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Abstract—Test generation based on finite-state machines can
improve the quality of software that can be modelled by a finite-
state machine. The cost of testing depends on the size of the
constructed test suite, that is, the number of tests and their
combined length. There are two advanced testing methods, the
H-method and the SPY-method, that generate small test suites
but focus on different aspects during the construction of a test
suite. This paper proposes a new testing method called the SPYH-
method that combines the advantages of the two methods in order
to reduce the cost of testing by constructing smaller test suites.

Index Terms—model-based testing, finite-state machines, soft-
ware testing

I. INTRODUCTION

Finite-state machines (FSM) can be used to model a wide

variety of systems, from hardware components to software

applications. Based on the FSM specification of a system, one

can test if the system is implemented correctly. If it is not,

a test should reveal the difference between the specification

and the implementation. However, there can always be an

error that is not revealed by any test of the given test suite.

For this reason, one would like a test method that is precise

in what it assumes about both the system under test and its

model. This paper deals with testing methods that construct

so-called m-complete test suites providing a guarantee that if

the implementation and the specification respond equally to all

tests of the test suite, then either the implementation is correct

with respect to the specification or it has more than m states.

There are two state-of-the-art testing methods that construct

m-complete test suites. They are called the H-method [1] and

the SPY-method [2]. This paper proposes the SPYH-method

that combines the new ideas introduced by the H- and SPY-

methods.

The specification is expected to be modelled by a deter-

ministic finite-state machine (DFSM) that is minimal and

completely specified. Informally, a minimal machine has all

states uniquely identifiable and a completely-specified ma-

chine has transitions for each input from all states. The new

testing method will be explained on Mealy machines that is a

usual representative of DFSM, but the method can be adapted

easily to work with other types of DFSM, such as Moore

machines and deterministic finite automata. A Mealy machine

is defined as a septuple (S,X, Y, s0, D, δ, λ) where S,X and

Y are finite sets of states, inputs and outputs, respectively,

s0 ∈ S is the initial state, D is a domain of defined transitions,

δ is a transition function and λ is an output function such

that D ⊆ S × X , δ : D → S and λ : D → Y . Both

the transition and output functions are lifted to work with

sequences of inputs, or input sequences, in a usual way;

δ∗(s, ε) = s and λ∗(s, ε) = ε for each state s ∈ S where

ε is the empty sequence, and δ∗(s, x · v) = δ∗(δ(s, x), v)
and λ∗(s, x · v) = λ(s, x) · λ∗(δ(s, x), v) for all (s, x) ∈ D
and v is an input sequence consisting of defined transitions.

The function δ∗ thus provides the state reached by the given

input sequence and λ∗ returns the sequence of output symbols

observed along the way. A DFSM is completely specified if

all transitions are defined, that is, D = S × X . A DFSM is

minimal if all states are reachable from the initial state and

every pair of states is distinguishable. A state si is reachable

from a state sj if there is an input sequence u such that

δ∗(si, u) = sj . States si, sj are distinguishable if there is an

input sequence w such that λ∗(si, w) 6= λ∗(sj , w). Such a

sequence w is called a separating sequence of si and sj . Note

that a test, or a test sequence, is an input sequence that results

in the corresponding sequence of outputs when it is applied

to the implementation. If a set T contains sequences uw, vw,

then w is a common extension of u and v in T . Finally, pref(u)

denotes a set of all prefixes of u.

The paper is structured as follows. The following section

sketches the H- and SPY- methods and defines a sufficient

condition for a test suite to be m-complete. Section III

describes the new testing method, the SPYH-method, and a

comparison of the testing methods is demonstrated on the

results of experiments in Section IV. Section V concludes this

paper.

II. TEST SUITE COMPLETENESS

A testing method constructing m-complete test suites needs

to verify that each transition is defined correctly in the im-

plementation in order to guarantee the correspondence with

the specification. The approach, how a transition is verified,

depends on the number m, on the state identification sequences

of the specification and on the availability of reset that transfers

the implementation to its initial state reliably. Note that state

identification sequences are like separating sequences that are

common for several pairs of states and so their use can reduce

the size of the test suite. This paper considers that (i) m is



greater than or equal to the number n of states of the minimal

specification; (ii) the specification does not have to possess

either an adaptive distinguishing sequence [3] or a unique input

output sequence of any state [3]; (iii) the implementation can

be reset so that the test suite can contain several sequences. If

m is greater than n, then the implementation can have l extra

states where l = m − n. These correspond to ‘inefficiency’

in the implementation and testing has to ensure that they

behave as the corresponding states of the specification they

were derived from. Therefore, this paper uses the term ‘extra

state’ to refer to incorrectly implemented additional states, that

is, those behaving differently to corresponding specification

states.

All testing methods for DFSMs with reset follow the same

approach to construct an m-complete test suite. Each state

s ∈ S is represented by its access sequence s̄ that is usually

the shortest path from the initial state s0 to s. The access

sequences s̄ of all states form a state cover S̄ that is usually

initialized (contains the empty sequence ε) and prefix-closed.

A transition (si, x) is verified if its target state sj corresponds

to s̄j . If s̄j = s̄ix, then the transition is verified trivially.

Otherwise, it needs to be shown that the state reached by s̄ix
cannot be any state sk ∈ S other than sj and also that it

cannot be one of l possible extra states. Appending appropriate

separating sequences to s̄ix ensures that the target state

δ(si, x) cannot be any state other than sj . If all states reached

by a sequence u of length up to l from s̄ix are shown to

correspond to the access sequence s̄k where sk = δ∗(si, xu),
then it proves that s̄ix is not an extra state. The conditions

on the choice of separating sequences are captured formally

in the following description of the H-method.

The H-method proposed in [1] constructs an m-complete

test suite T in the following four steps:

1) T = P where P = S̄ ·X≤m−n+1.

