based testing methodology.

Beside the pure structure and information linking mentioned
above, further steps of a model-based software testing life cy-
cle have to deal with the behavioral characteristics of the sys-
tem. Therefore, the models reflecting the behavior, potentially
varying across the participating domains, are synchronized by
a mapping, which is embedded in the integration model.

Overall, the described integration model together with the
set of domain-specific development and test models makes up
the so-called Omni Model, originally introduced by Rumpold
et al. and conceptually embedded in the Architecture And
Analysis Framework (A3F) [5].

Beside the model-/data-oriented view on the topic, the
further on presented methodology may be put in a greater
context. On the one hand, the presented omni model approach
marks the conceptual basis for the consistent and strictly
model-based software testing life cycle introduced by Proll
et al. [6].

On the other hand, the methodology for scoping a certain
subset of the original test model (see section III-B), reflecting
the current test focus, determines a certain process step of
this model-based STLC. Instead of going into details of the
methodology, we start off with a more detailed view of the
meta-model concepts behind.

I1I. INSTANTIATION OF THE GENERIC APPROACH

Following the description of the generic approach in sec-
tion II to overcome the challenges identified during sec-
tion I-A, we further present an instantiation of this generic
approach including the core metamodels, the methodology
test model scoping, as well as some insights to the technical
realization.

A. Meta Model Concepts

As stated in the introduction, development processes com-
monly consume and produce a huge amount of data artifacts.
Especially in model-based approaches, these development ar-
tifacts represent the basic building blocks for ongoing automa-
tion purposes and therefore need to conform to respective meta
models. Due to the openness of the omni modeling approach,
we further focus on the essential set of meta models serving
for the later on presented methodology (see section III-B).
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a) The Integration Meta Model: This meta model intro-
duces concepts essential for the solution vectors identified in
previous sections. In order to close the conceptual gap between
predominant development artifacts, an intermediate representa-
tion of the systems” structural breakdown together with explicit
information mapping capabilities is initially focused.

Figure 2a shows an excerpt of the EMF metamodel, imple-
menting related basics. On the right-hand side of the figure,
concepts for specifying the hierarchical decomposition of the
instantiated system take place. Thereby, the decomposition
is represented by a tree-like structure consisting of nodes,
either representing logical components of the system (/M-
Component) or behavioral units of such components (IM-
Functionality). Furthermore, the hierarchical structure reveals
the granularity of the developed system parts (IMPartOf,
IMGeneralize). Based on the hierarchical representation of
the system, concepts for information mapping across the
landscape of domain-specific model artifacts are defined. For
coarse mappings, model artifacts may directly be connected to
the previously introduced nodes (/MTrace). A more detailed
mapping of model data is achieved by a set of anchor elements
(IMTraceAnchor), enabling the developer to specify arbitrary
information mappings.

Beside the pure specification of mapping relations across
models, the integration metamodel furthermore defines con-
cepts for the definition and specification of quantifiable charac-
teristics, hereinafter referred as Aspects. These aspects enable
the test engineer to specify data, supporting the subsequent
selection and prioritization of test cases. Figure 2b shows an
excerpt of the EMF metamodel defining the aspects concept.
The aspects subsequently attached to elements of the hier-
archical decomposition initially need to be clearly defined
(see lower part of fig. 2b). An aspect may either represent
predominant data fields of connected domain-specific models,
specified by an explicit link (IMAspectLink). The second
option is to synthetically define aspects, in order to incorporate
data produced by complex analyses or to represent impacting
factors. For instance, not directly measurable, but quantifiable
experience values of domain experts or results of previous
risk evaluations represent potential aspects of the system.
Their range of values may either be defined on a continuous
scale (IMRangedAspectDefinition) or based on an explicit set
definition (IMSetAspectDefinition), depending on the aspects
nature. Listing III-AOa shows two snippets of our internal DSL
for such definitions.

srname:linked req:REQRequirement :name;

sillevel:Integer:ranged [1,4];

Listing 1. Definition of a predominant and a synthetic aspect

The first aspect defined within this textual definition, named
srname, aims for the incorporation of requirements’ name
attributes, to be found in the respective requirements model
(req:REQRequirement : name). The second aspect deals
with synthetic information addressing the results of a safety
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Fig. 2. Excerpts of the integration meta model

integrity level (SIL) assessment (sillevel). Based on a purpose-
specific model artifact, such as a Failure Modes And Effects
Analysis (FMEA), the computed SIL levels are further on
represented by this ranged aspect of the integration model.

