
SYSMODIS
SYSTEMATIC MODEL DISCOVERY APPROACH

Omer Korkmaz and Cemal Yilmaz

10th International Workshop on Combinatorial Testing (IWCT 2021)

AGENDA

2

01 Introduction

02 Approach

03 Experiments

04 Conclusion & Future Works

INTRODUCTION

3

1

4

In today’s technology,
mobile devices and applications have
increasingly become smarter and more
powerful.

Started to be more complex
In daily life, people are using mobile
applications from various categories
● education,
● health,
● economy,
● or management

Used by millions of people
While providing solutions for the demands
of the users, the mobile apps started to
have huge, complex and interactive logics
and functionalities.

2.560.000 Android Apps
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/

https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/

OPS, FAILURES!

▰ The complexity may cause more failures in the applications.

▻ lack of business knowledge, wrong implementation, etc.

▰ Users are exposed to those failures many times using the mobile apps.

5

So, these applications need to be tested thoroughly.

6

The model of an application plays a significant
role to represent the test strategies while the
system is under test (SUT).

7

SYSMODIS

Crawl the screens by interacting
with UI, generate test values for the
inputs, discover the model and
execute the tests systematically
and automatically.

Discover likely guard-conditions
systematically with the UI interactions,
leveraging machine learning
approaches for predicting
guard-conditions

MODEL DISCOVERY PREDICTION
Achieved %30 more code coverage
when compared to other approaches.
Achieved high accuracy on predictions
when compared to random testing.

RESULTS

COVERING ARRAYS → SYSTEMATIC SAMPLING → MODEL DISCOVERY

CONTRIBUTION

8

WHAT IS MODEL?
A state machine

S1 S2
Agreement = unchecked

1010101010101

APPROACH

9

2

10

SYSMODIS OVERVIEW

11

SCREEN DETECTION

12

SCREEN DETECTION

Screen Detection
● Get the XML file of current Android screen.
● Catch the Android elements from the XML.
● Take the attributes of each element.
● Hash the screen elements in an ordered agnostic way
● Check the distinctness comparing hash values!
● Store all information in the database.

13

INPUT DETECTION

14

INPUT DETECTION

Input Detection
● Get each element from the current screen.
● Get the actionable attributes of each element.
● Check the attributes and determine the input

type of each element.
● For instance;

○ GLN, Username, Password > Editable
○ Agreement > Checkable
○ Register, Login > Clickable

15

DOMAIN DETECTION

16

DOMAIN DETECTION

keywords
mail
e-mail
username
...

EMAIL
DOMAIN

EQUIVALENCE CLASSES

Valid Email
omer@gmail.com

Invalid Email
qy@1?1.com

ATTRIBUTES

content-desc
“type your email”
text
“please enter your email”
resource-id
com.farmazon.id:/emailText

Semantic
Similarity?

17

CA GENERATION

18

CA GENERATION

19

CA GENERATION

Covering Array (t:3)
Each row => Test case
Each cell => Test action

20

CRAWLING

▰ Opportunistic crawling

▻ Screen is visited → previously untested test case executed

▻ Test suite executed → move nearest state with untested test cases
and execute

▰ Continues to execute tests where it left off

▻ In case of any failure, system exception, etc.

▰ Configured to restart the system under test

▻ Preventing crawling from getting stuck as much as possible

21

GC DISCOVERY

22

FOR EACH
TARGET STATE

ITSELF

OTHERS

1

0
BINARY CLASSIFICATION

PREDICTED
GUARD-CONDITION

S2: Agreement Error Screen, S3: Login Screen, S4: Other Errors Screen

S2
Agreement: unchecked

...

S3

S4
EXAMPLE

GC DISCOVERY

EXPERIMENTS

23

3

24

EXPERIMENTS

Evaluating sensitivity to
model parameters

Evaluated the sensitivity of the approach to
various model parameters, including the

number of states, density, the level of
determinism, and the complexity of the

guard conditions.