2) For each s̄i, s̄j ∈ S̄ such that si 6= sj , if T does not

contain a common separating extension w of s̄i and s̄j
(that is, ¬∃s̄i · w, s̄j · w ∈ T : λ∗(si, w) 6= λ∗(sj , w)),
then add such s̄i · w and s̄j · w to T .

3) For each s̄i ∈ S̄, v ∈ P \ S̄ such that si 6= sv =
δ∗(s0, v), if T does not contain a common separating

extension w of s̄i and v (that is, ¬∃s̄i · w, v · w ∈ T :
λ∗(si, w) 6= λ∗(sv, w)), then add such s̄i · w and v · w
to T .

4) If m > n, then for each u, v ∈ P \ S̄ such that u ∈
pref(v) and su = δ∗(s0, u) 6= sv = δ∗(s0, v), if T does

not contain a common separating extension w of u and

v (that is, ¬∃u · w, v · w ∈ T : λ∗(su, w) 6= λ∗(sv, w)),
then add such u · w and v · w to T .

These steps capture conditions on tests included in an m-

complete test suite but they do no specify how to obtain the

common separating extensions w. A detailed implementation

of the H-method was proposed in [4]. It specifies that the

common separating extensions are chosen to enlarge the test

suite with the least number of symbols that extend some test

sequences. The H-method thus constructs an m-complete test

suite based on fixed state cover extended with sequences of

length m−n+1, and it chooses separating sequence on the

fly in order to distinguish required pairs of sequences.

The SPY-method proposed in [2] optimizes the size of

resulting test suites in a very different way to the H-method. It

uses fixed separating sequences but the state cover can vary.

Separating sequences can be appended to any sequence that

is proven to represent the corresponding state. The following

theory allows such a use of different access sequences instead

of a fixed one.

Convergence and divergence of test sequences with respect

to a set of machines are important notions that enable one

to use properties of regular languages in testing. Regular

languages are equivalent to finite-state machines, however, this

fact was not directly utilized for testing before the notions of

convergence and divergence were proposed in [2], [5]. The

structure of a DFSM was described just by the sets of access

and separating sequences but the relations between sequences

were missing.

Definition 1: Given a set of FSMs F , two tests are F-

convergent, if both test sequences lead from the initial state to

the same state in each FSM of F (they converge in each FSM

of F ). Two tests are F-divergent, if both test sequences lead

from the initial state to different states (they diverge in each

FSM of F ).

Definition 1 can be applied to different sets of machines

but the two most important are F representing the fault

domain FT of DFSMs that pass the test suite T , that is, all

implementations that respond to all tests as the specification,

and set F containing just the specification M . Two sequences

u and v are thus FT -convergent if for each N ∈ FT , it holds

that δ∗N (q0, u) = δ∗N (q0, v) where δN is the transition function

of a DFSM N ; u and v FT -converges [5]. Similarly, u and

v are M -convergent in state s if δ∗M (s0, u) = δ∗M (s0, v) = s.

The curly brackets representing a set are omitted in the case

of a single machine for simplicity, that is, M -convergent or

M -divergent is used instead of {M}-convergent or {M}-
divergent. Moreover, the set is omitted when it is clear from

the context. A necessary condition for two test sequences to

be FT -convergent (FT -divergent) is that they need to be M -

convergent (M -divergent). This follows from the fact that the

specification M always passes its test suite T and so M is

always in FT . There is also a sufficient condition for FT -

divergence. Two test sequences u and v are FT -divergent if

they are T -separable, that is, there is a common separating

extension of u and v in T .

The convergence relation is reflexive, symmetric and tran-

sitive, which means that it is an equivalence relation over

the set of tests [2]. Tests in T can be thus partitioned into

corresponding equivalence classes

[ui] = {uj ∈ T | ui and uj are FT -convergent}.

The following properties hold for any u, v ∈ T such that [u] =
[v] [2, Lemma 1]:

1) for any sequence w: [uw] = [vw],
2) for any sequence t ∈ T : [u] 6= [t] =⇒ [v] 6= [t].



As the equivalence classes groups sequences that lead to the

same state, the behaviour on all extensions of these sequences

is the same as well and so T can be extended to work with the

equivalence classes as follows. If there is u′ ∈ [u] that is in

T , then [u] ∈ T and any extension of u′ in T is an extension

of [u] in T . The classes will be called convergent.

Convergent classes are derivable from a pairwise compari-

son of tests based on their convergence and divergence, how-

ever, other notions are needed to describe relations between

those classes.

Definition 2: Given a test suite T for the specification M ,

a set of tests in T is FT -convergence-preserving if all its

M -convergent tests are FT -convergent; a set of tests in T
is FT -divergence-preserving if all its M -divergent tests are

FT -divergent.

For example, a set of two T -separable tests is FT -

divergence-preserving. All machines that pass T respond

differently to each of the two T -separable tests, hence, the

two test sequences are FT -divergent and the set of these two

sequences is FT -divergence-preserving. With the convergence,

it is a little harder as there is no simple sufficient condition for

two or more tests to be FT -convergent. The following theorem

that is the same as [2, Theorem 2] except the denotation states

when one can declare two tests FT -convergent.

Theorem 3: Given a test suite T for a FSM M and l =
m−n ≥ 0, let u and v be M -convergent tests in T , such that,

for any sequence w of length l, there exist tests u′ ∈ [u], v′ ∈
[v] and an FT -divergence-preserving state cover for M in T
containing {u′, v′}·pref(w). Then, u and v are FT -convergent.

A sufficient condition for an m-complete test suite based

on the convergence of test sequences was proposed in [2] and

its revised version is captured in the following theorem.

Theorem 4: (SPY-condition) Given a test suite T for a

DFSM M and the corresponding fault domain FT of ma-

chines with up to m states. If T contains a FT -convergence-

preserving initialized transition cover for M , then T is an

m-complete test suite for M .