As already mentioned, a concept for the specification of
aspect values alongside the elements of the hierarchical de-
composition is incorporated. At this point, a string-based
specification of such values turned out to be more comfortable,
therefore implemented by an attribute value of a node (omitted
in fig. 2a due to detail level). Essentially, these specifications
reflect key-value pairs, while key references the name of an
aspect definition, e.g. sillevel, and value represents a set of
values, which conforms to the definition.

The last metamodel concept responsible for determining a
dedicated test focus based on the aspect data is embedded
in the aspect constraint package (see fig. 2b). As its name
implies, a set of concepts for specifying constraints for the
initially defined aspects and subsequently specified aspect
values is defined by the integration model. Thereby, an aspect
constraint defines an expression for the subsequent evaluation
against the aspect specifications embedded in the hierarchical
decomposition of the system. These expressions may either
address a single aspect and its respective values or reflect
a combination of atomic constraints via boolean operators.
Listing I1I-AOa shows a snippet of our constraint DSL.

srname:in [’/ SR3’]

& sillevel:gre [’'3'7]

Listing 2. Constraint Set for Aspects

The first constraint checks whether the focused integration
model element maps a requirement, whose name attribute
equals to “SR3”, or not, and consequently evaluates to true
or false. The second constraint checks if the synthetic aspect
specified alongside the integration model element is greater
or equal to 3. The boolean values representing the results of
the atomic constraints are further evaluated according to the
logic of boolean expressions, for instance by the logical AND
operator.

Overall, the presented excerpt of the metamodel concepts
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facilitates the further on detailed methodology. Beside this
essential metamodel, which marks the basis for pruning activ-
ities, another metamodel is presented, facilitating the uniform
processing of possibly heterogeneous test models, which is
detailed in section III-B and section III-C.

b) The Execution Graph ++ Meta Model: As previously
illustrated, the integration model together with the test model
plays the central role in our contribution. Subsequent internal
processing steps are based on a metamodel, which is indepen-
dent of the original test modeling language. In general, test
cases define a chain of sending stimuli to the SUT, receiving
stimuli of the SUT, and comparing received stimuli against the
tester’s expectations, conforming to the specification. Figure 3
represents the metamodel of an execution graph-like structure,
serializing these chains of events occurring during the execu-
tion of test cases.

The execution chains are encapsulated in a graph (EGPP-
Graph) consisting of nodes (EGPPNode), i.e. fragments of a
test case, and transitions between these nodes (EGPPTransi-
tion). Due to the fact, that test models commonly aggregate
multiple test cases within one model artifact, several special-
izations of the node metamodel concept have been integrated.
In order to establish a rudimentary structuring concept for sets
of test cases within such a graph, intermediate nodes may also
represent a subgraph. Beside the concepts making up the con-
trol flow from a defined start node (EGPPInitialNode) to one
or more final nodes (EGPPFinalNode), additional information
(EGPPTaggedData) may be attached to each of the presented
elements. A common use case for this tagged data is given in
section III-B, where domain-foreign information is introduced
to the generic representation of the test model to improve the
results of subsequent test generators.

Overall, the presented metamodel covers a versatile set
of application scenarios. For instance, an integrated view of
the structural and behavioral models of the system under
development may be build up internally, in order to achieve a
uniform internal representation for subsequent analyses.
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B. Methodology For Scoped Test Models

Based on the concepts presented in section I1I-A, a method-
ology for model-based test case management is further pre-
sented. Altogether, we aim for an intuitive and flexible way
for specifying the testers focus, consequently supporting the
selection and prioritization of test cases in an automated way.
In order to achieve the goal of scoped test models, reflecting
the intended test focus, a multi-step process has been defined.
Figure 4 shows the breakdown of the test model scoping
(TMS) methodology detailed throughout this section.

