
“Session-Based Recommender Systems for Action Selec-
tion in GUI Test Generation” by Varun Nayak and Daniel
Kraus, submitted to the 3rd IEEE Workshop on NEXt level
of Test Automation (NEXTA) 2020. This is a preprint of the
accepted version of this paper. The paper starts on the next
page, after this information.

c© 2020 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or
lists, or reuse of any copyrighted component of this work in
other works.

ar
X

iv
:2

00
2.

02
89

0v
1 

 [
cs

.S
E

] 
 7

 F
eb

 2
02

0



Session-Based Recommender Systems for Action
Selection in GUI Test Generation

Varun Nayak∗, Daniel Kraus†
ReTest GmbH

Haid-und-Neu-Straße 7
76131 Karlsruhe, Germany

Email: ∗varun.nayak@retest.de, †daniel.kraus@retest.de

Abstract—Test generation at the graphical user interface (GUI)
level has proven to be an effective method to reveal faults. When
doing so, a test generator has to repeatably decide what action
to execute given the current state of the system under test (SUT).
This problem of action selection usually involves random choice,
which is often referred to as monkey testing. Some approaches
leverage other techniques to improve the overall effectiveness,
but only a few try to create human-like actions—or even entire
action sequences. We have built a novel session-based recom-
mender system that can guide test generation. This allows us to
mimic past user behavior, reaching states that require complex
interactions. We present preliminary results from an empirical
study, where we use GitHub as the SUT. These results show
that recommender systems appear to be well-suited for action
selection, and that the approach can significantly contribute to
the improvement of GUI-based test generation.

Index Terms—Test generation, testing and debugging, infor-
mation filtering.

I. INTRODUCTION

System tests through the graphical user interface (GUI)
are important since they stimulate software from end to end,
i.e., somewhat from a user’s perspective down to persistence
layers such as databases. When used wisely, they can be a
powerful part of a testing strategy. However, such tests usually
have a bad reputation because they tend to be “[. . .] brittle,
expensive to write, and time consuming to run.” [1] Both
academia and the industry try to overcome these issues by
automatically generating GUI tests; not just to free developers
and testers from the burden of test creation and maintenance,
but to reduce the overall costs—without compromises and at
the pace required [2].

While generated tests cannot fully compensate hand-crafted
test cases, the future of testing is said to drastically increase
the use of automation [3]. Nowadays, test generators already
yield impressive results in a wide range of application areas.
Sapienz [4], for example, found 558 previously unknown
crashes in an empirical study with more than 1,000 Android
apps from the Google Play store. Meanwhile, the former
research project has been deployed at Facebook, where it
is now used to automatically test the mobile apps of, e.g.,
Instagram, WhatsApp and Facebook itself [5].

When it comes to GUI-based test generation, a crucial part
is to decide what action to execute next given the current
state of the system under test (SUT). Many of today’s ap-
proaches rely on random choice, a.k.a. monkey testing. This is

sometimes combined with techniques like (meta-)heuristics or
machine learning (ML) to improve the generated tests. For in-
stance, ant colony optimization [6], genetic programming [7],
ML-enhanced evolutionary computing [8], data mining [9],
deep learning [10], Q-learning [11] or other reinforcement
learning algorithms [12]. Yet, only a few actually focus on
creating human-like sequences of actions, e.g., to allow a test
generator to get behind “gate GUIs” [13] such as login screens
or non-trivial forms. And although random testing is effective
in finding relevant faults, it tends to miss bugs humans do
reveal [14]. Therefore, generating sequences that mimic past
user behavior might help to reduce this gap.

We propose a novel approach to action selection in GUI-
based test generation by leveraging recommender systems.
Recommender systems are a well-studied field and they form
the core of many successful businesses like Netflix [15]
or YouTube [16], for which targeted recommendations are
indispensable. We investigate a possible intersection between
recommender systems and the problem of action selection by
mapping GUI actions to items and sessions within a SUT
to users. Provided an adequate amount of data, our approach
is able to predict actions a user likely would perform in the
current state. By using a session-based recommender system
as our model, we not just suggest single actions, but sequences
of actions. This allows a test generator to be guided through
states that require complex user interactions.