The proof of Theorem 4 in [2] shows that each machine N
in FT needs to be equivalent to M due to the isomorphism

between states of M and N . The initial states correspond to

each other as T contains their access sequence, that is, ε ∈
T as T is initialized. All M -convergent sequences are FT -

convergent and so they lead to the same state in every N ∈ FT ,

that is, there is one to one correspondence of states of M and

states of N . All transitions of M are tested as T contains

transition cover. Therefore, Theorem 4 holds.

The SPY-method proposed in [2] employs the convergence

relation (Definition 1) to reduce test branching and thus

the number of sequences in the resulting test suite T . Test

branching is the branching of the testing tree. A testing tree

groups test sequences with common prefixes and is thus more

compact and space-efficient than the test suite represented

by a set of test sequences. The method aims to meet the

SPY-condition (Theorem 4) that requires FT -convergence-

preserving initialized transition cover included in T . It is

accomplished by verification of all transitions. A transition

from state si to state sj on input x is verified if s̄i · x and

s̄j are proven to be FT -convergent. The SPY-method first

designs an FT -divergence-preserving, initialized, prefix-closed

and minimal state cover S̄ and then employs Theorem 3 to

verify all transitions. Note that transitions included in the state

cover are verified as S̄ is prefix-closed so that s̄i · x = s̄j .

The method uses fixed separating sequences called harmonized

state identifiers (HSI) for distinguishing the reached states. The

harmonized state identifier Hi of state si uniquely identifies

si amongst all states because for each pair of different states

(sj , sk) the related HSIs Hj and Hk contain a separating

sequence wjk of sj and sk either as-is wjk ∈ Hj ∩ Hk or

as a prefix of longer sequences in Hj and Hk. Traditionally,

verification of a state sj requires state identification sequences

to be applied from that very state. In the presence of multiple

elements in [s̄j ], any of them can be extended by such a state

identification sequence. This is referred to as ‘distributing’

sequences of Hj over access sequences of sj . Where such

a sequence has a prefix of some other sequence from sk or

an existing sequence from sk can be extended to the said

verification sequence, only a few test input symbols are (as

opposed to the whole verification sequence) needed to be

added. In other words, the aim of distributing sequences is

to extend existing sequences, thereby avoiding branching in

the testing tree (every branch means a separate test sequence).

Algorithm 1 is an adapted version of the SPY-method pro-

posed in the original paper [2] with a small space optimization.

The original version stores all classes of convergent sequences

which is not needed. Only convergent classes of the fixed

access sequences of S̄ are needed in the algorithm and so

only those are handled as proposed in [4].

The SPY-method starts with the construction of state cover

S̄ and harmonized state identifiers Hi. Those are then con-

catenated accordingly to form an FT -divergence-preserving

state cover which is a precondition in Theorem 3 (proving

convergence of two test sequences). Each transition (s, x)
such that s̄ · x is not proven to be convergent with s̄x,

where sx = δ(s, x), is verified by appending HSIs to the

extensions of s̄ · x and s̄x. A queue U helps to traverse the

extensions from the shortest ones to the ones of the given

maximal length l that represents the number of extra states.

For each extension u and each separating sequence w from the

corresponding HSI, a suitable sequence to extend is chosen

using the function APPENDSEPARATINGSEQUENCE called on

lines 8 and 9 of Algorithm 1. When all extensions of length up

to l are appended to both convergent classes and all reached

states are verified by appending the related HSIs, sequences

s̄ · x and s̄x are deemed to be proven FT -convergent and

their convergent classes are merged. Note that the classes of

their successors are merged as well; for instance, sequences

of [s̄ · x · x′] enlarge the convergent class [s̄i] if δ(sx, x
′) = si

and transition (sx, x
′) is already verified.

Algorithm 2 describes APPENDSEPARATINGSE-

QUENCE([u], w) that chooses a sequence ubest of the

given convergent class [u] such that it is the most suitable

for the extension by the given sequence w. The objective



Algorithm 1: SPY-method

input : A minimal DFSM M with n states

input : A number of extra states l; m = n+ l
output: An m-complete test suite T for M

1 Hi ← harmonized state identifier of si, for all si ∈ S
2 T ← {s̄i ·Hi | s̄i ∈ S̄}
3 foreach unverified transition (s, x) s.t. sx = δ(s, x) do

4 U ← {ε} // a queue of sequences X≤l

5 while U is not empty do

6 pop u from U
7 foreach w ∈ Hi for si = δ∗(sx, u) do

8 APPENDSEPARATINGSEQUENCE([s̄], xuw)

9 APPENDSEPARATINGSEQUENCE([s̄x], uw)

10 if |e| < l then U ← U ∪ u ·X

11 merge [s̄ · x · u] and [s̄x · u] for all sequences u where

the two classes are not empty

12 return T

function is to minimize branching of the testing tree and

total number of input symbols in T . Therefore, the default

value of ubest is the shortest sequence of the given class [u].
If there is u′ in [u] with a maximal extension w′ that is a

prefix of w, then it is chosen such u′ that has the longest w′.

A sequence is maximal in a set if it is not a proper prefix

of another sequence in the set. Note that the function checks

whether w is already in T (line 4 of Algorithm 2). This

choice minimizes the number of added symbols to T even if

there is no other option than add a new test sequence to T .

Finally, the function APPENDSEPARATINGSEQUENCE either

enlarges T with a new test sequence ubest · w or appends the

suffix of w to the test sequence ubest ·w
′ in T that is maximal

in T and a w′ is the corresponding prefix of w.

