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Abstract—This paper presents the outcome of a research
collaboration between academia and industry to implement and
utilize the capabilities of constrained interaction testing for an
open-source tool for industrial-scale application. The project
helps promote flexibility in generating constrained interaction
test suites, executing them, and setting up a test oracle to
report them–all within the same tool called Avocado. Avocado
employs a constraint solver with computational algorithms to
generate constrained interaction test suites. The environment
of the application under test can be set up to execute the
generated test suite with minimum effort. A test oracle can be
set up by the tool to report the status and the results of the
executed test cases. Avocado represents a comprehensive and
flexible solution for conducting combinatorial interaction testing
(CIT) and constrained CIT on an industrial application. In this
paper, we present the structure of the tool and our method of
implementing the algorithms in detail.

Index Terms—Constrained interaction testing, the Avocado
testing framework, software testing, combinatorial testing.

I. INTRODUCTION

Combinatorial interaction testing (CIT) is a testing tech-
nique that relies on a mathematical object, covering array
(CA), to represent the actual set of test cases based on the
t-wise coverage criteria (where t represents the desired inter-
action strength of the input parameters or configurations of a
software). CA(N ; t, k, v), also expressed as CA(N ; t, vk), is
a combinatorial structure that is constructed as an array of N
rows and k columns on v values such that every N × t sub-
array comprises all ordered subsets from the v values of size
t at least once [1]. CA construction can be directly applied
to t-wise test-case reduction; therefore, considerable research
has been conducted to develop effective strategies for test
generation. However, in most real-world software applications,
constraints are present among the input parameters. To this
end, constrained CIT (CCIT) has emerged with the adoption
of constrained CA (CCA) [2], [3].

Over the past decade, in a move forward from the classical
CIT, the research activities of CCIT have seen dramatic
increase [4]. Similar to CIT, the CCIT research activities can
be broadly classified into two main categories: generation of
constrained interaction test suites and application of CCIT
[5]. Over time, the research on test suite generation has
produced excellent results, thereby rendering the generation
type research mature. However, in recent years, an increasing
interest has been observed in the application of CCIT owing to

its excellent application in several industrial projects, e.g., [6]–
[10]. For practical application of CCIT, the tester must adapt it
to the application environment. This adaptation uses the plugin
of the test generation algorithm and involves the preparation
of the test execution strategy. However, this concept being
heavily dependent on the application type and its running
environment, varies according to the application. To this end,
each application requires custom setting, deployment, and
configuration to apply CCIT. This is also true of CIT.

In this paper, we present a new approach to apply CCIT in
practice through a unified framework, Avocado, that can assist
the adaptation of CCIT to applications with minimum adap-
tation effort. Avocado is an automated testing framework that
has been used in several successful industrial-scale projects.
We implemented a CIT plugin that adds several capabilities to
Avocado considering CCIT and achieves practical application
of CCIT. Here, Avocado is able to generate CCIT test suites
from a predefined set of application inputs and constraints
among them, execute the generated test cases, and identify
the test-cases’ status based on a customized test oracle. In
our earlier work [11], we illustrated CIT with the Avocado
testing framework that can be applied to a new application. In
this paper, we present how Avocado handles the constraints
and finally generates the combinatorial test suites. The paper
also reports on how we applied the best practices from our
works and other works published in literature to implement
an open-source flexible tool with a practical application. Our
main focus in this study is not to introduce new bounds of
CAs or generated optimal test suites, compared to other tools.
I. Hasan et. al [12] showed a detailed comparison of the test
generation algorithm efficiency with other tools.

The rest of this paper is organized as follows. Section II
presents an overview of the Avocado framework. Section III
describes how the CIT varianter algorithm works within the
Avocado framework. Section IV provides the details of the
test generation algorithm including constraint handling and
optimization strategy. Finally, Section V concludes the paper.

II. THE AVOCADO FRAMEWORK

Avocado1 is an open-source testing framework that runs
on Python, and it is maintained by Red Hat Inc. and the

1https://avocado-framework.github.io/
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Fig. 1: General structure of Avocado with the CIT plugin

Avocado community contributors. It comprises a set of tools
and libraries to facilitate the creation, execution, and evaluation
of automated tests. It is the successor of the Autotest frame-
work that was designed for the Linux kernel testing [13]. It
uses the best features of Autotest, while mitigating Autotests’
weaknesses and drawbacks. The Avocado webpage contains
more detailed information about those adopted features from
Autotest. The native test cases are written in Python; therefore,
they follow the unit-test pattern similar to a unit test in Python.
However, Avocado has a utility for running any executable as
a test.