First, we give a brief introduction to recommender systems
and some advances relevant for this paper in Section II.
Section III outlines our technical approach, where we describe
the overall design and various implementation details. In
Section IV, we conduct a first empirical study on top of
GitHub by mixing real-world and synthetic data. Afterwards,
we summarize our findings and report on our planned future
work in Section V.

II. RECOMMENDER SYSTEMS

Receiving recommendations of different forms has become
a part of our daily online experience in a variety of applica-
tion domains such as e-commerce, social media and content
streaming. Internally, such systems analyze the past behavior
of individual users to detect patterns in data. On typical online
sites, various types of user actions can be recorded, e.g., that
a user views an item or makes a purchase. These recorded
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actions and the detected patterns are then used to provide
recommendations to the user. In this context, the entity being
recommended is called item, and the entity that receives the
recommendation is referred to as the user.

The basic models for recommender systems work primarily
with user-item interactions such as ratings or like/dislike, or
attributes like user interests or item properties. Based on this,
there are two main approaches to recommender systems: col-
laborative filtering and content-based. Traditional techniques
such as matrix factorization have treated user-item interactions
as flat, matrix-structured data, often ignoring the temporal
structure and order within the data [17]. Being able to predict
a user’s short-term interests in an online session is a highly
relevant problem in practice, e.g., to adapt to item viewing
and purchase activities in e-commerce. Within such application
domains, the items have to be recommended in a certain order,
or the recommendation of one item only makes sense after
some other event has happened.

Session-based recommender systems consider the infor-
mation embedded in between sessions and treat sessions as
the basic recommendation unit. A session could be a set
of items or a collection of actions consumed in one event
or in a particular period of time. When dealing with such
sequential data, recurrent neural networks (RNNs) are being
heavily used [18]. But practical applications involve temporal
dependencies spanning many time steps where the network is
often unable to propagate useful information from the output
end of the model back to the layers near the input end, known
as the vanishing gradient problem [19].

In 2016, Hidasi et al. [20] presented a gated recurrent
unit (GRU)-powered RNN for session-based recommendations
and called this method GRU4Rec. A GRU is a more elaborate
model of an RNN that can deal with the aforementioned
problem(s) [21]. The gatings within these units essentially
learn when and how much to update the hidden state of the
unit. This enables more accurate recommendations for session-
based data.

III. OUR TECHNICAL APPROACH

We design our approach on top of the work by Hidasi et
al. as illustrated in Figure 1. We adopt their general network
architecture, but specialize it for our purposes.

The input to our model is a batch of sessions where each
session is encoded as a sequence of action IDs. Action IDs
are derived from the targeted GUI element and the action
performed on it. That is, two actions only produce the same ID
if they target the same element with the same action (ignoring
possible input data like text). An RNN layer is added next,
which consists of GRU or long short-term memory (LSTM).
(In our evaluation below, we explore multiple network types.)
This layer is expected to learn the temporary patters in the
action-selection behavior. The following dense layer converts
this information into a probability distribution over the given
action IDs—the output of our model. Thus, we get a stream of
ranked actions that is based on past behavior of actual users
a test generator can choose from.

Fig. 1. General architecture of our network based on [20].

To implement our approach, we are using the GRU4Rec
library based on [20], [22]. It adds several extensions to a se-
quence modeling architecture like ours. For example, session-
parallel mini-batches, mini-batch-based output sampling and
the use of a pairwise ranking loss function. Sequence-to-
sequence models produce the result by one item at a time, in
other words, by solving a classification problem at each time
step. According to Hidasi et al., pairwise ranking losses are
expected to give a better performance with the given network
setup. The loss function compares the rank of pairs of a
positive and a negative item and enforces that the rank of the
positive item should be lower than that of the negative one.

