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Abstract—Over the past decade, predictive language modeling
for code has proven to be a valuable tool for enabling new forms
of automation for developers. More recently, we have seen the ad-
vent of general purpose “large language models”, based on neural
transformer architectures, that have been trained on massive
datasets of human written text, which includes code and natural
language. However, despite the demonstrated representational
power of such models, interacting with them has historically
been constrained to specific task settings, limiting their general
applicability. Many of these limitations were recently overcome
with the introduction of ChatGPT, a language model created
by OpenAI and trained to operate as a conversational agent,
enabling it to answer questions and respond to a wide variety of
commands from end users.

The introduction of models, such as ChatGPT, has already
spurred fervent discussion from educators, ranging from fear
that students could use these AI tools to circumvent learning,
to excitement about the new types of learning opportunities
that they might unlock. However, given the nascent nature of
these tools, we currently lack fundamental knowledge related to
how well they perform in different educational settings, and the
potential promise (or danger) that they might pose to traditional
forms of instruction. As such, in this paper, we examine how
well ChatGPT performs when tasked with answering practice
questions in a popular software testing curriculum. We found
that given its current capabilities, ChatGPT is able to respond to
77.5% of the questions we examined and that, of these questions,
it is able to provide correct or partially correct answers in 55.6%
of cases, provide correct or partially correct explanations of
answers in 53.0% of cases, and that prompting the tool in a
shared question context leads to a marginally higher rate of
correct answers and explanations. Based on these findings, we
discuss the potential promises and perils related to the use of
ChatGPT by students and instructors.

Index Terms—ChatGPT, testing, education, case study

I. INTRODUCTION

Language modeling of code has been an important topic in
software engineering research since the promise of modeling
code was first illustrated by Hindle et al. [1]. As techniques
for language modeling improved, researchers began to utilize
Deep Learning (DL) architectures to learn rich, hierarchical
representations of code that could then be used for vari-
ous downstream tasks [2]. In parallel, the machine learning
and natural language processing communities began building
large-scale models centered around a specific type of neural ar-
chitecture, the transformer [3]–[5], trained on massive datasets

of text. Experiments illustrated the representational power
of both these large language models (LLMs), and language
models tailored specifically for code [6]–[9]. However, such
models were largely constrained to specific task settings and
did not provide for natural forms of interaction with end users
– until recently.

In late 2022, OpenAI introduced ChatGPT [10], an AI
tool built on top of existing LLMs, that enabled interac-
tion through a conversational interface. To enable this type
of interaction, OpenAI made use of reinforcement learning
from human feedback, refining methods from past work on
InstructGPT [11], which trained LLMs with both unsupervised
data and with supervision in the form of task instruction.
In essence, the model was initially trained on real, human
text-based conversations, then learned to refine its responses
based on feedback from human evaluators that rated the quality
of answers in a reinforcement learning setting. This process
proved very successful in creating an interface where users
could easily access the latent “knowledge” of LLMs.

Given the ease of interaction and the seemingly vast amount
of knowledge contained within the model, vigorous discussion
arose in academic communities about the potential dangers and
opportunities of such a tool for both students and instructors.
Sentiments ranged from fear that students would use these
models to circumvent learning material, to excitement about
the new types of learning, assignments, and automation a
tool, such as ChatGPT, could introduce into various levels of
academia. However, to make informed decisions about how to
use (or not use) ChatGPT in various educational settings, we
must first have a thorough understanding of its capabilities,
strengths, and weaknesses.

In this paper, we aim to study and understand the capa-
bilities of ChatGPT in the context of a traditional software
testing course. As such, we conduct a comprehensive empirical
study, tasking ChatGPT with answering questions from five
chapters of a popular software testing textbook [12], and
thoroughly vetting the results across multiple dimensions. We
aim to learn (i) how often ChatGPT is correct in answering
questions, (ii) how often it can fully and accurately explain
its answers, (iii) how different ways of asking questions to
ChatGPT can affect its ability to provide correct responses,
and (iv) whether ChatGPT’s expressed confidence provides
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bearing on the correctness of its answers. We find the current
capabilities of ChatGPT allow it to properly respond to 77.5%
of the testing questions we examined. For the questions to
which ChatGPT was able to respond, it provides correct or
partially correct answers in 55.6% of cases, and provides
correct or partially correct explanations in 53.0% of cases We
also found that prompting the model in a shared context, where
similar questions are asked together, lead to marginally better
answers, and the tool’s claimed confidence level seems to have
little bearing on the correctness of the answers. Based on these
findings, we discuss the potential promises and perils related
to the use of ChatGPT in software testing courses.