Algorithm 2: APPENDSEPARATINGSEQUENCE([u], w)

1 ubest ← the shortest u′ ∈ [u], maxLength ← −1
2 foreach u′ ∈ [u] do

3 w′ ← the longest prefix of w such that u′w′ ∈ T
4 if w′ = w then return

5 if there is no v such that u′w′v ∈ T and |w′| >
maxLength then

6 ubest ← u′, maxLength ← |w′|

7 add ubest · w to T

III. SPYH-METHOD

The idea of a new testing method emerged from the analysis

of the two most advanced testing methods described in the

previous section, the SPY-method and the H-method. The H-

method uses fixed state cover that is extended with separating

sequences chosen on the fly. The SPY-method uses separating

sequences of fixed harmonized state identifiers but appends

them to different access sequences that were proven to be

convergent with the one in the fixed state cover. This section

proposes a novel testing method called the SPYH-method that

is a combination of the SPY- and H- methods. After the idea

of the method is sketched, its implementation is described in

the following subsection, the complexity is then discussed and

the section is concluded with a running example of how the

SPYH-method generates a test suite.

The SPYH-method is similar to the SPY-method as it also

aims to satisfy the SPY-condition (Theorem 4). It gradually

verifies transitions by proving the convergence but for the

verification of the reached state it uses the approach of the

H-method, that is, the separating sequences are chosen on the

fly. The approach of choosing a separating sequence was also

adapted to work with classes of convergent sequences.

The order in which unverified transitions are processed

influences the size of resulting test suite. Therefore, a small

optimization is proposed. The optimization sorts unverified

transitions according to the sum of the lengths of the related

access sequences, in particular, the value |s̄| + |s̄x| is used

for transition (s, x) leading to state sx where s̄, s̄x are fixed

access sequences in S̄. The convergent classes related to states

that are closer to the initial state increase in their sizes sooner

than the others and so the choice of convergent sequences to

extend is higher when transitions from these states are to be

verified. Hence, when a separating sequence is to extend an

access sequence, there is a higher probability that just a few

symbols are appended to a current test sequence than that the

entire new test sequence is added to the test suite.

A. Implementation

The SPYH-method is implemented as a combination of

approaches and functions from the authors’ implementation

of the SPY- and H- methods. The main difference is handling

convergent sequences as the SPYH-method works with all

convergent classes, not only those related to access sequences

of a fixed state cover like in the SPY-method. Classes are

stored and represented as convergent nodes (CN) of a con-

vergent graph. A convergent graph is a transition diagram

of a DFSM. Initially, it corresponds to the testing tree that

captures traces of test sequences. Then, two subtrees are

merged when the sequences leading to the roots of the subtrees

are proven to be convergent. Such a merge can create a

cycle in the convergent graph, therefore, it has no longer a

tree structure. The corresponding merge is done every time

two sequences become FT -convergent. Finally, the convergent

graph represents the specification M on which the design of

the test suite T is based. Convergent nodes thus group prefixes

of test sequences such that these prefixes are convergent if they

reach the same node. Whenever any following algorithm uses

a convergent class (denoted by [.]), the implementation works

with the corresponding convergent node. Incremental state

merging is also at the heart of passive learning methods such

as RPNI [6] and Blue Fringe [7]. It corresponds to a known

dichotomy between learning and testing [8]: a DFSM learnt

from an m-complete test suite using state merging should be

equivalent to the specification.



Algorithm 3 captures the main flow of the SPYH-method.

It first designs an initialized prefix-closed state cover S̄ that

is then made FT -divergence-preserving using the function

DISTINGUISH. Every sequence of S̄ needs to be distinguished

from each other to create an FT -divergence-preserving S̄. The

proposed optimization sorts the unverified transitions that are

then processed. An unverified transition (s, x) first needs to

be covered in T (line 6) and then both [s̄ · x], [s̄x], where

sx = δ(s, x), need to be extended to satisfy Theorem 3.

DISTINGUISHFROMSET takes care of suitable extensions sat-

isfying all requirements so that both convergent classes (and

CNs as well) can be then merged as they become convergent.

Finally, the m-complete test suite is returned.

Algorithm 3: SPYH-method

input : A minimal DFSM M with n states

input : A number of extra states l; m = n+ l
output: An m-complete test suite T for M

1 T ← S̄
2 foreach s̄ ∈ S̄ do

3 DISTINGUISH([s̄], S̄)

4 sort unverified transitions according to |s̄|+ |s̄x|
calculated for each transition (s, x) and sx = δ(s, x)
in the increasing order

5 foreach unverified transition (s, x) with sx = δ(s, x) do

6 add s̄ · x to T if not there

7 DISTINGUISHFROMSET([s̄ · x], [s̄x], copy of S̄, l)
8 merge [s̄ · x · u] and [s̄x · u] for all sequences u where

the two classes are not empty

9 return T

DISTINGUISH described in Algorithm 4 separates the given

convergent class [u] from the classes [v] of all v in the given V
that correspond to different states than δ∗(s0, u). The choice

of separating sequences is the same as in the case of the H-

method but it works with convergent classes. First, a pair of

convergent classes is compared and the function GETPRE-

FIXOFSEPSEQ determines the prefix w′ of their separating

sequence such that (i) the prefix w′ is already in T as a

common extension of both classes and (ii) the corresponding

separating sequence should enlarge T the least. If the classes

are not distinguished in the existing testing tree, then the

shortest separating sequence w of states reached by w′ from

δ∗(s0, u) and δ∗(s0, v) is appended to the related classes using

APPENDSEPARATINGSEQUENCE defined in Algorithm 2.

