
Win GUI Crawler: A tool prototype for desktop GUI image and metadata collection

Marko Savic, Mika Mäntylä, Maëlick Claes
ITEE, M3S

University of Oulu
Oulu, Finland

Email: marko.savic@oulu.fi, mika.mantyla@oulu.fi,
maelick.claes@oulu.fi

Abstract—Despite the widespread of test automation, au-
tomatic testing of graphical user interfaces (GUI) remains a
challenge. This is partly due to the difficulty of reliably identi-
fying GUI elements over different versions of a given software
system. Machine vision techniques could be a potential way of
addressing this issue by automatically identifying GUI elements
with the help of machine learning. However, developing a GUI
testing tool relying on automatic identification of graphical
elements first requires to acquire large amount of labeled
data. In this paper, we present Win GUI Crawler, a tool for
automatically gathering such data from Microsoft Windows
GUI applications. The tool is based on Microsoft Windows
Application Driver and performs actions on the GUI using a
depth-first traversal of the GUI element tree. For each action
performed by the crawler, screenshots are taken and metadata
is extracted for each of the different screens. Bounding boxes
of GUI elements are then filtered in order to identify what GUI
elements are actually visible on the screen. Win GUI Crawler
is then evaluated on several popular Windows applications and
the current limitations are discussed.

Keywords-test automation, machine vision, data collection,
gui element identification, graphical user interface.

I. INTRODUCTION

In the past decade, test automation has become the state of
the practice in the software industry. Still, automatic testing
of graphical user interfaces (GUI) remains a challenge and
manual testing of GUI is still a common practice. A recent
systematic review article reported on challenges with GUI
test automation [1] and found that the most frequently
reported challenge was that application changes break test
automation execution. That paper postulates that ”Robust
identification of GUI widgets ... challenge is possibly related,
or even the leading cause of many of the other reported [GUI
test automation] challenges.”

Numerous computer vision problems have found novel
and improved solutions thanks to the widespread adoption
of machine learning [2]. Machine learning approaches lead
to higher generalization capacity and thus would make GUI
element identification more robust and less susceptible to
design changes. An additional area to GUI test automation
that would greatly benefit from more robust GUI identifica-
tion is Robotic process automation (RPA) where automated
(robotic) tasks fail when GUI elements are not properly
identified and located [3].

However, in order to be able to identify GUI elements
automatically, one first has to gather labeled data in order to
train a machine learning model. Extensive research has been
dedicated to machine vision on Mobile and Web domains,
resulting in the availability of several open GUI databases
for those domains [4], [5], [6], [7], [8], [9], [10], [11], [12].
To date, there is no publicly available Desktop GUI image
database for Windows applications that is still dominant in
the desktop world. All existing databases are proprietary
to tool vendors and are unlikely to get published due to
the commercial advantages they offer. To build and apply
machine learning models to the desktop domain, researchers
require an extensive database containing GUI images and
accurate annotations. To fill this gap and encourage research
in the desktop domain, Win GUI Crawler1, which is pre-
sented in this paper, was developed. This prototype tool can
automatically traverse a Windows desktop application and
collect screenshots alongside XML metadata. The tool can
be employed to compile a large-scale desktop GUI database
and to aid existing automation methods such as template
matching.

II. RELATED WORK

The currently available GUI image databases have been
compiled by adopting diverse methods of data collection
and annotation. Image data and annotations have been ob-
tained with four main approaches of crowdsourcing, automa-
tion, synthetic generation, and manual collection/annotation.
However, the approaches are not fully orthogonal to each
other as they are often combined and manual collec-
tion/annotation can be seen as part of crowdsourcing. Re-
gardless we present prior works under these four approaches.

Crowdsourcing for data collection and annotation has
been widely employed in computer vision, due to the need
for large-scale labeled data for supervised machine learning
tasks. Deka et al. [4] compiled the Rico dataset, one of
the largest repositories of mobile app GUI designs (9.7k
Android apps with 72k unique GUI screens) by captur-
ing screenshots, view hierarchies and user interactions via
crowdsourcing and automated exploration. After recording

1https://github.com/M3SOulu/WinGUICrawler



a crowd worker’s usage of the app, an automated agent
retraced the interactions and continued exploring program-
matically to discover new states. Bunian et al. [5] man-
ually selected high-quality screens from the Rico dataset
to which they annexed additional Android and iOS ap-
plication screens. Furthermore, to ensure correct labeling,
they implemented a crowdsourcing strategy. Crowd workers
were trained and provided with clear instructions on how
to produce bounding box annotations for screens. Zhang
et al. [6] compiled a dataset of 77k GUI screens (from
4,068 iOS apps) by employing a two-step crowdsourcing
approach. Firstly, crowd workers manually traversed apps
while collecting screens and metadata. Secondly, crowd
workers drew bounding boxes and classified GUI elements.