In summary, the contributions of this paper are as follows:
• A manually-vetted dataset of ChatGPT’s answers to 31

questions from five chapters of a popular software test-
ing textbook. Our dataset includes three responses from
ChatGPT for each question.

• A thorough analysis of these answers that examines how
often ChatGPT is correct and when it is able to properly
explain a given answer.

• An investigation into two prompting strategies, and their
effect on answer and explanation correctness, as well as
an analysis of whether ChatGPT’s proclaimed confidence
level impacts answer/explanation correctness.

• An online appendix [13], [14], that includes our data,
analysis code, and experimental infrastructure to facilitate
replicability and future work on applications of ChatGPT
to various topics in computer science education.

II. BACKGROUND

ChatGPT [10] offers a machine learning model designed to
engage in conversations with the user. It provides responses to
questions asked in a prompt and is able to respond to follow-
up questions and correct itself.

To investigate the applicability of ChatGPT to answer
questions commonly found in a software testing curriculum,
we pose questions from the first five chapters of the textbook
by Ammann and Offutt [12]. This book has been used in
undergraduate and graduate software testing classes at George
Mason University and is used by hundreds of organizations as
a source of software testing knowledge. Our study uses:

• Chapters 1 and 2, which discuss software faults, errors,
and failures

• Chapter 3, which discusses the Reachability, Infection,
Propagation, and Revealability (RIPR) model

• Chapter 4, which discusses Test Driven Development
(TDD) and continuous integration

• Chapter 5, which discusses coverage criterion and sub-
sumption

The remainder of this section provides a brief description of
the course content found in each chapter.

A. Chapters 1& 2 - Fault, Error and Failure

A fault is a static defect in the software. An error is an in-
correct internal state, which is composed of a program counter
and the live variables at that program counter location, and a

failure is an external, incorrect behavior with respect to the
requirements or the description of the expected behavior [12].

B. Chapter 3 - RIPR Model

According to Ammann and Offutt [12], there are four
conditions that are needed for a failure to be observed. These
conditions together are called the RIPR model. First, a test
needs to reach the location of the defective line of code –
that is Reachability. After the fault is executed, it leads to
an incorrect program state, which is called Infection. The
infection must spread to an incorrect final state – that is
Propagation and finally, the incorrect portion of the final state
must be observable by the tester – that is Revealability.

C. Chapter 4 - CI & TDD

Ammann and Offutt [12] describe Continuous Integration
(CI) as the process that begins with a developer using a
fresh development environment, obtaining the code under
test and test code, building the code, and running the tests.
After finalizing changes to code, the changes start the CI
process, where a fresh environment rebuilds the code and
reruns the tests. This process helps developers quickly identify
any failures their changes may have introduced.

Test Driven Development (TDD) is a methodology for
creating software in which tests are written before the code
under test. The methodology is based on repeating a short
development cycle, including creating a test, running it to
confirm that it fails, writing code under test to make the test
pass, creating more tests, and improving the code under test to
make more tests pass. TDD aims to produce clean and failure-
free code by writing only code under test to make tests pass.

D. Chapter 5 - Coverage Criterion and Subsumption

A coverage criterion is a rule or collection of rules that
impose test requirements on a test set. A coverage criterion
C1 subsumes C2 if and only if every test set that satisfies
criterion C1 also satisfies C2.

III. STUDY SETUP

To investigate the promises and perils of using ChatGPT for
software testing education, we study the following research
questions (RQs):

• RQ1: How often is ChatGPT able to provide correct an-
swers and explanations for different prompting strategies?

• RQ2: How often does ChatGPT give answer-explanation
pairs with different degrees of correctness?

