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Abstract—We analyze the performance of massive MIMO
systems withN -antenna users. The benefit is thatN streams can
be multiplexed per user, at the price of increasing the channel
estimation overhead linearly with N . Uplink and downlink
spectral efficiency (SE) expressions are derived for anyN , and
these are achievable using estimated channels and per-user-basis
MMSE-SIC detectors. Large-system approximations of the SEs
are obtained. This analysis shows that MMSE-SIC has similar
asymptotic SE as linear MMSE detectors, indicating that theSE
increase from having multi-antenna users can be harvested using
linear detectors. We generalize the power scaling laws for massive
MIMO to handle arbitrary N , and show that one can reduce the
multiplication of the pilot power and payload power as 1

M
where

M is the number of BS antennas, and still notably increase the SE
with M before reaching a non-zero asymptotic limit. Simulations
testify our analysis and show that the SE increases withN . We
also note that the same improvement can be achieved by serving
N times more single-antenna users instead, thus the additional
user antennas are particular beneficial for SE enhancement when
there are few active users in the system.

I. I NTRODUCTION

Massive multiple-input multiple-output (MIMO) is a wire-
less multi-user communication technology that has attracted
huge research interest the last few years. By employing hun-
dreds of antennas at the base station (BS) and serving tens of
users in each cell simultaneously, a drastic increase in SE can
be achieved and simple coherent linear processing techniques
are near optimal [1]–[3]. Therefore, massive MIMO is one
of the key technologies for the next generation of wireless
networks.

Existing studies of massive MIMO focus on single-antenna
user devices [1]–[3]. However, contemporary user devices
already feature multiple antennas in order to boost the SE
of the network as well as the users [4]. Since many devices
(e.g., laptops and vehicles) have moderate physical sizes,
the deployment of five or ten antennas per device is highly
realistic, particularly for systems that operate at millimeter
wave frequencies [5]. It is necessary to conduct performance
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analysis for massive MIMO systems with multi-antenna users,
to understand how the additional antennas should be used.
Extensive capacity analysis has been conducted for small-
scale MIMO systems with multi-antenna users, but mainly
with perfect channel state information (CSI) [6], [7]. The
papers [8]–[10] account for imperfect CSI in point-to-point
and multiple access MIMO systems, but no large-system
analysis is provided to study the massive MIMO behavior. For
a fixed CSI estimation overhead, [11] claimed that it is better
to serve many single-antenna users than fewer multi-antenna
users. This claim has not been validated in massive MIMO.

In this paper, we analyze the SE of a massive MIMO
system with estimated CSI and any number of antennas,N ,
per user. Lower bounds on the sum capacity are derived for
the uplink and downlink, which are achievable by per-user-
basis MMSE-SIC (minimum mean-squared error successive
interference cancellation) detectors and only uplink pilots.
Large-system approximations of the lower bounds are further
obtained, which are tight asM grows large. Furthermore, we
generalize the power scaling laws from [2], [3] to handle
arbitrary N . The analysis shows that equipping users with
multiple antennas can greatly enhance the SE, particularlyin
lightly loaded systems where there are too few users to exploit
the full multiplexing capability of massive MIMO withN = 1,
and the benefits can harvested by linear processing.

II. SYSTEM MODEL

We consider a single-cell system in time division duplex
(TDD) mode where the BS hasM antennas and servesK
users within each time-frequency coherence block. Each user
is equipped withN antennas. We assume that each coherence
block containsS transmission symbols and the channels of all
users remain unchanged within each block. LetGk ∈ CM×N

denote the channel response from userk to the BS within
a coherence block. The fading can be spatially correlated,
due to insufficient spacing between antennas and insufficient
scattering in the channel. We use the classical Kronecker
model to describe the spatial correlation [12]:

Gk = R
1
2

r,kGw,kR
1
2

t,k, (1)

where entries ofGw,k ∈ CM×N follow independent and
identically distributed (i.i.d.) zero-mean circularly symmetric
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complex Gaussian distributions.Rt,k ∈ C
N×N represents the

spatial correlation at userk andRr,k ∈ CM×M describes the
spatial correlation at the BS for the link to userk. The large-
scale fading parameter is included inRr,k and can be extracted
as 1

M
tr(Rr,k). Let Rt,k = UkΛkU

H
k be the eigenvalue

decomposition ofRt,k, whereUk ∈ CN×N is a unitary matrix
andΛk = diag{λk,1, · · · , λk,N} contains the eigenvalues.