As shown in Figure 1, Avocado comprises three main com-
ponents: the test runner, libraries, and plugins. The test runner
helps the users to execute test cases. Test cases can either be
written in Python and use the Avocado API or in any language
of the users’ choice. In either cases, the Avocado runner’s
logging system records the activities during test execution to
obtain important details about the software-under-test (SUT).
The main APIs that Avocado makes available to test writers
(known as "Test APIs"2 are derived and compatible with the
Python unit test TestCase3 class, but adds many methods for
functional and performance testing. Hence, the test runner is
designed to help users run and log their test cases and brings
a lot of features to make their work easier.

Avocado libraries facilitate users to write test cases in a
concise, yet expressive and powerful manner. Libraries are the
most important component of Avocado; they provide several
tools to speed up and simplify test development. Plugins
provide extensions to Avocado by facilitating addition of
functionality and features to it.

Avocado has several plugins that can be divided into four
groups: remote runner, result, variant, and testing plugins.
Remote runner plugins enable users to run test cases remotely
over SSH, using libvirt, or using Docker. Result plugins work
with test results, and they can be used for presenting and
formatting the output in different formats such as JSON, xUnit,
HTML, and TAP, or saving results to a database or a dedicated

2https://avocado-framework.readthedocs.io/en/73.0/api/test/avocado.html
3https://docs.python.org/3/library/unittest.html#unittest.TestCase

PARAMETERS
color[black, gold, red]
shape[square, triangle, circle]
state[liquid, solid, gas]
material[leather, plastic, aluminum]
coating[anodic, cathodic]

CONSTRAINTS
color != black || shape != square
color != black || shape != triangle
color != black || shape != circle
color != gold || coating != cathodic
material != aluminum || color != gold

Fig. 2: CIT input file

server. Variant plugins create variants of the test data for
running different variants of the tests in the Avocado test
runner. Different varianters create different test data. The CIT
varianter is a variant plugin that was recently developed by us;
it is an excellent outcome of industry-academia collaboration.

Testing plugins can connect different testing frameworks to
the Avocado framework. When a user requires certain features
that are not present in the Avocado plugins, the solution is to
create a customized plugin. In such a situation, the Avocado
team creates a plugins system that simplifies the development
process for new plugins. The user can then follow a few simple
steps to create a plugin. These steps can be found in the
Avocado documentation4. The aforementioned utilities make
Avocado a very powerful tool for automated testing and easily
extensible to suit the varied needs of users.

III. CIT VARIANTER PLUGIN INSIDE AVOCADO

The CIT varianter plugin brings advantages of CIT and
CCIT to the Avocado framework, wherein it can apply those
testing methods in a fully automated testing process. The
name varianter is Avocado-specific name and inspired by the

4https://avocado-framework.readthedocs.io



variation of the test cases. For the test generation, the user
must model the SUT parameters and constraints that will be
included in the test cases. Avocado creates an input file in
the CIT file format. Figure 2 provides the structure of the
input file. The first part describes the parameters of the SUT
and its values. The second describes constraints among the
parameters’ values. The constraints must be in conjunctive
normal form (CNF) and use the following three operands:
!=, OR, AND. Character || represents operand OR and the
new-line character represents operand AND.

As illustrated in Figure 1, the CIT varianter generates from
the input file, a set of test cases that comply with the input
constraints and cover all t−way combinations of the parameter
values for a selected level of t. The t − way combination of
parameter values indicates that the varianter generates a set of
all combinations of size T from the parameters for each value
in the set. The CIT varianter computes all combinations of its
parameter values. Further, this set of test cases is sent to the
Avocado multiplexer that creates scripts for testing the SUT.

The multiplexer can obtain several inputs from different
sources for different usage, e.g., statistical data, configuration
files, and testing scripts. The multiplexer recognizes the test
cases originating from the CIT varianter as variants. When
Avocado receives the data as variants, the test runner executes
all test cases for each test case in the variants, records the
output, and displays the verification message on the screen.
Upon completion of the testing, the runner saves the recorded
results in the format chosen by the user. The format can be
XML, JSON, TAP, or HTML. The runner displays the output
on the screen.