Automated annotation can be leveraged to obtain large
amounts of labeled data. Nonetheless, it comes at the cost
of quality, as the labels can prove less accurate than those
of human annotators. Humans possess highly accurate in-
ternal recognition and learning mechanisms that outperform
computer vision applications in a large class of problems
[13]. Liu et al. [7] automated the annotation of mobile GUI
elements and computed annotations for the screens from the
Rico dataset. Their approach consisted in a deep classifica-
tion comprised of both functional and structural semantics,
done via code-based classification (GUI elements and text
buttons) and Convolutional Neural Networks (icons). Moran
et al. [8] used a completely automated approach and created
an exploration engine that navigated a target app in Depth-
First-Search (DFS) manner and extracted annotations using
a GUI automation framework. Chen et al. [9] also adopted a
similar approach, with the key difference lying in a weight
strategy. During traversal actions probable to lead to more
unique data were prioritised.

A project that resembles Win GUI Crawler is openui-
dataset [14], which uses automated GUI exploration (with
TESTAR tool [15]) for extracting screenshots and JSON
files that describe GUI elements, their location and other
properties. However, when attempting to use TESTAR tool
for this purpose, we initially encountered technical difficul-
ties. Later with TESTAR authors we found workarounds.
Regardless, TESTAR is another well suited tool for GUI
element extraction.

Synthetic data generation has also been proposed. Bel-
tramelli et al. [10] created a small dataset by utilising a
stochastic user interface generator to synthesize images and
code.

Manual collection/annotation is the simplest approach.
Hu et al. [11] selected a subset of Rico screens to which
they annexed additional images taken from app stores, subse-
quently reclassifying and annotating the elements manually.
Rahmadi et al. [12] collected a small dataset by manually
acquiring GUI component images from CSS framework
kitchen sink pages. The manual approach has poor scala-
bility and is not well suited to efficiently collecting a large-

scale database.

III. METHODOLOGY

In this section, we describe the methodology followed to
extract screenshots and metadata of GUI elements. For this
we designed Win GUI Crawler, which is built on top of Mi-
crosoft’s Windows Application Driver (WinAppDriver) [16],
to extract metadata from each screen and perform actions.
WinAppDriver is a service to support Selenium-like UI Test
Automation on Windows applications. It is derived from
Selenium WebDriver and supports Universal Windows Plat-
form (UWP), Windows Forms (WinForms), Windows Pre-
sentation Foundation (WPF) and Classic Windows (Win32)
apps on Windows 10. In the remainder of this section, we
describe how Win GUI Crawler collects GUI element images
and filters irrelevant elements.

A. Crawler

The main objective of Win GUI Crawler is to automat-
ically traverse a Windows application and collect image
screenshots and related metadata. Crawlers can take either
a depth first or breadth first approach. Depth first search is
more appropriate for Windows applications since traversal
happens only in one direction as there is not always an action
that permits to reach the previous state. Each time the search
reaches a dead end the application is restarted. In a breadth
first approach, it would need to be restarted for each new
screen, causing much longer traversal times. The traversal
is recorded within a tree structure where nodes correspond
to application screens and edges correspond to actions that
the crawler takes to navigate between screens.

Figure 1: Flowchart of tree traversal loop

The traversal algorithm is shown in Fig. 1. Starting from
the root node, which corresponds to the main application
screen, the crawler will progressively move through the
application and update the tree. The crawler keeps moving



down the tree until it reaches a dead end, this will denote
one pass. The metadata that WinAppDriver extracts from
each screen contains its GUI hierarchy and information on
each element. There is no specific metadata tag to uniquely
identify GUI elements. Thus, we use the XPath expression
representing the element in the XML metadata of the screen
containing it to identify the same elements across different
screens. If two elements share the same XPath expression
(containing the type and name of each element in the path),
it means that they are the same GUI element.