Step 0 of the TMS processing chain represents the set of
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inputs incorporated in subsequent steps. A complete integra-
tion model, the internally used generic graph representation
of the test model, further named test model, and two sets of
constraints mark the starting point. The first constraint set is
the aspect constraint set previously mentioned in section III-A,
which is applied to the integration model artifact. However, the
second set of constraints aims for the test model embedded in
the omni model. Before the mentioned model artifacts as well
as the constraint sets are processed by further steps, both a
syntactic verification and a check for completeness is done, to
ensure seamless processing.

Step 1 of the TMS process determines, which model el-
ements of the integration model fulfill the previously speci-
fied aspect constraints. Further, incorporating the predominant
model data linked via the IM, the set of aspects is evaluated.
Model elements irrelevant for the defined scope are eliminated
during this step by pruning the integration model. In case of a
too restrictive set of aspect constraints, this reduction step pos-
sibly leads to an empty result. This terminates the processing
chain consequently either forcing the modeler/tester to adjust
the aspect-related data, specified in the integration model, or
weaken the aspect constraints.

Step 2 further processes the intermediate integration model
artifact generated during the previous step, as well as the orig-
inal test model. Altogether, this step aims for a reduction of
the test model with respect to the integration model reduction
already accomplished. Therefore, the mapping information is
used in a way, that each test model element sharing a related
element in the reduced integration model, becomes part of the
reduced test model. An important factor for the quality of the
resulting model artifact is the level of detail of the modeled
mapping relations. Further, this transformation step may lead
to an intermediate test model, not necessarily conforming the
proposed syntactic and semantic requirements. However, the
subsequent processing step does not incorporate this as a
precondition and therefore does not interrupt the processing
at this point.

Step 3, quite similar to step 1, scopes dedicated parts of the
intermediate test model by applying the second constraint set,
which is specific to the test model artifacts. Depending on the



nature of the underlying test modeling approach and its meta-
model, various constraints are conceivable. An obvious choice
representing characteristics used to structure traditional testing
approaches leads to constraining factors such as follows:

o test model parts representing certain test levels (unit,
component, system, acceptance)

« cxtraction of particular sub test model(s) for specific parts
of the SUD

Based on an intermediate scoped version of the test model
artifact, these kind of constraints are sufficient for further
scoping model parts and finally reflecting the tester’s mindset.
As stated above, the intermediate model artifacts are not
necessarily correct in their syntax and semantic.

Step 4 fixes this weakness by combining the original version
of the test model and the intermediate results of the previous
processing step. Based on these two datasets a matching and
completion of the potentially fragmented intermediate test
models are performed, to restore the syntactic and semantic
requirements. Besides the basic reconstruction of the test mod-
els, model parts obviously not representing any reasonable test
description are eliminated by the Model Analysis Framework
(MAF) [7].

Step 5 enriches the set of correct test models with additional
information from other domain-specific models of the omni
model. This appears to be a contradiction to the continuous
reduction and scoping of the test models, but in fact, utilizes
more sophisticated test case generators incorporating these
additional properties to raise the quality of resulting test cases.
Further usage scenarios include improved test documentation
for subsequent reviews or test reports.

Step 6 marks the final step of the TMS process, where the
test models generated by the previous processing steps are
exported to an appropriate format. For further usage within
the model-based STLC [6], the generic graph representation
(EGPP) mentioned in section III-A is chosen for these test
models.

Based on these scoped test models, the subsequent test
case generation, which is guided by an adequacy criteria
responsible for the completeness of the resulting test suite,
produces a set of test cases, which reflects the specified test
focus with no need for further manual processing.

C. Technical Realization Of the TMS Approach

Besides the underlying concepts and the methodology for
test case management, the technical realization including its
tool support decides about the acceptance and its success.
Therefore, we take a closer look onto the technical realization
of the contents presented in previous chapters.