A significant feature of the Avocado CIT plugin is its
customizable test oracle setting. Here, the user can configure
the test oracle to handle the test cases automatically. Each test
case is tagged by the runner as PASS or FAIL with additional
information explaining the status. The status depends on the
expected output of the test, and it can be customized by the
user who can define the condition determining the PASS/FAIL
status of the test. Here, the user can define the PASS/FAIL
based on expected output. This can also be done by speci-
fying conditions for a set of test cases rather than individual
assignment of the output per each test case. Although this
adds a great feature to Avocado, research and development is
needed to support automation to this feature. The advantage of
using the CIT plugin with Avocado is that the test runner can
use the CIT and CCIT test cases for running tests in different
environments and on machines that can be local, remote, or
virtual. This was the description of how Avocado runs the
test cases based on the CIT plugin. The following section
illustrates in detail how the test generation algorithm generates
test cases and deals with constraints.

IV. GENERATING VARIANTS WITHIN AVOCADO

The CIT plugin was designed, implemented, and maintained
for flexible industrial usage. The aim was to use the capabili-
ties of CIT and CCIT flexibly and practically. To this end, the
CIT varianter uses a complex randomized algorithm of Monte

Carlo type that finds a solution satisfying all the constraints
in a reasonable time. Moreover, this solution need not be the
optimal solution. Algorithm 1 provides a brief description of
the working of this algorithm. The algorithm can be divided
into four parts creating combinations, constraints processing,
computing initial solution, and improvement of solution. The
following subsections give the details of each part.

Algorithm 1: CIT varianter
Input: parameters, constraints, tValue
Output: Testcases

1 combinationMatrix = computeCombinations(data,
tVvalue)

2 solver = processConstraints(constraints, tValue)
3 solver.cleanMatrix(combinationMatrix)
4 solution = computeInitialSolution(combinationMatrix)
5 while time != 0 do
6 solution = computeBetterSolution(solution,

combinationMatrix)
7 Return solution

The following sections describes those parts of the genera-
tion algorithms in detail.

A. Generating combinations

The aim of the varianter within the CIT plugin is to
generate test cases that cover all t − way combinations
of parameter values. To achieve this, the plugin needs to
know the combinations and which test cases cover them.
Consequently, the varianter creates a combination matrix with
all t − way combinations of the parameters’ values (also
called t-tuples). When the varianter obtains the input file, it
processes the values as numbers in a sorted matrix. Here,
indexing numbers are used for the input file entries from 0
to n. For example, the parameters in Figure 2 are computed
as color=0, shape=1 state=2, and the values of the
color parameter would be black=0, gold=1, red=2.

The combination matrix uses the representation of the
number of input parameters with all t-tuples. Each row of the
combination matrix represents one combination of t parame-
ters and each column represents one combination of parameter
values from a row. The value of a combination matrix cell
represents how many test cases from the solution cover the
exact t-tuples of parameter values. This cell can take values
from -1 to the number of test cases, where -1 indicates
that the combination does not exist. Figure 3 illustrates the
combination matrix of parameters from Figure 2 (when t = 2)
after initialization.

B. Constraints handling

The CIT varianter also handles constraints entered in the
input file. A constraint can be violated, thereby leading to a
set of invalid and non-executable test cases. Figure 2 shows
an example of constraints. It can be seen that these constraints
forbid the test cases with black color and square shape, black






(0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2) (2, 0) (2, 1) (2, 2)

(0, 1) 0 0 0 0 0 0 0 0 0
(0, 2) 0 0 0 0 0 0 0 0 0
(0, 3) 0 0 0 0 0 0 0 0 0
(0, 4) 0 0 −1 0 0 −1 0 0 −1
(1, 2) 0 0 0 0 0 0 0 0 0
(1, 3) 0 0 0 0 0 0 0 0 0
(1, 4) 0 0 −1 0 0 −1 0 0 −1
(2, 3) 0 0 0 0 0 0 0 0 0
(2, 4) 0 0 −1 0 0 −1 0 0 −1
(3, 4) 0 0 −1 0 0 −1 0 0 −1




Fig. 3: Combination matrix initialization in Avocado CIT
varianter

color and triangle shape, etc. However, constraints in real-
world scenarios such as those on the industrial scale can be
considerably complicated, and the varianter must process them
efficiently. Moreover, the format to represent these constraints
in the input file must be CNF [14] for the ease of constraint
computation and use. However, despite the CNF format of
the constraints, the varianter must preprocess them to simplify
them or find some implicit constraints that are not explicitly
mentioned in the input file but are defined by other constraints.
For example, in Figure 2, the first three constraints define
that the color cannot be black because every shape cannot
have black color. This means that we can reduce these three
constraints to one.