At the beginning of the loop, metadata is extracted from
the application screen. If the current node hasn’t been
previously visited and contains new unique elements that
haven’t been seen during the pass, then a screen image is
taken. If the screen doesn’t contain any new actions, then
the crawler reaches a dead end and the node is snipped.

A dead end is also reached if all current node’s children
are snipped, meaning there are no more paths to traverse
downstream.

If there are child nodes that have not been snipped, then
one of them is picked as the next node. To ensure that
traversal happens in a uniformly distributed manner, when
picking the next node priority is given to nodes that have
a lower visitation counter (which is incremented each time
the crawler goes through a node). This type of distributed
strategy is advantageous because it compels the crawler
to gather more unique screens during the first iterations.
Additionally, it prevents the crawler from getting stuck due
to unforeseen behaviour in parts of the tree.

To reach the next node, the crawler clicks the GUI
element. This loop is repeated until all nodes have been
visited and the application has been fully explored (from
the crawlers point of view). As more passes lead to more
redundant data, a more optimal choice is to set a finite num-
ber of passes the crawler should complete. The crawler can
run a finite number of passes or until the whole application
is explored.

B. Filtering to improve bounding boxes

Bounding box labels that are extracted from the metadata
might correspond to elements that are not visible in the
image and thus result in inaccurate annotations. A filtering
scheme is applied to improve accuracy, transform the meta-
data into clean annotations and crop GUI element images.
The filter algorithm re-traverses the recorded interaction tree
and uses information extracted from the metadata to remove
inaccurate bounding boxes. Furthermore, it detects duplicate
screens by comparing GUI element metadata of each screen.

Firstly, the elements that have the ”IsOffscreen” attribute
set to True are removed, and elements that have a very small
area (less than 5 pixels in height and width).

The bounding box filter algorithm detects when two
elements overlap and decides if and which ones to remove.
To avoid detecting false overlaps or cases where the overlap

area is too small to be noticeable, two elements are defined
as overlapping if:

A ∩B

min(A,B)
> OTh (1)

A and B are the two bounding box areas and OTh ∈
[0, 1] is an arbitrary threshold, which defines how much area
overlap is acceptable (optimally the value should be close
to 0 to only permit small overlap). After detecting all the
overlapping element pairs, the filter decides which ones are
acceptable. Elements can overlap and still be both visible,
this happens when they are in a child/parent relationship or
also if they are direct siblings of the same parent, these cases
are deemed acceptable by the filtering algorithm and should
not produce wrong labels.

The unacceptable pairs are further analysed by exploiting
the traversal order information. If one of the overlapping
elements is not present in the previous screen, but present
in the current one, it is kept and the other is removed.
This way priority is given to newer elements that in most
cases visually obstruct older ones. There can be cases where
this is not true, but the element removed has already been
correctly annotated previously (since it was present in the
previous screen) and has at least one correct label in the
collected data. If both elements have the same age, priority
is given to certain types of elements that are more likely to be
visible. For example, ”Button” elements are more probable
to have visual content than ”Pane” elements that are con-
tainers. Since each application has their own peculiarities,
the filtering cannot result in 100% accuracy. Nonetheless, it
can be useful to assist data collection considering that the
elements kept by the filter are much more likely to have an
accurate label.

In Fig. 2 an example of the output of the bounding box
filter is shown, as can be seen, the non visible bounding
boxes are suppressed in the final result. This algorithm also
cleans up the metadata and provides more accessible data by
transforming it into a JSON file containing relevant attributes
and binary outcome of the filter. Furthermore, individual
cropped images of each GUI element are saved for each
screen along with a file listing containing information on
each element.

IV. DISCUSSION

A. Evaluated Applications

The tool was tested on several commonly used Windows
10 applications. Since the tool is still a prototype the testing
was limited to exploring a small set of applications to
debug, improve the tool and investigate potential benefits and
limitations. An extensive validation will be performed when
the tool becomes more mature and ready for data collection.
The applications tested were: Calculator, MS Paint, MS
Word, Teamviewer, XnConvert, Virtualbox, Adobe Acrobat
Reader, GIMP.