• RQ3: How does ChatGPT’s non-determinism affect its
ability to provide correct answers and explanations?

• RQ4: How does ChatGPT’s confidence in its response
correlate to the correctness of the response?

A. Dataset

Our dataset contains questions from the widely used soft-
ware testing book by Ammann and Offutt [12]. In the context
of this study, we use all the textbook questions in Chapters 1
to 5 that have solutions available on the book’s official web-
site [15]. These solutions are made publicly available to help
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TABLE I
OVERVIEW OF THE QUESTIONS IN OUR STUDY.

Chapter Question Sub-Question Code Concept Both
1 5.2.a X X
1 5.2.b X X
1 5.2.c X X
1 5.2.d X X
1 5.2.e X X
1 5.4.a X X
1 5.4.b X X
1 5.4.c X X
1 5.4.d X X
1 5.4.e X X
1 7.2.a X X
1 7.2.b X X
1 7.2.c X X
1 7.2.d X X
1 7.2.e X X
1 7.3.a X X
1 7.3.b X X
1 7.3.c X X
1 7.3.d X X
1 7.3.e X X
2 1 X
3 4 X
3 5 X
3 9.a X X
3 9.b X X
3 9.c X X
3 9.d X X
3 9.e X X
4 1 X
5 1.a X X
5 1.b X X

Count 31 27 6 9 16

students learn. We omitted questions that do not have student
solutions, as publishing our results might expose answers that
the authors of the book do not intend to make public. Our
study is limited to the first five chapters of the book, which
emphasize topics taught in most introductory software testing
courses. Often, our selected questions have sub-questions,
which break down a more comprehensive question into smaller
parts. For example, for a given code snippet, there might be
multiple related sub-questions that each ask about properties
of the snippet. In our study, for simplicity, we refer to all
questions and sub-questions as questions - given that we treat
them all as having equal importance.

We collected a total of 40 exercise questions that meet
our requirements. After manual inspection, we identified nine
questions that ask for material that is impossible for ChatGPT
to generate, as it is capable of generating only text-based
responses. For example, we encountered questions that ask
for a screen printout of code execution, a project to be fetched
from the internet, or a continuous integration server to be set
up. Questions with such tasks cannot be fully and correctly
answered by ChatGPT’s text-based responses.

We removed the nine questions that are outside of Chat-
GPT’s capabilities to correctly answer and report our results on
a total of 31 questions to which ChatGPT may give a correct
response. Of 31 questions, six are multi-part questions that
collectively contain 27 sub-questions and four are independent
questions that do not contain any sub-questions.

Table I lists the characteristics of each question in our
dataset. We find that six questions ask only for code in their
answers, nine ask to explain a concept, and the remaining 16

ask for both code and a concept explanation. Our dataset is
publicly available on GitHub [13] and Zenodo [14].

B. Data Collection Tool

During the data collection process for this study, Ope-
nAI [16] had not yet made a ChatGPT API publicly available,
therefore, the number of questions we were able to ask Chat-
GPT through the online interface during a given period of time
was rate-limited. We developed an open-source tool to collect
ChatGPT responses for the questions in our dataset [13]. Our
tool automatically queries ChatGPT, collects the responses,
and waits 10 seconds after receiving an answer before asking
the next question. We determined the length of this delay based
on experiments with our automated tool (e.g., trying multiple
wait times). We find that a wait time of 10 seconds provided
us the greatest number of query responses.

C. Methodology

For RQ1, we look to understand how often ChatGPT is
able to provide correct answers and explanations to our dataset
of software testing questions and to determine how ChatGPT
performs when sub-questions are asked in a single chat context
one by one compared to when they are asked in separate
contexts. We refer to these two ways of asking questions as
shared context and separate context, respectively. For RQ2,
we study how often ChatGPT will give answer-explanation
pairs with different degrees of correctness (e.g., correct answer
but incorrect explanation). For RQ3, we aim to analyze how
ChatGPT’s non-determinism affects its ability to provide cor-
rect answers and explanations by posing each question three
times and examining any differences in responses. Lastly, for
RQ4, we aim to determine whether ChatGPT’s self-reported
confidence (which can be collected through a confidence
query) related to an answer/explanation has a bearing on the
correctness of that answer. Our findings could be useful for
instructors and students to determine the potential utility of a
given answer. Below, we define the processes for (1) shared
context queries, (2) separate context queries, (3) confidence
queries, and (4) response labeling.