As already mentioned in section II, the Architecture And
Analysis Framework (A3F) implements the omni-modeling
approach as its integrated model basis for subsequent compu-
tations. Further, the included mechanism for the specification
of configurable analyses upon these models, together with its
concept for chaining analyses, fits very well with the technical
challenges of the presented approach. Figure 5 shows the
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building blocks incorporated by the Architecture And Analysis
Framework, to implement the developed functionality.
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Fig. 5. Breakdown of the Technical Realization

The Omni Model, a heterogeneous and extensible set of
domain-specific models, is realized by a loosely coupled
landscape of EMF-based meta-models, making up the internal
representation of the integrated model basis. The original
model information, specified by domain-experts, thereby may
be modeled in a general-purpose modeling language or any
tool-specific language. This model information is transformed
into the internal EMF-based metamodels by a set of QVTo-
based Model-to-Model (M2M) transformations, to be ready
for internal computation steps, encapsulated in the so-called
analysis concept.

Depending on the set of analyses to be performed by the
A3F, a set of configurations needs to be specified by an
expert. The therein specified parameters determine and extend
the information to be processed by the respective analysis.
For the TMS-related analyses, the incorporated constraint sets
represent an essential part of its overall configuration.

The lower part of fig. 5 deals with the chaining of analyses
within the A3F. As remarked in section III-B the TMS process
splits up into several analyses marking up the final function-
ality. First, the internal models are checked for syntactical
and semantical conformance with the internal meta models
together with a check for completeness in a sense of the mini-
mal required set of information to perform ongoing processing
steps. These kind of analyses are specified in a plain Java-
based fashion. Second, the test model walks through another
QVTo-based M2M transformation step, producing the generic
graph representation of the test model (EGPP), to unify the
subsequent TMS processing steps. Last, the composite analysis
specifying the previously detailed TMS logic is triggered.
Herein, the logical steps are either realized as plain Java-based
analyses or MAF analyses for processing the model artifacts.



Overall, the TMS processing chain marks an excellent
application scenario for the generation of purpose-specific data
within the A3F.

IV. TEST MODEL SCOPING APPLIED TO AN
OMNI-MODELED TANK CONTROL SYSTEM

The concepts, as well as the prototypical implementation
within the A3F, are furthermore demonstrated by means of
an exemplary application to a tank control system. The sys-
tem’s purpose is to regulate the fill level of multiple, but
possibly heterogeneous tanks. Depending on the type of the
stored fluid, a varying set of regulatory requirements needs
to be fulfilled, further determining the incorporated set of
components making up the complete system. Our use case
incorporates two different types of tanks, a water tank, and an
acid tank. The water tank in our case study is not subjected
to any safety regulations, whereas the acid tank is. Due to
entrenched architectural patterns for such systems, some of
the atomic components are implemented redundantly.

As mentioned in section IIT as well as in the contribution
of Rumpold et al., the integration model serves as a bridging
model artifact throughout an omni model-based development
process [5]. As one of the first steps, a hierarchically decom-
posed, component-based, and instantiated sketch of the system
under development is created, as included in fig. 6.

Starting with the top-level element Tank Control System,
the IM incorporates the decomposition into sub-elements,
namely the Acid Tank, the Water Tank, the Display, and the
Main Controller. The latter represents a dedicated function-
ality assigned to the tank control system, whereas the other
elements represent logically or physically isolated subsystems,
contributing to the overall system. Depending on the level of
detail served by the integration model, the decomposition may
further be extended.

The second model artifact taken into account by the TMS
processing chain is the test model, specifying test cases in an
activity chart-like manner. As an alternative representation, we
could think of a test case specification, which conforms to the
UML Testing Profile (UTP) or even a mixture of test modeling
languages. With respect to the hierarchical decomposition of
the system, tests are modeled and linked to respective elements
of the integration model. Apart from the test domain, other
domain-specific information, as mentioned during section II, is
further connected to the integration model. Especially, the set
of requirements initially modeled for serving as the systems’
specification is linked to elements of the integration model.
Each time a requirement impacts a certain component or
functionality, which is part of the integration model, a relation
(IMTrace) is specified and to be maintained throughout ongo-
ing development steps. Especially the requirements concerning
the systems safety considerations are of special interest during
further investigations.