(a) Filtered bounding boxes

(b) Unfiltered bounding boxes

Figure 2: Filter output example of Microsoft Word screen
with bounding boxes

Except for GIMP and Adobe Reader, the other appli-
cations were successfully explored by the crawler that
managed to extract metadata for each element on screen.
In the case of GIMP, as can be seen in Fig. 3, the only
metadata accessible relates to the window, its content cannot
be accessed. This is due to GIMP being designed with
the GTK framework. In the case of Adobe Reader, as can
be seen in Fig. 4, a subset of GUI element metadata is
inaccessible, due to part of the user interface being designed
with a HTML-based framework.

Figure 3: GIMP screenshot with bounding boxes

It was also observed that in case of dynamic elements
that alter the state of the application (e.g. logout buttons),
the crawler is cut off from part of the application after
clicking them. Another challenge that makes it difficult to
extract high-quality labels for every GUI element, is the
fact that the coordinates in the metadata do not always

Figure 4: Adobe Acrobat Reader screenshot with bounding
boxes

correspond to a bounding box that fits the element well. They
may also correspond to non-visible elements that cannot be
distinguished from visible ones from the metadata alone.
Some examples of this type of behaviour are shown in Fig. 5.

(a) Bad fit,
bounding boxes
too small

(b) Non-visible elements

(c) Non-visible elements

(d) Bad fit, bounding boxes too wide

Figure 5: Examples of inaccurate bounding boxes obtained
from metadata



B. Data collection and benefits

The main purpose of this tool is to enable large-scale
data collection. At its current state, the crawler can be used
to traverse applications and extract preliminary annotations.
The advantage in having an automated approach is that
large amounts of data can be collected by employing less
resources, with the drawback being that the resulting anno-
tations are noisy. A way to overcome this is to have human
annotators inspect the labels and modify them if necessary,
thus producing higher quality annotations. To render this
process more efficient, the elements singled out by the
filtering algorithm should be given more attention as they
are much more probable to correspond to inaccurate labels.

In addition to data collection, another practical applica-
tion was identified, the crawler could aid existing template
matching automation methods by automatically providing
cropped images of the GUI elements. Automated cropping
of elements can significantly reduce set-up times and make
automation workflows more efficient compared to tedious
manual cropping.

C. Limitations

There are several limitations to the tool. First, it is incom-
patible with non-native Win32 API applications (e.g. GTK
or HTML-based) where access to metadata is limited. This
is due to WinAppDriver not supporting these frameworks.

Second, there is no access to metadata from GUI elements
that are linked to a different Windows process from the
main application process, and that do not belong to the main
application window. This limitation is caused by the fact that
WinAppDriver attaches the WebDriver interface to a specific
Windows process and window.

Third, interacting with dynamic GUI elements can result
in the crawler being cut-off from some traversal paths,
as it cannot reach nodes that are not present in the new
application state.

Fourth, the crawler is limited to clicking only. Performing
additional actions such as editing fields and inputting user
credentials would take further development.

D. Future work

The tool presented in this paper is a first prototype
and its further development will be the direction of future
efforts. For the sake of improving the crawler range, the
inclusion of more sophisticated actions will be implemented.
Additionally, to avoid having the crawler cut-off from part
of the application due to dynamic elements, a strategy will
be devised that allows the crawler to be unsusceptible to
state changes. To further refine the filtering algorithm, a
pixel based analysis will be added. A more accurate filtering
would significantly reduce the amount of elements that need
to be inspected by human annotators. Once the tool has been
developed to sufficient maturity, it will be utilised to collect
a large-scale database on which an initial validation will

be performed. Subsequently, a fine-combed crowdsourced
annotation step will be carried out to reduce the labeling
noise.

V. CONCLUSION

Win GUI Crawler was designed in order to overcome
the challenge of non-robust GUI identification, which limits
the applicability of automatic GUI testing. Machine vision
based GUI testing could greatly improve robustness given
that a large amount of data is available for training, which
Win GUI Crawler can supply. The tool performed well with
native Win 32 API applications, it was able to traverse the
applications and extract annotations for each GUI element
present. A filtering algorithm was also implemented to clean
up noisy annotations by removing non-visible elements. The
limitations that were reported are incompatibility of non-
native Win 32 API applications, dynamic traversal issues and
limited actions. Future work will include improving the tool
by implementing more sophisticated filtering and traversal.
When Win GUI Crawler reaches sufficient maturity, it will
be employed in large-scale data collection.