A. Uplink Channel Estimation

During the uplink pilot signalling,B = NK orthogo-
nal pilot sequences are needed to estimate all channel di-
mensions at the BS. Denote the pilot matrix of userk
as Fk ∈ CN×B. Suppose each user only knows its own
statistical CSI,Rt,k, then based on [13], the pilot matrix
that minimizes the MSE of channel estimation under the
pilot energy constrainttr(FkF

H
k ) ≤ BPk has the form of

Fk = UkL
1
2

k V
T
k , wherePk is the maximum transmit power

of user k, Lk = diag{lk,1, · · · , lk,N} distributes this power
among theN channel dimensions, andVk ∈ CB×N satisfies
VH

k Vk = BIN andVH
k Vl = 0 if k 6= l. Thus, the received

signal at the BS is

Y =

K
∑

k=1

GkFk +N =

K
∑

k=1

HkD
1
2

kV
T
k +N ∈ C

M×B, (2)

where we defineHk = R
1
2

r,kGw,kUt,k and Dk = ΛkLk

with dk,i being its ith diagonal element.N is the receiver
noise that followsvec(N) ∼ CN (0, σ2IBM ), wherevec(·)
is the vectorization operator. Assume that the BS knows the
statistical informationDk, then from [13] the MMSE estimate
of ĥk = vec(Hk) is

ĥk =
(

D
1
2

k ⊗Rr,k

)

(

(Dk ⊗Rr,k) +
σ2

B
IMN

)−1

bk, (3)

wherebk = vec( 1
B
YkV

∗
k) = vec(HkD

1
2

k + 1√
B
NV∗

k) and⊗
denotes the Kronecker product. Letĥk,i be theith column of
Ĥk, then

E

{

ĥk,iĥ
H
k,j

}

=

{

Φk,i, i = j,
0, i 6= j,

(4)

whereΦk,i = dk,iRr,k(dk,iRr,k +
σ2

B
IM )−1Rr,k.

B. Uplink Achievable SE

When the receiving BS knows the perfect CSI of all users
while each transmitter has only its own statistical CSI, the
precoding directions of each user that maximize the sum
capacity coincide with the eigenvectors of their own spatial
correlation matrix [14]. Let̄Fk ∈ CN×N denote the precoding
matrix of userk in the uplink payload data transmission phase,

then F̄k = UkP
1
2

k , wherePk = diag{pk,1, · · · , pk,N} with
tr(Pk) ≤ Pk is the power allocation matrix. Although in our

work, the BS is only aware of the estimated CSI,F̄k = UkP
1
2

k

is still a reasonable option to enhance the SE. Hence, the
received signal at the BS is

y =

K
∑

k=1

GkF̄kxk + n =

K
∑

k=1

HkΛ
1
2

kP
1
2

k xk + n, (5)

wherexk ∼ CN (0, IN ) is the transmitted data symbol from
userk andn ∼ CN (0, σ2IM ) is additive receiver noise.

Since the BS is only aware of the estimated CSI, the effect
of the channel uncertainty on the mutual information of MIMO
channels need to be addressed. For our system and signal
model, we develop a lower bound on the mutual information
betweenx = [x1, · · · ,xk] and y (with the imperfect CSI
Ĥ = [Ĥ1, · · · , ĤK ] as side-information) in the following
theorem.

Theorem 1 Consider the multiple access MIMO channel
in (5), given imperfect CSIĤ = [Ĥ1, · · · , ĤK ] at the BS,
whereĥk = vec(Hk) is given in (3). A lower bound on the
mutual information betweenx = [x1, · · · ,xk] andy is

I
(

y, Ĥ;x
)

≥
K
∑

k=1

E

{

log2

∣

∣

∣IN +QkĤ
H
k ΣkĤk

∣

∣

∣

}

,

K
∑

k=1

RSIC
ul,k, (6)

where Qk = ΛkPk, and Σk = (
∑

l 6=k ĤlQlĤ
H
l + Z +

σ2IM )−1 with Z =
∑K

l=1

∑N
n=1 λl,npl,n(Rr,l − Φl,n). The

expectation is computed with respect to (w.r.t.) the channel
estimates and| · | denotes the determinant of a matrix.