Beside the domain-specific models previously presented
the set of available aspects has to be defined and specified,
which has already been conducted in section III-A. In case
of a requirement-oriented testing effort, the aspect regarding
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the requirements information enables testers to scope tests,
which are relevant to their current testing objective. A more
safety/reliability oriented tester would in contrast to this prefer
to align his testing activities alongside the second aspect,
which relates to the computed SIL level of a dedicated element
of the integration model.

Alongside his test focus, the test engineer develops the
aspect constraint set (Listing III-AOa), which again serves
as input for the TMS processing chain. He further limits
testing activities to unit testing, by specifying a test model
constraint, which is about to filter the unit tests out of the final
graph representation for the test model artifact. Ultimately, this
narrows down the testers current interests to unit testing the
system parts, that are safety-relevant (constraining the srname
aspect) and ranked with SIL greater equals 3 (constraining the
sillevel aspect). In future iterations of the testing life cycle, the
aspect constraints may be tweaked or cither expanded, to fit
best to the testers needs.

At this point, all of the input data for the TMS approach
has been specified and may further be applied. The first
step applies the set of aspect constraints (Listing I1I-AQOa) to
the original integration model. Figure 7 details the mappings
across domain-specific models incorporating the aspect spec-
ifications of the relevant parts.

The upper part of the figure includes the requirement
addressed by the first aspect constraint. The lower left part
again incorporates a subset of integration model elements,
which were previously analyzed by means of their safety
relevance. Applying the sillevel-constraint, we see that the
water tank model element is currently out of the testers scope.
The result generated by the first processing step is represented
by the highlighted model elements in fig. 6.

The second step investigates on the mapping of model
elements between the integration model and the test model.
Again illustrated by fig. 7, the test model parts Acid Tank
Test Model and Acid Tank Controller Test Model are filtered
according to their specified trace relations to elements of the
integration model.

The third step applies the test model constraint set to
the intermediate set of test model elements. This effectively
reduces the number of test model elements to one, because of
the fact, that the Acid Tank model element was not specified
as an unit test for the system, also indicated by the mapping
to a non-leaf element of the integration model.

Steps 4 to 6 of the process, responsible for the recon-
struction of valid test models (in more complex cases), the
incorporation of additional domain-foreign information, and
the final purpose-specific data serialization do not impact on
the result of this tiny running example.

In contrast to the original model artifacts, the scoped models
are cut down to an almost minimal and highly specific extent,
which favors targeted testing. Furthermore, the trend toward
short development cycles in agile development contexts is also
favored by such scoped test model artifacts.
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V. SCENARIO-BASED EVALUATION

Besides the exemplary application of our approach along-
side a tank control system, aiming for the selection of an
appropriate set of test cases, this section discusses further ap-
plication scenarios. Thereby the adaptability and extendability
of the approach are pointed out in a broader context.

Risk-Aware Test Case Prioritization

This scenario discusses the evolution of a model-based
test process, to support risk-based testing strategies, by ap-
plying our approach. Therefore, a third-party framework for
the assessment of heterogeneous sets of risks, potentially
impacting the systems under development, is used. In order
to reflect the results of such risk assessments, the computed
risk values need to be assigned to the respective parts of the
system. At this point, the integration model comes into play,
embedding these risk ratings within appropriate synthetic or
linked aspects. A subsequent and iteratively adapted definition
of aspect constraints, regarding these new aspects, enables
testers to do iterative and risk-based testing. Together with
an appropriate test model or set of concrete test cases, also
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incorporated by the Omni Model, the application of the TMS
process takes place. Executing the sequence of processing
steps, enables testers to automate the risk-aware prioritization,
or even selection, of test model artifacts.

Beside this analysis-based determination of prioritization
data, alternative prioritization goals are thinkable, such as
organizational factors imposed by management decisions.