1) Separate Context Query: In separate context queries,
we treat each of the 27 sub-questions as an independent
question. Each sub-question is asked in a separate chat context.
Combining with the four independent questions, a total of 31
questions are asked for each run. To evaluate how separate
context compares with shared context, we collect a total of
three runs for each question, which results in a total of 93
separate context responses.

2) Shared Context Query: In this query scenario, sub-
questions are all asked in a single ChatGPT session during
which the context of the conversation is shared (i.e., ChatGPT
is able to reference an initial prompt or code snippet, and
parts of prior sub-questions) as long as the sub-questions
refer to the same code or scenario. For example, consider the
lastZero() method in Figure 1. lastZero() is supposed
to find the last index in an array where a zero occurs. One
may ask multiple sub-questions based on this code (e.g., give
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1 public static int lastZero (int[] x) {
2 for (int i = 0; i < x.length; i++)
3 if (x[i] == 0) return i;
4 return -1;
5 }

Fig. 1. Code snippet for lastZero().

a test that (1) does not execute the fault or (2) executes the
fault, but there are no failures).

In the shared context query, we provide the implementation
of lastZero() and ask the first sub-question in one chat
context. After we obtain the response, we continue to ask the
next sub-question in the same, shared context. This process is
repeated until all sub-questions are asked before the context is
destroyed. For the next question with multiple sub-questions,
we then open another chat context.

Overall, we obtain 81 responses from running each of the 27
sub-questions three times and 12 responses from running each
of the four independent questions three times. For questions
with no sub-questions, shared context is the same as sepa-
rate context, as such, the responses to the four independent
questions are identical across the datasets for both the shared
and separate contexts, with only the 81 responses to the 27
sub-questions differing. In RQ1, we compare responses for
which both shared context and separate context exists, i.e.,
81 responses. We find that shared context is more likely to
give correct responses than separate context. In RQ2-RQ4 we
use the responses from shared context – the 81 shared context
responses and the 12 shared/separate context responses.

3) Confidence Query: To determine how confident Chat-
GPT is in its answer for RQ4, we ask the following question
to ChatGPT after each of its responses – “How confident are
you that your previous response is correct?”. To answer RQ1-
RQ3, we asked each question 3 times. However, to simplify
our data collection process, we only collected responses to
confidence queries the first time that a question was posed
to ChatGPT in the shared context setting. We recorded the
following replies from ChatGPT: Highly confident, Very Con-
fident, Confident, and Reliable. Note that we do not attempt
to rank ChatGPT’s confidence replies, as their relative ranking
is unclear (e.g., whether “Highly confident” is more or less
confident than “Very confident”). We attempted to resolve
the ranking of these confidence replies by asking ChatGPT
to provide a relative ranking, but ChatGPT was not able to
provide a conclusive response. Therefore, for RQ4, we simply
study the likelihood for ChatGPT to give a correct explanation
or answer given a specific category of confidence reply.

4) Response Labeling: To determine the correctness of
ChatGPT’s responses, two authors independently inspected
the responses and labeled them. For any disagreements, a
third author was involved and the questions were discussed
so that all three authors came to an agreement. All three
evaluators have either (1) taken a graduate-level software
testing course that uses the textbook [12] our study questions
are sourced from, (2) taught a software testing course that uses
the textbook as a teaching assistant, or (3) taught a software

testing course that uses the textbook as the instructor.
Responses from ChatGPT were broken down into two parts

- the explanation and answer. Our labeling considered two
perspectives: (1) whether the overall answer was correct and
(2) whether the explanation given was correct. Both perspec-
tives are categorized as correct, incorrect, or partially correct
relative to the solution of the question.

A ChatGPT response example to a question is the following:

Textbook question [12, p.114]: Suppose that coverage crite-
rion C1 subsumes coverage criterion C2. Further, suppose that
test set T1 satisfies C1 on program P, and test set T2 satisfies
C2, also on P. Does T1 necessarily satisfy C2? Explain.