For more details on the basic network setup, please refer to
the original paper(s). Next, we conduct a first empirical study,
show how the network can be trained and how it performs.

IV. A FIRST EMPIRICAL EVALUATION

According to the World Quality Report 2018-19 [23], data
is a main obstacle when it comes to the adoption of artificial
intelligence (AI) in testing. The problem of data scarcity is
an important factor since data is at the core of any ML
project. This issue is especially challenging for young or small
organizations, because only rarely there are cooperations with
large enterprises where sufficient data is available.

As we were struggling with small data too, we have de-
signed an extract, transform, load (ETL) pipeline to increase
the amount of real-world data by adding synthetic data, so
that we get a first impression of how our approach performs.
We decided to target web applications (i.e., web-based GUIs),
where we picked GitHub as the SUT; a popular code hosting
and development platform. This setup allows insights based on
(i) a mature and widely-used target platform, (ii) a sufficiently
complex and well-known SUT.

To create real-world data, we recorded 50 of our own user
sessions on GitHub using the Selenium IDE, a record-and-
playback tool available as a Chrome and Firefox extension.
We exported these sessions as Java tests, where every test
case represents a user session. Each exported test was executed
with a custom Selenium WebDriver, which allows us to extract
training data as CSV. Note that the Selenium IDE comes with
the functionality that when the default locator—a particular
GUI element property such as an ID, typically used in test
scripts to locate elements—doesn’t find an element, it will
fall back to other available means. This fallback mechanism
ensures that most recorded tests don’t fail, e.g., due to record-
ing inaccuracies. The exported Java code does not have this



TABLE I
REAL-WORLD DATA SAMPLES AFTER PRE-PROCESSING.

Session ID Action IDs sequence Timestamp

1 (151, 1, 2, 3, 4) 1568573073
2 (151, 4, 5, 3, 1, 2, 3, 4) 1568573079
3 (6, 7, 8, 9, 10, 11, 12, 2, 3, 4) 1568573088
4 (151, 4, 5, 3, 4, 1, 2, 3, 4) 1568573099
5 (6, 109, 110, 2, 3, 4) 1568573362

feature and only uses a single locator, which is why we had
to manually fix many locators to avoid runtime failures. The
poor code export quality when using the Selenium IDE is a
major bottleneck in the proposed ETL pipeline that we aim to
address as part of our future work (see Section V).

One of the key parts in the pre-processing step is the
assignment of accurate action IDs. The tests exported via the
Selenium IDE already contain the absolute XPath for each
element, we combine this information with the web page the
element appears on and the performed action type to derive
the action ID. Table I illustrates some resulting data samples,
where every session is of arbitrary length (the actions executed
by the user) and represented by a sequence of action IDs.

Fig. 2. Action ID distribution within the recorded user sessions.

When it comes to synthetic data, Wu et al. [24] formalize
the problem of generating such datasets using the maximum
entropy principle for categorical data, which captures the
characteristics of the underlying data. Figure 2 shows the
distribution of action IDs within the recorded user sessions. As
can be seen, some actions are more common across sessions.
These frequent actions usually carry a deeper meaning and
represent short-term user goals that correspond to common
use cases like a login procedure. The assumption we made
is that most sessions will have such recurring patterns in
the recorded interactions and in-between a user will perform
arbitrary actions. The synthetic sessions we generated still
hold these properties, but have been mixed up with randomly
created action IDs. In practice, click botnets may also create
a considerable amount of traffic [25], so we additionally
interjected random noise to represent spam and the like.

The resulting dataset is summarized in Table II. We split
this data into a training set (80%) and a test set (20%) for
evaluation. In the context of recommender systems, we are
most likely interested in recommending an item from the top-
n list of items. Therefore, we calculate relevant metrics with
regards to the first n actions instead of all actions. Precision

TABLE II
SUMMARY OF THE USED DATASET.