It is not practical to let the user specify all the constraints
in the SUT. However, it is possible to generate all the implicit
constraints based on a small number of explicit ones. For
preprocessing the constraints, the varianter implemented the
constraint handling mechanism for handling forbidden tuples
that are presented in [15]. To transform the input constraints
into forbidden tuples, we consider the CNF because each
disjunction part of CNF represents a forbidden tuple. For
example, we can transform the constraints in Figure 2 into a set
of five forbidden tuples as shown in Figure 4. The varianter
derives a set of forbidden tuples and uses it for constraints
validation. A test case is valid if and only if it does not contain
any forbidden tuple.

These properties work precisely with the data representation
in the combination matrix. In other words, every combination
that contains a forbidden tuple is forbidden. Based on this
mechanism, the varianter finds the forbidden cells inside the
combination matrix and tags them as -1, thereby indicating
the "does not exist combination." This process is called matrix
cleaning. However, before the varianter cleans the combination
matrix, it must compute the forbidden tuples from the input
constraints. For this computation, the varianter uses two meth-
ods: derive, for finding new implicit tuples from the existing
set and simplify, for the reduction of unnecessary tuples from
the set.

The derive method uses one rule to derive the implicit
forbidden tuples from existing ones. If we have parameter P
with values n then there are n forbidden tuples, where each
tuple contains different values of P. The varianter constructs
a new forbidden tuple by combining all values in these n
tuples except the values of parameter P. Using this rule, the

{{color=black, shape=square},
{color=black, shape=triangle},
{color=black, shape=circle},
{color=gold, coating=cathodic},
{material=aluminum, color=gold}}

Fig. 4: Forbidden tuples form the input file

{{color=black},
{color=gold, coating=cathodic},
{material=aluminum, color=gold}}

Fig. 5: Forbidden tuples after preprocessing

derive method finds all forbidden tuples for each parameter.
Furthermore, if the rule condition is satisfied, this method
creates a new forbidden tuple. In Figure 4, the rule condition
is fulfilled for parameter shape, and it is evident that the new
forbidden tuple is color=black.

The simplify method finds the tuples that can be removed
from the set while ensuring that the results of constraints
validity will not be affected. Here, a forbidden tuple that
contains another tuple from the set can be removed because
any test satisfying a tuple must cover the subset of that tuple.
In our example, the derive method finds tuple color=black,
which is a subset of each of the first three tuples. This means
that the first three tuples can be removed.

A single call to the derive and simplify methods cannot
ensure that the transformation of constraints into forbidden
tuples is complete because the derive method generates new
implicit tuples that can be used for generating other implicit
tuples. The varianter runs these methods in a loop, and the loop
ends when the methods cannot change the forbidden tuples
any more, thereby indicating that the tuple transformation is
complete. Subsequently, the varianter generates a complete
forbidden tuple set and cleans the combination matrix using
the forbidden combinations. Figure 5 presents the set of tuples
from Figure 4 after this process, and the cleaned combination
matrix is illustrated in Figure 6.

C. Generation of an initial solution

Post the cleanup of the combination matrix based on the
generated forbidden tuples, the combination matrix comprises




(0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2) (2, 0) (2, 1) (2, 2)

(0, 1) −1 −1 −1 0 0 0 0 0 0
(0, 2) −1 −1 −1 0 0 0 0 0 0
(0, 3) −1 −1 −1 0 0 −1 0 0 0
(0, 4) −1 −1 −1 0 −1 −1 0 0 −1
(1, 2) 0 0 0 0 0 0 0 0 0
(1, 3) 0 0 0 0 0 0 0 0 0
(1, 4) 0 0 −1 0 0 −1 0 0 −1
(2, 3) 0 0 0 0 0 0 0 0 0
(2, 4) 0 0 −1 0 0 −1 0 0 −1
(3, 4) 0 0 −1 0 0 −1 0 0 −1




Fig. 6: Cleaned combination matrix



valid combinations that must be covered. The varianter gen-
erates an initial solution that is the set of test cases that
cover the valid combinations (i.e., t-tuples). At this stage,
the aim is to find any solution that covers all combinations,
without considering its optimality. Generation of the initial
solution involves processing the test cases iteratively until
the combination matrix is fully covered. The pseudocode to
generate the initial solution is presented in Algorithm 2.