Algorithm 5 specifies the function DISTINGUISHFROMSET

that controls which pairs of convergent classes are to be

distinguished in order to satisfy Theorem 3 and so verify

a transition. DISTINGUISHFROMSET extends two sequences

simultaneously as both s̄ · x and s̄x (and their extensions) are

to be in an FT -divergence-preserving state cover according to

Theorem 3. The given set V of sequences always contains the

fixed state cover S̄ and any sequence that is added to V on

lines 5 and 6 (and then removed on lines 11 and 12). Using

Algorithm 4: DISTINGUISH([u], V )

1 foreach v ∈ V such that δ∗(s0, u) 6= δ∗(s0, v) do

2 (e, w′)← GETPREFIXOFSEPSEQ([u], [v])
3 if e > 0 then

4 w ← the shortest separating sequence of

δ∗(s0, uw
′), δ∗(s0, vw

′)
5 APPENDSEPARATINGSEQUENCE([u], w′w)

6 APPENDSEPARATINGSEQUENCE([v], w′w)

this adding and removing of sequences, the classes of proper

prefixes of [u] and [v] are distinguished from [u] and [v] which

is needed for a divergence-preserving set. This corresponds

to the step 4) of the H-method. The required extensions of

length up to l do not have to be already in T , therefore,

lines 8 and 9 of Algorithm 5 add them gradually by one

symbol. DISTINGUISH is called (lines 1 and 3) before the

recursive call of DISTINGUISHFROMSET (line 10). It means

that the separating sequences appended to u can cover some

of the required extensions and sequences appended to these

extensions can have these separating sequences as prefixes.

Hence, the total number of test sequences could be reduced

compared to the case when the construction of all extensions of

length l is followed by appending separating sequences. The

boolean variable notReferenced controls that a fixed access

sequence s̄ is not added to V if it is already there and

that DISTINGUISH is not called with a class [v] representing

a state. As [u] represents [s̄ · x] when the function is first

called from Algorithm 3, this class and its successor do not

correspond to the classes of states and so the condition is not

checked on lines 1, 5 and 12.

Algorithm 5: DISTINGUISHFROMSET([u], [v], V , depth)

1 DISTINGUISH([u], V )
2 notReferenced ← ∀s̄ ∈ S̄ : s̄ /∈ [v]
3 if notReferenced then DISTINGUISH([v], V )
4 if depth > 0 then

5 add u to V
6 if notReferenced then add v to V
7 foreach x ∈ X do

8 APPENDSEPARATINGSEQUENCE([u], x)

9 APPENDSEPARATINGSEQUENCE([v], x)

10 DISTINGUISHFROMSET([ux], [vx], V, depth−1)

11 if notReferenced then pop v from V
12 pop u from V

The last part of the SPYH-method is the function that

checks all common extensions of the given classes and chooses

the best prefix of a separating sequence that should extend

T . GETPREFIXOFSEPSEQ in Algorithm 6 uses the variables

minEst and bestPrefix to store information about the best way

so far to distinguish the given sequences. An estimate of

symbols that would extend T is calculated for each maximal



common extension. The estimate includes the length of access

sequences as well if a new test sequence is to enlarge T ,

that is, if there is no maximal sequence in the corresponding

convergent class. The function HASLEAF defined on lines

5–6 checks whether the given class contains a sequence

that is maximal in T and so it provides information if the

chosen separating sequence can easily extend a current test

sequence. Note that HASLEAF is implemented as a property

of convergent nodes that keep track which sequences reach the

nodes but do not have successors in the testing tree. The initial

estimation of the number of symbols that extend T assumes

the worst case where the shortest separating sequence w will

extend both classes and no prefix of w extends any sequences

of the convergent classes. Therefore, minEst gets twice the

length of w plus the lengths of the shortest sequences u, v of

the given classes if they do not contain a maximal sequence.

All inputs are then compared if they begin a common extension

that could lead to a better estimate. If both classes have an

extension starting with the input x, then a recursive call is

made to check the corresponding classes [ux], [vx] unless x
separates states reached by u, v or x transfers these states to

the same state. In the former case (line 12 of Algorithm 6), the

function returns that the given classes are already distinguished

in T . In the latter case (line 13), another input x is considered

as no separating sequence can start with x. The recursive call

of the function returns two values, an estimate e of symbols

that enlarge T and a sequence w′ that is an extension of the

given [ux] and [vx] in T and is also a prefix of the best

identified separating sequence of states reached by ux, vx.

If e is 0, then [ux] and [vx] are distinguished in T and so

[u], [v] are distinguished as well. Otherwise, e is compared

with minEst that stores the minimal estimate amongst inputs

x considered so far. If e is lower or equal to minEst (line 16),

then minEst is updated with e and bestPrefix with xw′. Note

that the equality in the condition on line 16 means that longer

extensions are favoured in the selection. This aims to select

extensions that are not proper prefixes of other extensions and

so the number of sequences in T does not increase when the

chosen separating sequence is appended to [u] and [v]. If one

of [u], [v] has no extension starting with x (lines 19–26 and

28–34), then it depends on which of the classes has such an

extension. The function ESTIMATEGROWTHOFT defined in

Algorithm 7 initializes e with an estimate of the number of

symbols added T by appending a separating sequence. If just

x separates the reached states (e = 1), then only the class

that is not extended with x is checked whether it contains a

maximal sequence and if not, the length of the shortest access

sequence increases e (lines 24 and 33). Otherwise, the other

class needs to be checked as well (lines 21–23 and 30–32). If

e is lower than minEst, both minEst and bestPrefix are updated

accordingly (lines 25–26 and 34). Finally, both variables are

returned as the values capturing the best way to distinguish

the given [u] and [v].
If an input x does not start extensions of both u and v

in T , then the function ESTIMATEGROWTHOFT estimates the

number of symbols that would be added to T to distinguish the

Algorithm 6: GETPREFIXOFSEPSEQ([u], [v])

1 Let u, v be the shortest sequences of the given classes

2 su ← δ∗(s0, u), sv ← δ∗(s0, v)
3 minEst ← 2|w| where w is the shortest separating

sequence of su, sv
4 bestPrefix ← ε
5 HASLEAF([u]):
6 returns true if there is u′ ∈ [u] that is maximal in T