ChatGPT’s response: T1 may or may not satisfy C2. The
fact that T1 satisfies C1, which subsumes C2, means that
C1 is a more comprehensive criterion that includes all of the
requirements of C2. However, it does not guarantee that T1
will also satisfy C2. T1 may include test cases that are not
necessary to satisfy C2, and it may not include test cases that
are necessary to satisfy C2. Therefore, additional test cases
may be needed to confirm that T1 also satisfies C2.

The above example response was labeled as having the
answer as Incorrect, but the explanation as Partially Correct.
As ChatGPT’s answer is that T1 may not satisfy C2 (when
the correct answer is that T1 does satisfy C2), we label
the answer as incorrect. The explanation is partially correct,
because ChatGPT correctly mentioned that C1 includes all of
C2’s requirements (based on the definition of subsumption in
Section II-D), but also incorrectly explains that this fact does
not guarantee that T1 satisfies C2.

IV. RESULTS

A. RQ1: How often is ChatGPT able to provide correct
answers and explanations for different prompting strategies?

1) Answer Correctness: We find that in shared contexts,
49.4% of the time the answer is correct, and 6.2% of the time it
is partially correct. In contrast, in separate contexts, responses
are correct 34.6% of the time and partially correct 7.4% of
the time. As shown in Figure 2, a shared context produces
fewer incorrect answers than separate contexts, on average.
One explanation for this behavior is that, in a shared context,
ChatGPT obtains contextual information from the prior sub-
questions. For example, if ChatGPT already identified a fault
in a prior sub-question, it is more likely to correctly leverage
this fault to answer subsequent questions about errors.

2) Explanation Correctness: The results for explanation
correctness are shown in Figure 3. Here, we obtain similar
results to answer correctness. Namely, explanation accuracy
is higher in the shared context. That being said, when we
focus on being fully correct in answers and explanations, we
find that shared context is better than separate context. With
this finding in mind, our remaining RQs focus solely on our
shared context results. Separate context related data for the
remaining RQs is on our website [13].
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Fig. 2. Correctness of ChatGPT answers for shared and separate contexts.
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Fig. 3. Correctness of ChatGPT explanations for shared and separate contexts.

Shared context is more likely than separate context to be
correct. Using ChatGPT in a shared context can result in
a correct or partially correct answer 55.6% of the time
and a correct or partially correct explanation 53.0% of
the time.

B. RQ2: How often does ChatGPT give answer-explanation
pairs with different degrees of correctness?

Table II shows results of correctness for answer-explanation
pairs across the three iterations (e.g., three responses for each
question) for our defined shared query context. For example,
the Answer Incorrect (AIC) and Explanation Partially Correct
(EPC) pair means ChatGPT provided an incorrect answer but
a partially correct explanation. Of the nine possible pairs,
there are three pairs where the degree of correctness of the
answer and the explanation are the same: (1) AC-EC where
both the answer and the explanation are correct, (2) APC-
EPC where both are partially correct, or (3) AIC-EIC where
both are incorrect. All other pairs have different degrees of
correctness. Our results suggest that, on average, 11.8% of
the time, ChatGPT is giving an answer that does not properly
match its explanation in terms of correctness.

11.8% of the time ChatGPT produces responses where
the answer-explanation pairs have different degrees of
correctness (e.g., the answer is correct, but the explana-
tion is not).