Algorithm 2: Solution initialization
Input: combinationMatrix
Output: Testcases

1 solution = [ ]
2 combinationMatrix = computeCombinations(data, tValue)
3 while uncoveredNumber != 0 do
4 if uncoveredNumber >

coveredMoreThanOnesNumber then
5 testCase1 = randomTestCase
6 testCase2 = randomTestCase
7 if distance(testCase1, solution) >

distance(testCase2, solution)) then
8 testCase = testCase1

9 else
10 testCase = testCase2

11 else
12 testCase = coverMatrix()

13 combinationMatrix.coverCombinations(testCase)
14 solution.add(testCase)

15 Return solution

The random search mechanism of the Avocado plugin is, in
fact, not entirely random. Here, we followed the "Hamming
distance" mechanism presented in [16]. Only the first test cases
are generated randomly, whereas the remaining are created
from the first ones. During the random search, the varianter
first creates two random test cases that are valid as per the
constraints. Subsequently, for each of these test cases, the vari-
anter computes the Hamming distance from an already found
solution and chooses the one with largest Hamming distance.
Then, this test case is added to the solution. The Hamming
distance between the test case and the initial solution is the
sum of the Hamming distances between the test case and each
test case of the initial solution. The random search generates
new test cases until the number of the uncovered tuples is
smaller than the number of tuples covered by more than one
test case. At this point, the search process becomes inefficient
because the probability of covering a new tuple is smaller
than the probability of covering an already covered tuple. In
this scenario, the varianter must complete and fill the initial
solution by a discrete method for covering the tuples. This
method uses all uncovered tuples from the combination matrix,
chooses the largest disjunct set from them, which will be
covered by the next test case. Some of the values from the new
test case may be not defined by the disjunct set. These values
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Fig. 7: Initial solution

test case may be not defined by the disjunct set. These values
are filled randomly by the varianter. This discrete method adds
new test cases to the initial solution until all tuples are covered
and the initial solution is complete. Figure 7 shows a sample
solution where the rows denote test cases and the columns
denote parameters of the SUT.

D. Improvement of the solution

Eventually, the set of test cases that covers all t-tuples of
parameter values created by the varianter becomes available.
This set can be used for testing the SUT. However, this set
of test cases is not optimal and it is possible to cover the
combinations with a smaller set of test cases. The aim of the
CIT varianter is to find the smallest possible valid solution at
a specified time. However, Avocado does not aim to create
new bounds of CAs.

To this end, the next stage of the varianter algorithm is
to optimize the size of the initial set of test cases while
maintaining the coverage of all tuples. Here, the CIT varianter
uses the mixed neighborhood tabu search (MNTS) algorithm
that is newly developed by us [12]. This algorithm is based
on the randomized tuning of the solution that leads to a better
solution. As shown in Figure 7, MNTS represents the solution
as a matrix of size N⇥M , where each row represents one test
case and each column represents one input parameter of the
SUT. MNTS aims to delete the specified number of rows from
the solution matrix. Then, using the randomized algorithms,
the new solution is modified to cover the combination matrix.
In other words, the level of tuple coverage is maintained,
covering all tuples with a smaller number of rows (i.e., test
cases) in the matrix. Algorithm 3 provides the pseudocode and
the procedure of this algorithm.

The algorithm initially deletes a random row from the
solution matrix and uncovers the t-tuples of the deleted test
cases. Uncovering the t-tuples means decreasing by 1, every
cell in the combination matrix that is covered by the deleted
test case. The solution that is not complete at this point
must be modified to cover the entire combination matrix. For
every modification to the solution matrix, one of the three
modification functions N1, N2, and N3 is randomly chosen
with probability 0.1, 0.1, and 0.8, respectively. This probability
ratio is based on the experiments described in [16]. Each
modification function modifies the solution matrix to create

Fig. 7: Initial solution

are filled randomly by the varianter. This discrete method adds
new test cases to the initial solution until all tuples are covered
and the initial solution is complete. Figure 7 shows a sample
solution where the rows denote test cases and the columns
denote parameters of the SUT.