Model-Based Regression Test Selection

The second scenario addresses a quite different use case,
affecting the challenge of effective test case selection in
regression testing. An essential challenge of regression testing
is to identify the need to rerun a test in future iterations.
In order to retrieve the knowledge about changes and their
impact during development, impact analyses represent a state-
of-the-art approach to such problems. Impact analyses on an
integrated set of domain-specific models, such as the omni
model, enable the automation of the regression test selection
decision process.

For instance, the result of such impact analyses needs
proper encoding within an aspect of the integration model
consequently leading to scoped test models targeting the
affected parts of the system. Regarding the dedicated steps of
the TMS process, Step 0 may therefore include the definition
of an aspect representing the amount of change introduced
since the last run of related test cases. Furthermore, the
aspect specification is performed by a change-impact-analysis
performed on top of the integrated model basis, i.e. the omni
model. Consequently, the set of aspect constraints, applied to
the integration model during Step 1, needs to be extended
in a sense, that the scoped version of the integration model
represents the model parts focused for regression testing.
Subsequent steps of the TMS process propagate these changes
to the test model basis used for test case generation.

The practical realization of such a regression test case man-
agement approach may apart from that include the automation
by modern CI Frameworks. Overall, this is expected to reveal
the beneficial aspects of model-based process steps of the
Software Testing Life Cycle.

Product line-Aware Test Case Management

The third and last scenario aims at model-based software
product line development and test. Product line Engineering in



general addresses the challenge of developing a set of products
in concert, while the products only vary in their choice
of included features, but share a common set of software
components (core features). For subsequent testing activities,
the variety of products to be tested benchmarks the suitability
of the instantiated testing life cycle. In order to optimize the
test process steps following the test case generation, the test
case selection and prioritization may be furthermore guided by
yet, therefore, unused development artifacts, such as feature
models.

The integration of such domain-specific model artifacts into
our Omni Model enables the aspects concept on top to, e.g.
determine test cases for a specific product of the product
line or prioritize parts of the test model according to their
cross-product relevance (core feature vs. optional feature). For
instance, an aspect serving this purpose may incorporate the ID
information of linked feature model elements. In combination
with an aspect constraint determining an appropriate set of
focused features via their ID, targeted testing for product line
approaches is backed by the subsequent application of the
TMS processing chain. Apart from the selection of test cases,
an indicator for the prioritization of test cases may easily be
introduced by additionally defining an aspect incorporating the
type of the linked feature.

Especially, the automotive sector extensively uses product
line-based approaches, in order to reduce engineering costs
by unifying core components of the embedded software, as
well as hardware. Beside the selection and prioritization of test
cases, the reduction of test cases may either be achieved by a
clever combination of specified aspects or an adapted choice
of the incorporated test modeling language favoring holistic
product line test models. This scenario may furthermore be
seen in conjunction with the previous scenario for model-based
regression test selection, therefore presenting a uniform solu-
tion for two previously disjoint problem domains, namely the
integration model together with its embedded aspect concept.

Besides the three scenarios discussed, many other use cases
such as security abuse-driven test case management or an
application to legacy testing scenarios are thinkable, hereafter
to be covered by this approach.

VI. RELATED WORK

The proposed taxonomy for model-based testing approaches
by Utting et al. categorizes the set of investigated approaches
amongst others by its Test Selection Criteria, where various
types of criteria are postulated by means of reflecting the
tester’s mindset for the subsequently generated test suite [8].
Apart from the Requirement-Based Coverage Criteria, which
is an information-based selection approach, mostly algorithmic
selection approaches are taken into account. This indicates that
former approaches favored an algorithmic way of solving the
problem, instead of aggregating various sets of information.
In their conclusive statement, they clearly pointed out the re-
search challenge of appropriate “domain-specific test selection
criteria” [8], which we address with our presented work.
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In contrast to the academic view on the topic, Hemmati et
al. contributed an industrial case study on test case selection
[9]. Within their research, the problem of test case explosion
in combination with hardware-in-the-loop testing in a model-
based testing context provoked a strong need for sufficient
test case management. Based on their initial categorization
into Random- or semi-random selection, Coverage-Based se-
lections, and Similarity-Based selections, they chose to apply a
genetic algorithm to minimize the similarity values of pairs of
test paths. Regarding our omni modeling approach, the similar-
ity minimization approach may be encoded by a quantification
of uniqueness revealed by a test model analysis, subsequently
constrained via the aspects concept. Moreover, this enables
testers to use this methodology for the prioritization of test
cases as well. Besides the approaches investigating on test
case management activities in a model-based testing context,
the majority of related research focuses a subset of test case
management activities, categorized by Yoo et al. [10].