TABLE II
ANSWER-EXPLANATION PAIRS FOR THREE SHARED CONTEXT

ITERATIONS. WE DEFINE THREE TOP-LEVEL COLUMNS FOR ANSWER
CORRECTNESS: ANSWER CORRECT (AC), ANSWER PARTIALLY CORRECT

(APC), AND ANSWER INCORRECT (AIC), FROM LEFT TO RIGHT. FOR
EACH COLUMN UNDER THE TOP LEVEL, WE SHOW THE CLASSIFICATION

OF THE EXPLANATION FOR THE GIVEN TOP-LEVEL ANSWER TYPE:
EXPLANATION CORRECT (EC), EXPLANATION PARTIALLY CORRECT

(EPC) AND EXPLANATION INCORRECT (EIC), FROM LEFT TO RIGHT.
AC APC AIC

Iter. EC EPC EIC EC EPC EIC EC EPC EIC
1 15 0 2 0 1 0 0 2 11
2 15 0 2 0 2 0 0 1 11
3 15 1 2 0 2 0 0 1 10

Sum 45 1 6 0 5 0 0 4 32
% 48.4 1.1 6.4 0.0 5.4 0.0 0.0 4.3 34.4

C. RQ3: How does ChatGPT’s non-determinism affect its
ability to provide correct answers and explanations?

When asked the same question multiple times, ChatGPT
may give a different response each time due to the stochastic
nature of its sampling process from a learned probability
distribution. We examine how often these differing responses
given by ChatGPT will differ in correctness. For example, a
question may have a correct answer in one run but an incorrect
answer in another run. We find that for 9.7% of questions, the
answer’s correctness is affected by non-determinism and for
6.5% of questions, the explanation’s correctness is affected.

The correctness of ChatGPT’s answers vary between
correct to incorrect for 9.7% of questions, and the
correctness of explanations varies for 6.5% of questions.

D. RQ4: How does ChatGPT’s confidence in its response
correlate to the correctness of the response?

To determine how confident ChatGPT is in its answers,
we asked it to report its confidence. Asking about confidence
is typically referred to as “calibration”, and a well-calibrated
model will be confident when correct, and less confident when
incorrect. In our experiment, ChatGPT responded with four
different keywords. Figures 4 and 5 display the data for each
keyword for answers and explanations, respectively.

ChatGPT expressed varying levels of confidence in its re-
sponses. When ChatGPT is “Highly confident” in its response,
we find that its answers are incorrect about half the time and
explanations are incorrect twice as often as correct. On the
other hand, when ChatGPT is “Confident” in its response, we
find that its answers or explanations are at least three times as
likely to be correct than incorrect. For the other two categories,
we find that ChatGPT provides mixed responses.

ChatGPTs self-reported confidence does not appear to
be particularly useful, as it has little bearing on question
correctness. This finding seems to indicate, that, for soft-
ware testing questions, ChatGPT is not well calibrated.

V. CASE STUDY

In this section, we present a case study examining (1) the
characteristics of incorrect answers, (2) how ChatGPT’s re-
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Fig. 6. Venn diagram of characteristics of 13 incorrect answers from ChatGPT.

sponses may change when we provide it with more informa-
tion, and (3) an example of an inconsistent answer-explanation
pair. The goal of our case study is to gather insight into why
ChatGPT is wrong and to examine how certain prompting
strategies may lead to a higher likelihood of correct answers.

A. Characteristics of Incorrect Answers from ChatGPT

To better understand why ChatGPT is wrong, we catego-
rized 13 incorrect answers (out of 31) from shared context’s
first iteration, and identified three main reasons for ChatGPT’s
incorrect responses. Figure 6 summarizes our findings.

1) ChatGPT lacks knowledge: The first category is when
ChatGPT may lack the knowledge needed to solve the prob-
lems given to it. For questions from chapters 1, 2, and 3,
ChatGPT seemed to lack definitions for fault, failure, and error,
resulting in incorrectly treating errors as failures or crashes.
For Chapter 5, ChatGPT seemed to lack understanding of how
to conclude whether a test set satisfies a coverage criterion.

An example of ChatGPT getting the answer incorrect due to
lack of knowledge is presented in Section III-C4.

2) ChatGPT makes the wrong assumption: ChatGPT can
also focus on an irrelevant part of the question and give an
incorrect answer because it makes an incorrect assumption
about what is important. See Section V-B for an example.

3) Both: In four cases, ChatGPT seems to both lack knowl-
edge and make wrong assumptions. For example, for one of
the four cases, ChatGPT makes a wrong assumption about the
fault in a program and lacks the knowledge for what is an
error. Therefore, ChatGPT’s response about the error in this
program was incorrect due to both characteristics.

B. Effect of Additional Information on ChatGPT’s responses

To understand the effect of additional information on Chat-
GPT, we randomly select one of the 13 incorrect answers
mentioned in Section V-A and manipulate the prompt.