7 if not HASLEAF([u]) then minEst ← minEst + |u|
8 if not HASLEAF([v]) then minEst ← minEst + |v|
9 foreach x ∈ X do

10 if there are u′ ∈ [u] and wu ∈ X∗ such that

u′xwu ∈ T then

11 if there are v′ ∈ [v] and wv ∈ X∗ such that

v′xwv ∈ T then

12 if λ∗(su, x) 6= λ∗(sv, x) then return (0, ε)
13 if δ(su, x) = δ(sv, x) then continue

14 (e, w′)← GETPREFIXOFSEPSEQ([ux], [vx])
15 if e = 0 then return (0, ε)
16 if e ≤ minEst then

17 minEst ← e, bestPrefix ← xw′

18 else

19 e← ESTIMATEGROWTHOFT(su, sv , x)

20 if e 6= 1 then

21 if HASLEAF([u]) then e← e+ 1
22 else if not HASLEAF([ux]) then

23 e← e+ |u|+ 1

24 if not HASLEAF([v]) then e← e+ |v|
25 if e < minEst then

26 minEst ← e, bestPrefix ← x

27 else if there are v′ ∈ [v] and wv ∈ X∗
↑ such that

v′xwv ∈ T then

28 e← ESTIMATEGROWTHOFT(su, sv , x)

29 if e 6= 1 then

30 if HASLEAF([v]) then e← e+ 1
31 else if not HASLEAF([vx]) then

32 e← e+ |v|+ 1

33 if not HASLEAF([u]) then e← e+ |u|
34 if e < minEst then minEst ← e, bestPrefix ← x

35 return (minEst, bestPrefix)

given states su and sv if the separating sequence began with

x. Algorithm 7 defining ESTIMATEGROWTHOFT assumes that

one of classes [u], [v] is extended with x in T . Therefore, it

returns 1 if x separates the given states. If x cannot begin

the shortest separating sequence because the states go on x
to themselves or to a single state, then 2n is returned. Note

that twice the number of states n is always greater than twice

the length of the shortest separating sequence of a state pair.

Otherwise, ESTIMATEGROWTHOFT estimates that T would



be enlarged by 2 · |w| + 1 symbols where w is the shortest

separating sequence of next states of su, sv on x such that

w would be appended to both [ux], [vx] and +1 stands for

one x appended to either [u] or [v]. The function assumes

that no prefix of w is an extension of [ux] or [vx] in T ,

therefore, the estimate is always higher than or equal to the

actual number of symbols that enlarge T by appending w to

[ux], [vx]. Note that instead of constructing w for every call

of ESTIMATEGROWTHOFT, the SPYH-method stores lengths

of the shortest separating sequences for each pair of states.

Besides the lengths, the same array stores information to which

pair of states the pair of states transfers on particular input and

if an input can begin a separating sequence. This structure is

called a state pair array of all separating sequences and was

introduced in [4]. The separating sequence w is then obtained

based on the connections between cells of the array only once

for each call of DISTINGUISH.

Algorithm 7: ESTIMATEGROWTHOFT(su, sv , x)

1 if λ(su, x) 6= λ(sv, x) then return 1

2 if δ({su, sv}, x) = {su, sv} or |δ({su, sv}, x)| = 1 then

3 return 2n

4 return 2 · |w|+ 1 where w is the shortest separating

sequence of δ(su, x) and δ(sv, x)

B. Time and Space Complexity

Meaningful time and space complexities are not easy to

derive as they are really dependent on the structure of machine

under test, that is, access sequences of states and their sepa-

rating sequences, the number of states n, the number of inputs

p and others. The space complexity for the SPYH-method

includes the resulting testing tree, the convergent graph and

a state pair array of all separating sequences. The convergent

graph represents the machine under test in the end so that it

takes O(n) space. The state pair array has space of O(n2).
However, the testing tree depends on test sequences. Its size

is bounded by the total length of test sequences, that is, the

size of test suite, but it is usually much smaller because each

common prefix of several test sequences is stored in the testing

tree just once. The upper bound of the size of test suite is

possible to derive by considering the W-method that is the

oldest testing method [9], [10]. Each test sequence has three

parts: the access sequence of a state, the input of the tested

transition, the extension of length up to the given l and a

separating sequence; the access and separating sequences are

at most n − 1 long. The length of a test sequence is thus at

most (n − 1) + 1 + l + (n − 1) which is in O(2n + l). The

number of test sequences is bounded by n · pl+1 · (n − 1)
because there is n access sequences that are extended with all

sequences of length up to l + 1 and at most n− 1 separating

sequences are then appended. Together, the size of test suite is

in O((2n+ l)(n2pl+1)) which is in O(n3pl+1) if n is strictly

greater than l. This is important bound as the standard testing

methods including the H- and SPY- methods have the same

(worst case) space complexity O(n3pl+1).

The worst case time complexity can be calculated based

on Algorithms 2–7. The most time is spent in the function

DISTINGUISH. It is called approximately (n+np ·pl ·2) times;

for each of n access sequences (line 3 of Algorithm 3) 1 call

plus for each of at most np unverified transitions and each of

their pl extensions there are 2 calls. Note that the exact number

of extensions is pl+1−1

p−1
as the sum of a geometric progression.

Inside the function, the given class [u] is distinguished from

particular classes in V . For the first n calls of DISTINGUISH

|V | is n and for the other calls the size of V is at most n+ l.
All common extensions of the given classes are checked by

GETBESTPREFIXOFSEPSEQ (line 2 of Algorithm 4). There

are very different numbers of extensions for different classes

during the design, however, it is possible to bound them

by the (worst case) size of test suite, that is, n3pl+1. The

separating sequence w can be obtained proportionally to its

length so that at most in O(n). The last bit are two calls of

APPENDSEPARATINGSEQUENCE (Algorithm 2). This function

chooses one sequence of the given class and appends w to it.