Further, we present a selection of related research, impacting
our work on test model scoping. Utilizing and constraining
the related requirements information further on mapped to
concrete test cases, Harrold et al. presented a methodology
for controlling the number of test cases [11]. Together with
previous work on the requirements tracing across multiple do-
mains of the development lifecycle [12], a flexible mechanism
for appropriate test suite reduction/selection based on linked
information is presented. The experimental results of Harrold
et al. further reveal promising results by means of the final test
suite size [11]. Based on a quite similar set of requirements
information, Arafeen and Do demonstrate an approach for test
case prioritization [13].

Apart from the specification based criteria for test case
selection and prioritization, Herzig et al. presented a self-
adaptive approach, evaluating the execution costs of a test as
criteria to determine the final set of test cases [14]. In contrast
to the previously mentioned research, this represents another
use case for our synthetic aspects concept powered by analyses
of artifacts impacting the development process.

Alternative approaches aiming at the prioritization of test
cases identify other vectors of knowledge, such as results of
risk assessments of related development artifacts. Risk-Based
test case prioritization has been extensively investigated by
Felderer and Schieferdecker [15], which represented a valuable
information basis for our scoping mechanism, further gener-
alizing their concepts, while taking into account Kasurinen et
al’s observations [16]. Beyond the risk oriented approaches,
contributions aiming at fault detection capabilities (history- or
search-based) show again show promising results [17] [18].
The methodology behind these kind of approaches may also be
encoded by our processing chain, which takes a more generic
and context-independent view on the topics challenges.

Summarizing our work on related research, we found no
evidence for comparable studies performing test case man-
agement tasks based on information from multiple domains
incorporated in a model-based development process.



VII. CONCLUSIONS AND FUTURE WORK

Targeting the complexity challenges of current software
under development and test, we have presented a valuable
approach supporting test case management related tasks, such
as test case selection, prioritization, and reduction. Addressing
the identified set of problems, the proposed solution, on the
one hand, aims for improving the knowledge basis, while
simplifying the methodology on top. Therefore, the complete
palette of domain-specific development artifacts is taken into
account. Tying together these model-based information sinks,
the integration model together with its aspects concept intro-
duces a mechanism for testers to scope certain parts of the test
model.

On the other hand, a fix to the process-level arrangement of
the test case management tasks is addressed. Performing the
selection, prioritization or reduction of test model artifacts, i.e.
set of test cases on a higher level of abstraction, before the
generation of concrete test cases, the exposure of the systems’
complexity is delayed until the test cases are run. In most
alternative approaches for test case management, the concrete
set of test cases serves as a starting point for subsequent tasks
representing an even harder challenge.

Apart from the conceptual and methodological view on
the approach, we have presented insights to our prototypical
implementation within the Architecture and Analysis Frame-
work (A3F), further automating the formerly error-prone and
complex steps of test case management. Our investigations
on multiple heterogeneous application scenarios demonstrated
beneficial effects, furthermore justifying the modeling and
maintenance overhead introduced by the new model artifact.

Beside the positive impact on test case management related
tasks of the software testing lifecycle, especially the integrated
model basis may serve multiple purposes in carly testing
activities, which was already outlined by Proll et al. [6]. The
tasks integrated into this vision of a consistently model-based
software testing life cycle represent the major topics of our
future work on model-based testing.

Furthermore, an extensive evaluation of the methodology
and its prototypical implementation within the Architecture
and Analysis Framework in an industrial context represent
major tasks of our future research. Beside the functional
benchmark of the concepts presented during this contribution,
the feasibility of the approach and the maintainability of
incorporated model artifacts, i.e. the integrated model basis,
are of special interest.
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