Real-world sessions 50 Avg. no. of actions 14.12
Synthetic sessions 3,476 Min. no. of actions 1
Distinct actions 522 Max. no. of actions 49

at n is the proportion of recommended actions present in the
top-n list that are relevant. Recall at n is the proportion of
relevant actions found in the top-n recommendations. Mean
reciprocal rank (MRR), which is important in cases where the
order of recommendations matter, is the mean of reciprocals
of the rank from all queries. The reciprocal rank is set to zero
if the rank is above n.

We further followed the practice of Quadrana et al. [26],
where items from each session in the test set are grouped
together to form a sequence, and each sequence is further
split into the user profile and ground truth. The user profile
is composed of the first event in the sequence that is fed
into the system and used to compute recommendations. The
ground truth is composed of the remainder of the sequence
that is used for performance evaluation. Items are revealed
incrementally, then the evaluation is performed after each new
item. This helps to evaluate the recommendation quality in a
setting where user profiles are revealed sequentially. Metrics
are averaged over each sequence and then averaged over all.

Fig. 3. Precision, recall, MRR at 1, 5, 10, 20 for the different network types.

As a baseline, we used a simple k-nearest neighbor recom-
mender based on an item-to-item similarity. In this setting, the
similarity matrix is pre-computed from the available session
data, i.e., actions that are often executed together in sessions
are deemed to be similar. This similarity matrix is then used
during the session to recommend the most similar actions to
the one the user has currently performed. We compared this
model to different GRU-based network types with different
losses, as well as a custom model using LSTM and cross-
entropy loss. The models converged between 5 – 25 epochs,
depending on the loss function and the amount of data. The
evaluation results are shown in Figure 3.

An observation we made is that the MRR is roughly within
the range [0.2, 0.5] across all the evaluated recommendation
list lengths. This indicates that the best relevant actions were
retrieved between top-5 and top-10. The MRR, however, seems
to saturate, which we assume is a consequence of the data
deficit. The baseline performance being on-par with the other
models is most likely owing to short average session length.



Precision and recall both indicate the accuracy of the models.
Precision for all models except the custom one is very high
at the top-1 recommendation, then it continues to drop as the
recall climbs up. This is because in order to recall everything,
it is required to keep generating results which are not accurate,
hence, lowering the precision.

We also observed that the models did not significantly
outperform the baseline in the top-5 recommendation and
beyond. In all experiments, the best-choice model performed
better only by 8 – 18%. This could possibly have to do
with the used dataset, but the lack of data remains a threat
to validity and adds some uncertainty. Apart from this, the
models performed well. The recommended sequences reflect
many of the recorded use cases, mastering also complex states.

V. CONCLUSION AND FUTURE WORK

We have built a novel prototype for action selection in GUI
test generation using a session-based recommender system.
We conducted a first empirical study on top of GitHub, for
which we presented preliminary results. These results suggest
that action selection, when seen as a sequence modeling task,
can guide a test generator through states that require complex
interactions by mimicking past user behavior.

Based on our current approach and findings, we identified
several tasks for future work. First, there is an overall need
for more real-world data in order to develop sophisticated
models. Therefore, we strive for cooperations with owners of
big web applications and other researchers. Second, a major
bottleneck was the poor quality of the Selenium IDE code
export. We plan to develop (i) a native Selenium IDE plugin to
leverage fallback locators and (ii) a script for web application
owners to extract anonymous usage traces. Third, adopting
additional GRU4Rec extensions from [22] could improve the
results. Moreover, hyperparameter optimization tools may be
used to further improve the models’ performance. Last and
most importantly, the presented results are preliminary. To
prove its effectiveness, the approach must be evaluated as part
of a large-scale study using multiple, diverse SUTs, ideally in
comparison to other test generators.

We believe that addressing these tasks can significantly
contribute to the improvement of GUI-based test generation.
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