Proof: The proof is similar to that in [8] and thus is omitted.
The capacity lower bound in Theorem 1 is an SE achievable

by using a per-user-basis MMSE-SIC detector while treating
co-user interference as uncorrelated Gaussian noise. For ex-
ample, with imperfect CSI at the BS, the signalxk from user

k is transmitted through an effective channelĤkQ
1
2

k , and is

corrupted byneq,k = y − ĤkQ
1
2

k xk which is uncorrelated
and hasΣ−1

k as covariance matrix. Supposexk is chosen
from a Gaussian codebook, then by applying MMSE-SIC
detection toxk and treatingneq,k as uncorrelated Gaussian
noise in the detector, we can obtain the ergodic achievable SE
in Theorem 1.

Theorem 1 is a generalization of the achievable SE analysis
in prior works on massive MIMO [2], [3]. WhenN = 1, our
expression reduces to their corresponding results.

Since the SIC procedure can be computationally complex,
another option is to treat theN data streams as being transmit-
ted byN independent users, and use a linear MMSE detector
to detect theNK streams independently. Based on the same
methodology as in [15], the MMSE detector that maximizes
the uplink SE of theith stream of userk is

fk,i =
√

λk,ipk,iΣĥk,i, (7)

where Σ = (Σ−1
k + ĤkQkĤ

H
k )−1. Applying the linear

detectorfk,i to the signal in (5), an uplink achievable SE of



userk is

RMMSE
ul,k =

N
∑

i=1

E
{

log2
(

1 + ηul
k,i

)}

(8)

where the SINR of theith stream is

ηul
k,i =

λk,ipk,i

∣

∣

∣fHk,iĥk,i

∣

∣

∣

2

E

{

fHk,i

(

yyH − λk,ipk,iĥk,iĥ
H
k,i

)

fk,i

∣

∣

∣Ĥ
} . (9)

Since interference from the user’s own streams is not sup-
pressed byfk,i, it is intuitive thatRSIC

ul,k ≥ RMMSE
ul,k .

C. Downlink Achievable SE

To limit the estimation overhead, we assume no downlink
pilot or CSI feedback from the BS to users. This is common
practice in massive MIMO since only the BS needs CSI to
achieve channel hardening. Hence, the users has no instanta-
neous CSI except to learn the average effective channel,H̄k ,

Λ
1
2

k E{HH
k Wk}Ω

1
2

l , and covariance matrix of the interference
term. LetWk ∈ CM×N be the downlink precoding matrix
associated with userk and letΩk = diag{ωk,i, · · · , ωk,N}
allocate the total transmit powerP

′

k among theN streams.
Then the total transmit power from the BS is

∑K
k=1 P

′

k. The
received signal at userk is

yk = GH
k

K
∑

l=1

WlΩ
1
2

l xl + nk ∈ C
N×1, (10)

wherexl ∼ CN (0, IM ) is the downlink signal intended for
user l andnk ∼ CN (0, σ2IN ) is the additive receiver noise.
Without loss of generality, let userk useUH

k (the eigenvector
matrix of its own correlation matrix) as a first step detectorto
adapt to the channel correlation, then the processed received
signal is

zk = UH
k yk = Λ

1
2

kH
H
k

K
∑

l=1

WlΩ
1
2

l xl +UH
k nk. (11)

A lower bound on the mutual informationI(zk;xk) is devel-
oped in the following theorem.

Theorem 2 Consider the downlink signal model in (11),

given the average effective channelH̄k , Λ
1
2

k E{HH
k Wk}Ω

1
2

l

of userk. The mutual information betweenzk andxk is

I (zk;xk) ≥ log2
∣

∣IN + H̄H
k Ξ̄kH̄k

∣

∣ , RSIC
dl,k, (12)

whereΞ̄k = (Λ
1
2

k E{HH
k

∑

l 6=k

(WlΩlW
H
l )Hk}Λ

1
2

k +σ2IN )−1.