Let assume that every class has the same number of convergent

sequences in the end, that is, there are n classes so that

each has n2pl+1 sequences. However, as each sequence of

the class is checked for an extension that is a prefix of the

given w, APPENDSEPARATINGSEQUENCE runs in O(n3pl+1).
Putting the above figures together, the SPYH-method spends

O((n2 + 2npl+1(n+ l))(n3pl+1 + n+ n3pl+1)), or O((n5 +
n4l)p2l+2+(n5+n3+n2l)pl+1+n3), time with function DIS-

TINGUISH. The other parts such as generation of state cover,

sorting unverified transitions or merging convergent classes,

do not change the estimated complexity so that the worst case

time complexity of the SPYH-method is O((n5 +n4l)p2l+2).
Nevertheless, the experiments in Section IV will show that the

complexity is close to quadratic in most cases.

C. Running Example

The construction of an m-complete test suite by the SPYH-

method is explained on an example in this subsection. One of

the simplest machines is a turnstile with the control system that

can be modelled by the completely-specified Mealy machine

shown in Fig. 1. It has 2 states, Locked and Unlocked

(abbreviated to L and U), 2 inputs (‘c’ and ‘p’), 3 outputs

(‘N’, ‘L’ and ‘F’) and the turnstile is initially in the state

Locked to which the machine can be reset any time. The

letters that denote the inputs and outputs stand for actions

and observations depicted in Fig. 1. Each transition is labelled

with an input symbol and the corresponding output symbol,

for example, if one inserts a coin in the turnstile (input ‘c’),

no response is observed (output ‘N’) but the machine transfers

into the state Unlocked.

Assume that the control chip of the turnstile allows to

represent up to 3 states. Therefore, 1 extra state is considered

in the construction of an m-complete test suite in order to

confirm that the turnstile is implemented correctly according



Inputs:

‘insert a coin’

‘push the bar’

Outputs:

No response

Locked

Free

Locked

start

Unlocked

States Inputs Outputs Initial state

S = {L, U}, X = {c, p}, Y = {N, L, F}, s0 = L

p/L

c/N

c/N
p/F

Fig. 1. A turnstile with its specification

to the specification; m = 3 as the specification has 2 states

and the number l of extra states is 1.

The test suite T is initialized with a prefix-closed state cover

S̄ (line 1 of Algorithm 3) that corresponds to the sequences ε
and ‘c’. The SPYH-method stores T in the testing tree. Fig. 2

shows the final testing tree with nodes numbered according

to the order in which the test sequences are added to the

test suite T . The testing tree with just S̄ contains only the

nodes 1 and 2 that represent both states of the turnstile.

The method needs to distinguish the access sequences of S̄
in order to create a divergence-preserving state cover in T .

Both access sequences have no common extension, therefore,

GETBESTPREFIXOFSEPSEQ returns (2, ε) and the shortest

separating sequence ‘p’ is appended to both ε and ‘c’ (nodes

3 and 4 of the testing tree).

There are 3 transitions that are not verified. They are sorted

according to line 4 of Algorithm 3. The transition (L, p) will

be verified first, then the transition (U, p) and the last one

will be (U, c). This is the first change compared to the H-

and SPY- methods because (U, c) would be verified before

(U, p) in their case as the input ‘c’ is lexicographically lower

than ‘p’. The SPYH-method looks at the length of the access

sequences of both the start and target states. Therefore, the

transition (U, p) leading to L has the value of 1 and (U, c)

corresponds to 2 as it leads back to the state U with the access

sequence ‘c’.

The first unverified transition is (L, p). It is already captured

in T so that the function DISTINGUISHFROMSET is called

with the parameters u = p, v = ε, V = {ε, c} and

depth = 1. In order to distinguish [u] from V , the separating

1
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15

16

p/F

c/N

14

17

p/L

p/F

c/N

4

9

12

p/L

p/L

p/F

c/N

3

6

7

10

11

p/F

c/N

p/F

c/N

5

8

p/L

p/L

p/L

s0 = L

s1 = U

⇒

3-complete test suite:

cccp, ccpp, cppp, pcpcp, ppp

Fig. 2. Testing tree constructed by the SPYH-method for the turnstile defined
in Fig. 1 and 1 extra state

sequence ‘p’ extends ‘p’; the node 5 is created in the testing

tree by the function APPENDSEPARATINGSEQUENCE called

on line 5 of Algorithm 4. Note that the separating sequence

‘p’ already extends the access sequence ε of the state L

so that the call of APPENDSEPARATINGSEQUENCE on line

6 of Algorithm 4 does not influence T . The variable v in

DISTINGUISHFROMSET corresponds to the access sequence

of L so that the boolean variable notReferenced gets false

and DISTINGUISH is not called for [v]. As 1 extra state is

considered and so depth = 1, the successors of δ(L, p) need

to be checked. The sequence ‘p’ is thus added to V (line 5 of

Algorithm 5) and for each input the corresponding successors

of both [u] and [v] are first created if they are not already

captured in T and DISTINGUISHFROMSET is called on them.