Textbook question [12, p.41]:

1 public static int oddOrPos (int[] x) {
2 int count = 0;
3 for (int i = 0; i < x.length; i++) {
4 if (x[i]%2 == 1 || x[i] > 0) count++;
5 }
6 return count;
7 }
8 // test: x = [-3,-2,0,1,4]; Expected = 3

(a) Explain what is wrong with the given code. Describe the
fault precisely by proposing a modification to the code.

The function oddOrPos() from the textbook (shown above)
is about finding odd or positive numbers. But the given code
snippet fails to count negative odd values because a negative
odd number produces -1 when it is mod with 2. To answer this
question, ChatGPT should find the fault and show a possible
modification to the program. ChatGPT originally thought the
fault is related to not having a null check at the beginning for
the input of a null array. But the actual fault is that it does
not take into account negative odd values. In its response,
ChatGPT advises adding a null check before the for loop,
which is an incorrect fix.

Modified prompt:

1 public static int oddOrPos (int[] x) { ... }

(a) ... The fault and the modification do not involve having a
null check.

We then changed the sub-question (a) to provide more
information (see above). The modified prompt mentions that
the fault and the modification are not related to a null check.
The textbook solution refers to changing the if condition
to x[i]%2 == -1 || x[i] > 0, where the negative odd
numbers are processed by the first part of the expression.
With these modifications to the prompt, ChatGPT’s response
is correct (see below): it checks for both positive and negative
odd numbers with x[i]%2 != 0.
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ChatGPT’s response to modified prompt: The given code
has a logical error. The condition x[i]%2 == 1 checks for
odd elements but does not include negative odd numbers. To
repair the code, we can change the if statement to check if
for odd (x[i] % 2 != 0) or positive (x[i] > 0).

1 public static int oddOrPos (int[] x) {
2 ...
3 if (x[i]%2 != 0 || x[i] > 0)
4 ...
5 }

C. Answer Correct, Explanation Incorrect (AC-EIC) Example

In Section III-C4, we showed an example of AIC-EPC.
In this section, we present an opposite case – an example
where the answer is correct, but the explanation is incorrect.
This example is another sub-question of the oddOrPos code
presented in Section V-B.

(d) If possible, give a test case that results in an error, but not
a failure. If not, briefly explain why not. Hint: Don’t forget
about the program counter.

ChatGPT’s response: It is not possible to give a test case
that results in an error, but not a failure because when the code
throws a NullPointerException, it results in an error
and the program will stop execution. An error state refers to
the unexpected behavior of the program. The program counter
will not continue execution past the point where the exception
is thrown.

According to the textbook, every input that results in an
error also results in a failure, because the error states can not
be repaired. The answer from ChatGPT is correct because it
is impossible to give a test case that results in an error but not
a failure. However, the explanation is incorrect as ChatGPT
treats the NullPointerException as the reason.

VI. THREATS TO VALIDITY

One threat to the validity of our study is the dataset we used.
The exercises may not address all the domains required for a
software testing class. To address this limitation, we selected a
book [12] that is widely used and included all questions with
student solutions [15] from the first five chapters.

As ChatGPT was in research preview at the time of this
study and is continuously updated, its behavior may differ
in future iterations. We identified a few improvements to its
performance in the course of our study. In earlier releases,
ChatGPT was unable to provide a numeric confidence level,
while it is now able to specify a level between 0.0 to
1.0. Responses from ChatGPT are also inconsistent, where
repeated invocations of ChatGPT with the same question yield
different responses. To reduce the effect of inconsistency on
our study, we ran each question three times for generalizability.

Finally, our main results made limited use of prompt engi-
neering (i.e., only varying question context), where differently
designed prompts might yield more correct answers. Except

for our case study (Section V), our results are based on
responses obtained by asking the questions directly as they
appear in the book. Book practice questions are designed to
focus on human readers and are usually based on the contents
of a corresponding chapter. As we have not provided ChatGPT
with the actual contents of the chapters, it is possible that
ChatGPT might be correct more often if additional context is
provided with the questions.