To this end, used simulations as it was not
possible to systematically vary these

parameters on real subject apps.

Evaluations on Subject
Applications

Evaluated the proposed approach
by conducting comparative studies using

real subject applications.

Also, applied random-testing with the
proposed approach and compared it with

other approaches.

Study
2

Study
1

25

STUDY 1

● states: the number of states in the model.
● density: the density of the model which is used to compute the number of transitions in the model.
● parameters: the number of parameters defined in a state, i.e., the number of input fields on a screen.
● settings: the number of equivalence classes for a parameter.
● guard-complexity: the number of distinct parameters involved in a guard condition associated with a transition.
● t: the coverage strength of the covering arrays used for sampling.
● determinism: the level of determinism in the model, depicting the probability of taking a transition given that the guard condition of the

transition is satisfied. When determinism = 1.0, all the transitions are deterministic given a transition, when the system is currently in the
source state and the guard condition of the transition is satisfied, the transition is guaranteed to be taken and the system moves to the
target state.

FOR EACH CONFIG

100
STATE MACHINES

26

STUDY 1: EVALUATION

percentage of the transitions satisfied

accuracy of the guard conditions predicted

1

2

3

percentage of the states visited

State Coverage

Transition Coverage

Accuracy

The classification models were trained
and the classifier was taken from
scikit-learn

Covering arrays were generated.

4

5

6

I7 6700HQ, 16 GB RAM, Windows 10

Machine

Decision Tree Classifier

ACTS

27

STUDY 1: ANALYSIS

28

STUDY 2: EVALUATION

● screen: page of Android mobile applications. It might be an Android activity or a different page in the same activity (e.g., pop-up,
modal). Each page which consists of UI elements is called as screen.

● test action: one of the executable tests in test suites. For example, if we have a test suite that includes 3 executable tests, each of
them is called as test action.

percentage of the source
code statements visited

1 2percentage of the
screens visited

Screen Coverage Code/Line Coverage

covering arrays were
generated

code coverage was measured

3 4
5

classification models were
trained

Decision-Tree Classifier ACTS

ACVTOOL

29

STUDY 2: ANALYSIS

CONCLUSION & FUTURE WORKS

30

4

31

CONCLUSION & FUTURE To sum up briefly...

Detects:
- screens
- inputs
- domains and types of inputs

Generates convenient test
values by using covering arrays

- way to build a model
- test all states

Predicts guard-conditions
- Decision-tree classifier

Higher code coverage than:
- Dynodroid
- Monkey
- Random-testing

Showed the relationship
between factors that affects
the prediction and coverage

- strength (t)
- determinism, etc.

Comparison

Systematic Sampling Prediction

Simulations

Automated Approach

Take into account not only the
interactions within a state but
also the interactions across the
states.

Enhance the proposed
approach to test iOS-based
applications

Feedback-Driven Crawling iOS Environment
Apply proposed approach to a large
number of Android applications.

Large Dataset

32

THANKS!
Any questions?

omerkorkmaz@alumni.sabanciuniv.edu
cyilmaz@sabanciuniv.edu

33

MOTIVATION QUESTIONS

Can we discover the model with systematic sampling?
Is it possible to discover the model automatically by providing systematic sampling for UI fields
as a black-box approach so that we can get higher code coverage?

Can we predict the guard conditions on the model?
Is it possible to predict the guard conditions from the discovered model by providing
systematic sampling and interacting with only UI, since we don’t make static analysis and know
exact conditions?

Can we offer appropriate test values for each input?
Is it possible to determine discrete settings as test values that match the given input for
systematic sampling?

CAN WE MAKE THE ENTIRE APPROACH AUTOMATED?

34

PIPELINE

STEP 02

STEP 03

STEP 04

General Overview of SYSMODIS
STEP 01

Screen and Input Detection

Domain Detection and
Pre-recorded Equivalence Classes

Covering Array Generation

STEP 05
Guard-Condition Discovery