The first input ‘c’ does not already extend ‘p’ so that ‘pc’ is

added to T and node 6 is created in the testing tree. [ε] is

already extended with ‘c’. DISTINGUISHFROMSET called on

[pc] and [c] calls only DISTINGUISH([u], V ) because ‘c’ is the

access sequence so that notReferenced is again false and depth

is 0 as it was decreased by 1 in the recursive call. The sequence

‘pc’ leads to the state U, therefore, DISTINGUISH appends the

separating sequence ‘p’ to ‘pc’ (node 7) in order to distinguish

it from ε and ‘p’ that are in V and lead to the state U. No

other extensions are needed to verify ‘pc’. The second input ‘p’

already extends both ‘p’ and ε so that DISTINGUISHFROMSET

is called on [pp] and [p]. It is again sufficient to append ‘p’

(node 8) and ‘pp’ is verified. All successors are thus checked

and the transition (L, p) is verified. The nodes of the testing

tree are merged in the convergent graph such that nodes 1, 3,



5 and 8 represent the state L, nodes 2 and 6 represent the state

U, and [cp] contains nodes 4 and 7 that represent δ(U, p).
The next unverified transition is (U, p). The transition is

captured in T but the reached state L is not verified so that

the separating sequence ‘p’ is appended (node 9). In order

to check the successor of δ(U, p) on ‘c’, ‘c’ needs to extend

[cp]. APPENDSEPARATINGSEQUENCE chooses ‘pcp’ from [cp]
because it is maximal in T and so 2 input symbols are saved

in the total number of symbols of the test suite compared to

the case of extending ‘cp’ that is not maximal in T (which

is the case of the H-method). The sequence ‘pcpc’ is then

extended with the separating sequence ‘p’ (node 11). After

‘p’ is also appended to ‘cpp’, (U, p) is verified and all 12

nodes of the testing tree are included in the corresponding

convergent classes [ε] and [c], that is, [c] contains nodes 2, 6

and 10, and the other nodes are grouped in [ε].
The last unverified transition (U, c) is verified by the nodes

13–17 of the testing tree in Fig. 2. The constructed 3-complete

test suite T consists of maximal sequences in the testing tree,

that is, ‘cccp’, ‘ccpp’, ‘cppp’, ‘pcpcp’ and ‘ppp’. It contains 5

test sequence and 20 input symbols in total. The testing tree

produced by the H-method would have ‘cp’ appended to ‘cp’

(node 4) instead of ‘pcp’ (node 7) which would result in 6

tests of total length of 22. The SPY-method would append

this ‘cp’ to ‘cccp’ and so the constructed test suite would also

have 5 test sequences and 20 input symbols in total.

IV. EXPERIMENTS

The new testing method proposed in the previous section

was compared with a number of well-known methods on

randomly-generated machines. The results of experiments are

described in this section. Besides the SPY- and H- methods,

the standard testing methods include the W-method [9], [10],

the Wp-method [11] and the HSI-method [12]. The imple-

mentation of each method used for experimental evaluation is

described in [4] and available in FSMlib v3.11 developed by

the authors.

The FSMlib contains a generator of random DFSM models.

The DFSM generator first assigns the target state to each

transition randomly and then changes some of the transitions

such that each state is reachable from the initial state. The

outputs are also assigned randomly but such that each output

symbol is captured at least once in the machine. If the

generated machine is not minimal, it is thrown away and

another machine is generated. This is repeated until the given

number of minimal completely-specified machines with the

given numbers of states, inputs and outputs is obtained. The

experiments consist of 1700 Mealy machines and 1700 Moore

machines with 5 inputs and 5 outputs. There are 17 groups

of 100 machines with different number of states for both

machine types. The number of states of these 17 ‘state groups’

are: multiples of 10 ranging from 10 to 100 (10 groups) and

150, 200, 300, 400, 600, 800 and 1000. Each of the 6 testing

methods constructs 3 m-complete test suites for each of 3400

1https://github.com/Soucha/FSMlib/releases/tag/v3.1

machines depending on the given number l of extra states that

is 0, 1 or 2. All machines and the results are available in the

repository FSMmodels v1.02.

The exploration efficiency is a new objective developed by

the authors. It is calculated as the number of edges in the

testing tree of T divided by the total length of tests in T .

As it is based on the testing tree, it permits one to evaluate

how much of the implementation will be explored by tests,

even in the implementation with much more states than the

specification. Moreover, it captures how many prefixes of

tests are overlapping with other tests, for example, the fixed

access sequences are covered by several tests. The exploration

efficiency is thus higher (and better) if a testing method

constructs longer sequences that do not overlap much. In the

case of the test suite T constructed for the turnstile (Fig. 1)

by the SPYH-method in the previous section, the final testing

tree (Fig. 2) has 16 edges and the total number of inputs in T ,

or the total length of tests, is 20. Therefore, the exploration

efficiency of the SPYH-method is 80 % in this case.

Fig. 3 shows the results for Mealy machines and 0 extra

states. It compares the testing methods on 4 objectives: the

total number of inputs in the constructed test suite T , the

number of tests in T , the exploration efficiency and the time

spent by the construction of T . Each of 4 graphs show the

first and third quartiles calculated for each state group of 100

machines, and boxplots with minimum and maximum values

as whiskers for the machines with 1000 states.

The SPYH-method beats the standard testing methods in

the three objectives that directly relate to the testing of the

implementation. The method constructs the least tests and their

total length (total number of inputs) is also minimal. Hence, a

tester spends less time with testing the implementation. This

is at the cost of longer time of construction of tests. However,

less than 2 seconds to create an n-complete test suite for a

machine with 1000 states is acceptable. Note that the size of

test suites in terms of the number of tests or the total number

of inputs grows linearly with the number of states and the

construction time seems to grow quadratically. Therefore, the

worst-case time and space complexity derived in Section III-B

are far away for the randomly-generated machines used for

experiments. Fig. 3 captures just one setting out of 6 possible

(2 machine types and 3 different numbers of extra states). The

results of other settings capture the same trends. The growth

of values remains linear in the total number of inputs and

the number of tests. The relative order of the testing methods

also remains but the values change. The values are multiplied

by 5 when the number of extra states increases by 1; this

corresponds to pl in the derived time and space complexities.

V. CONCLUSION

This paper proposed a new testing method, the SPYH-

method, that combines the two most advanced testing methods

for completely-specified DFSM with reset. It was experimen-

tally shown that the SPYH-method constructs much smaller

test suites compared to the two most advanced methods.

2https://github.com/Soucha/FSMmodels/releases/tag/v1.0
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