VII. RELATED WORK

Several systems have been proposed to apply large language
models (LLMs) to the problem of generating code snippets
from natural language requests from developers [17]. Most
prominently, GitHub CoPilot, based on Codex, popularized
the use of LLMs for real-world programming tasks [18].

Studies have begun to examine how effectively these sys-
tems may be used for code generation tasks. AlphaCode was
found to generate code that was often similar to human-
generated code [6] and achieved a simulated average ranking
in the top 54% on Codeforces [17], a programming competi-
tion platform. One study found that, on tasks to fix security
defects after the defect has already been localized and where
additional information is provided through the prompt, LLMs
can successfully generate fixes [19].

Some work has specifically examined the potential use of
LLM code generation by students in computer science courses.
One study found that Codex already performs better than
most students on the code writing questions found in typical
introductory programming exams [20] as well as more ad-
vanced exams on data structures and algorithms [21]. Identical
prompts frequently lead to widely varying algorithm choices
and code size [20]. A study examining CoPilot’s performance
on programming assignments from introductory courses found
that it achieved scores of 68% to 95% [22].

However, there are substantial challenges with the usability
of these systems that may limit their effectiveness for real-
world programming tasks. One study found that, despite
participants themselves enjoying interacting with the code gen-
eration system, there was no measurable productivity benefit
in either speed or correctness of programming tasks [23].
Similarly, a second user study found that the productivity ben-
efits of CoPilot were mixed: while it sometimes could make
developers faster, it could also lead developers down time-
consuming rabbit holes debugging incorrect code [24]. As a
result, it had no significant impact on the correctness or task
time. Including explanations may help reduce overreliance on
potentially incorrect answers, but only in situations when the
benefits of engaging with explanations outweigh the costs [25].

As ChatGPT was only recently released, there are only a
few studies that have specifically examined the effectiveness
of ChatGPT on various tasks. Investigations have found that
ChatGPT produces responses that are at or near the passing
threshold for all three parts of the US Medical Licensing Exam
without any additional information or prompt engineering [26].
ChatGPT has also been able to achieve a low but passing
average grade of C+ in four law school classes [27].
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VIII. DISCUSSION: PROMISES & PERILS

In this paper, we examined the potential applicability of
ChatGPT to a popular software testing curriculum. We found
that ChatGPT is able to provide correct or partially correct
answers to 55.6% of questions. Moreover, ChatGPT is a poor
judge of its own correctness: its confidence has little bearing
on the correctness of its response. Said differently, at least
when this study was conducted, ChatGPT’s answers will,
more likely than not, be incorrect for questions related to
software testing courses. That being said, our findings still
raise immediate concerns on how the use of ChatGPT might
be detected to ensure that questions are meaningfully assessing
students’ understanding of course materials.

While concerns over student’s use of ChatGPT to cir-
cumvent assessments represent one potential peril, there are
also several promising directions for integrating ChatGPT into
the classroom. We found that ChatGPT is able to provide
correct or partially correct explanations to 53.0% of questions.
Furthermore, we found that using certain prompting strategies,
which provide additional question context, can improve the
chances of correct answers and explanations. This finding
suggests that for carefully designed in-class activities or labs,
ChatGPT, rather than an instructor or TA, can be used to
guide students through a set of exercises to improve students’
understanding of the material.

Furthermore, we found that certain contexts make it dif-
ficult for ChatGPT to answer correctly, and such settings
could be used to prevent cheating, especially when access
to the internet is necessary. Our dataset contains coding and
conceptual questions, and some questions that are both. In
our experiments, ChatGPT performed worst with questions
involving both code and concepts. It outputs correct answers
and explanations most often with coding questions (83.3%),
then with conceptual questions (55.6%), and finally with
combined questions (31.3%).

Our results are in contrast to the results of applying Chat-
GPT in other domains, such as in medicine [26] or law [27]
where ChatGPT is shown to pass certain parts of their exams.
This difference may be due to the fact that there may be far
more content available with which ChatGPT may be trained
for these exams, or perhaps due to differences in the nature
of the questions themselves. As ChatGPT has only recently
been released, a full picture of its capabilities and the impact
of such tools is still yet to be determined.
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