REFERENCES

[1] M. Nass, E. Alégroth, and R. Feldt, “Why many challenges
with gui test automation (will) remain,” Information and
Software Technology, vol. 138, p. 106625, 2021.

[2] A. I. Khan and S. Al-Habsi, “Machine learning in computer
vision,” Procedia Computer Science, vol. 167, pp. 1444–1451,
2020.

[3] T. Chakraborti, V. Isahagian, R. Khalaf, Y. Khazaeni,
V. Muthusamy, Y. Rizk, and M. Unuvar, “From robotic
process automation to intelligent process automation,” in
International Conference on Business Process Management.
Springer, 2020, pp. 215–228.

[4] B. Deka, Z. Huang, C. Franzen, J. Hibschman, D. Afergan,
Y. Li, J. Nichols, and R. Kumar, “Rico: A mobile app dataset
for building data-driven design applications,” in Proceedings
of the 30th Annual ACM Symposium on User Interface
Software and Technology, 2017, pp. 845–854.

[5] S. Bunian, K. Li, C. Jemmali, C. Harteveld, Y. Fu, and
M. S. Seif El-Nasr, “Vins: Visual search for mobile user
interface design,” in Proceedings of the 2021 CHI Conference
on Human Factors in Computing Systems, 2021, pp. 1–14.

[6] X. Zhang, L. de Greef, A. Swearngin, S. White, K. Murray,
L. Yu, Q. Shan, J. Nichols, J. Wu, C. Fleizach et al., “Screen
recognition: Creating accessibility metadata for mobile ap-
plications from pixels,” in Proceedings of the 2021 CHI
Conference on Human Factors in Computing Systems, 2021,
pp. 1–15.

[7] T. F. Liu, M. Craft, J. Situ, E. Yumer, R. Mech, and R. Kumar,
“Learning design semantics for mobile apps,” in Proceedings
of the 31st Annual ACM Symposium on User Interface Soft-
ware and Technology, 2018, pp. 569–579.



[8] K. Moran, C. Bernal-Cárdenas, M. Curcio, R. Bonett, and
D. Poshyvanyk, “Machine learning-based prototyping of
graphical user interfaces for mobile apps,” IEEE Transactions
on Software Engineering, vol. 46, no. 2, pp. 196–221, 2018.

[9] C. Chen, T. Su, G. Meng, Z. Xing, and Y. Liu, “From ui
design image to gui skeleton: a neural machine translator
to bootstrap mobile gui implementation,” in Proceedings of
the 40th International Conference on Software Engineering,
2018, pp. 665–676.

[10] T. Beltramelli, “pix2code: Generating code from a graphi-
cal user interface screenshot,” in Proceedings of the ACM
SIGCHI Symposium on Engineering Interactive Computing
Systems, 2018, pp. 1–6.

[11] R. Hu, M. Chen, L. Cai, and W. Chen, “Detection and
segmentation of graphical elements on guis for mobile apps
based on deep learning,” in International Conference on
Mobile Computing, Applications, and Services. Springer,
2020, pp. 187–197.

[12] A. A. Rahmadi and A. Sudaryanto, “Visual recognition of
graphical user interface components using deep learning
technique,” Jurnal Ilmu Komputer dan Informasi, vol. 13,
no. 1, pp. 35–45, 2020.

[13] W. J. Scheirer, S. E. Anthony, K. Nakayama, and D. D. Cox,
“Perceptual annotation: Measuring human vision to improve
computer vision,” IEEE transactions on pattern analysis and
machine intelligence, vol. 36, no. 8, pp. 1679–1686, 2014.

[14] H. Terho, “openuidataset,” accessed: 2021-06-02. [Online].
Available: https://github.com/openuidata/openuidataset/

[15] T. E. Vos, P. Aho, F. Pastor Ricos, O. Rodriguez-Valdes,
and A. Mulders, “testar–scriptless testing through graphical
user interface,” Software Testing, Verification and Reliability,
vol. 31, no. 3, p. e1771, 2021.

[16] Microsoft, “Windows application driver,” accessed: 2021-
06-13. [Online]. Available: https://github.com/microsoft/
WinAppDriver