D. Improvement of the solution

Eventually, the set of test cases that covers all t-tuples of
parameter values created by the varianter becomes available.
This set can be used for testing the SUT. However, this set
of test cases is not optimal and it is possible to cover the
combinations with a smaller set of test cases. The aim of the
CIT varianter is to find the smallest possible valid solution at
a specified time. However, Avocado does not aim to create
new bounds of CAs.

To this end, the next stage of the varianter algorithm is
to optimize the size of the initial set of test cases while
maintaining the coverage of all tuples. Here, the CIT varianter
uses the mixed neighborhood tabu search (MNTS) algorithm
that is newly developed by us [12]. This algorithm is based
on the randomized tuning of the solution that leads to a better
solution. As shown in Figure 7, MNTS represents the solution
as a matrix of size N×M , where each row represents one test
case and each column represents one input parameter of the
SUT. MNTS aims to delete the specified number of rows from
the solution matrix. Then, using the randomized algorithms,
the new solution is modified to cover the combination matrix.
In other words, the level of tuple coverage is maintained,
covering all tuples with a smaller number of rows (i.e., test
cases) in the matrix. Algorithm 3 provides the pseudocode and
the procedure of this algorithm.

The algorithm initially deletes a random row from the
solution matrix and uncovers the t-tuples of the deleted test
cases. Uncovering the t-tuples means decreasing by 1, every
cell in the combination matrix that is covered by the deleted
test case. The solution that is not complete at this point
must be modified to cover the entire combination matrix. For
every modification to the solution matrix, one of the three
modification functions N1, N2, and N3 is randomly chosen
with probability 0.1, 0.1, and 0.8, respectively. This probability
ratio is based on the experiments described in [16]. Each



Algorithm 3: Solution improvement
Input: solution, combinationMatrix
Output: Testcases

1 M = 600
2 newSolution = solution.copy()
3 combinationMatrix = computeCombinations(data,

tVvalue)
4 deletedRow = newSolution.deleteRow()
5 combinationMatrix.uncoverCombinations(deletedRow)
6 for i = 0 to M, i+ 1 do
7 algorithm = choose(1,2,3)
8 newSolution = algorithm(newSolution)
9 combinationMatrix.updateCoverage(newSolution)

10 if uncovered == 0 then
11 Return newSolution

12 Return solution

modification function modifies the solution matrix to create
a new matrix, which is achieved by changing the numbers
in the randomly selected cells. The modification with the
best coverage of the combination matrix is selected as a new
solution matrix for other modifications. N1 randomly selects
a cell of the solution matrix and makes all possible changes
to the number in the cell. N2 randomly selects a column in
the solution matrix and changes each cell in this column. N3
randomly selects one of the uncovered combinations to form
the combination matrix and changes every row in the solution
matrix to cover this combination. When the modified solution
covers the entire combination matrix, the algorithm executes
the initial step of deleting another row from the matrix and
continues. The algorithm defines the constant, m, that repre-
sents the maximum number of modifications to the solution.
We have chosen the maximum number of modifications based
on our experimental experience and preferences. However,
the user has the option to change this number based on the
application preferences. When the number of modifications
reaches m, it is concluded that a better solution cannot be
found, and the last complete solution is treated as the best
solution.

V. CONCLUSION

In this paper, we presented a CIT plugin that promotes
a fully automated and comprehensive strategy to use the
capabilities of CIT on an industrial scale. The framework is
implemented with a well-known and maintained automated
testing framework called Avocado. Avocado, which is an open-
source tool has recently seen application in several use cases.
This paper reports our recent research efforts to develop a
successful flexible constraint handling strategy to resolve the
constraints in the final test suites. We combined and used
the best practices in literature, including our past research
efforts to implement this tool. The tool is maintained by
the Avocado development team, and several directions for
future implementations have been identified by the community

because it is an open-source project. A significant direction
for improvement is how to deal with large input parameters,
values, and constraints on a mega-scale.
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