Proof: See Appendix B.
The lower bound in Theorem 2 can be achieved if user

k applies MMSE-SIC detection tozk when regardingH̄k

as the true channel and the uncorrelated termzk − H̄kxk is
treated as worst-case Gaussian noise in the detector. Theorem 2
generalizes the conventional SE analysis of massive MIMO
from N = 1 to arbitraryN .

The user can also apply a linear MMSE detector for symbol
detection based on (11). Denoteh̄k,i as theith column ofH̄k,
then with knowledge ofH̄k the MMSE detector for theith
stream of userk that maximizes the corresponding downlink
SE is rk,i = Ξkh̄k,i, whereΞk = Ξ̄−1

k + H̄kH̄
H
k . Applying

rk,i to (11), the achievable SE of userk is

RMMSE
dl,k =

N
∑

i=1

E
{

log2
(

1 + ηdl
k,i

)}

(13)

where the SINRηdl
k,i of its ith stream is

ηdl
k,i =

|rHk,ih̄k,i|2
rrk,iE{zkzHk }rk,i − |rHk,ih̄k,i|2

. (14)

Intuitively, the MMSE-SIC detector will have a higher
performance than the MMSE detector in the downlink. To
compare their performance in massive MIMO systems, we
derive their asymptotic SEs in the large system limit in the
next section.

III. A SYMPTOTIC ANALYSIS

In this section, approximations of the SEs in Theorem 1
and 2 that are tight for large systems are derived for fixed
power matricesLk, Pk andΩk. We consider the large system
regime whereM and K go to infinity while N remains
constant since the users are expected to have a relatively small
number of antennas. In what follows, the notationM → ∞
refers toK, M → ∞ such thatlim supMK/M < ∞ and
lim infMK/M > 0.

Theorem 3 For the uplink MMSE-SIC detector on a per-user
basis, a large-system approximation ofRSIC

ul,k in Theorem 1 is

R̄SIC
ul,k ,

N
∑

i=1

log2

(

1 +
1

M
tr (Φk,iT) λk,ipk,i

)

, (15)

such thatRSIC
ul,k − R̄SIC

ul,k −−−−→
M→∞

0, where T = T(σ
2

M
) is

obtained by Theorem 5 in Appendix A withρ = σ2/M ,
S = Z/M , andRb = λl,ipl,iΦl,i with b = (l − 1)N + i.

Proof: The main idea is to derive the large-system approxima-
tion of ĥH

k,iΣkĥk,j which is the(i, j)th element ofĤH
k ΣkĤk.

Due to the mutual independence among the columns ofĤk,
only the diagonal elements of̂HH

k ΣkĤk remain asM → ∞.
�

In comparison, the large-system SE approximation of the
linear MMSE detectorfk,i can be derived by following the
same procedures in [15]. The SE approximation isR̄MMSE

ul,k =
∑N

i=1 log2(1 + η̄ul
k,i) where

η̄ul
k,i =

λk,ipk,iδ
2
k,i

∑

(l,n) 6=(l,i)

λl,npl,n
1
M
µk,i,l,n + 1

M
ϑk,i

, (16)

whereδk,i = 1
M
tr(Φk,iT), with T being given in Theorem 5.

µk,i,l,n =
tr(Φl,nT

′

k,i)

M(1+λl,npl,nδl,n)2
andϑk,i =

1
M
tr(Φk,iT

′′

). Both



T
′

k,i andT
′′

are obtained by Theorem 6 in the appendix with

ρ = σ2

M
, S = Z

M
, andRb = λl,ipl,iΦl,i (b = (l − 1)N + i),

except thatΘ = Φk,i for T
′

k,i andΘ = Z+ σ2IM for T
′′

.
By comparing (16) and Theorem 1, we can see that for the

MMSE-SIC detector, the inter-stream interference of a user
caused by imperfect CSI vanishes asymptotically, and only the
inter-user interference remains. For the linear MMSE detector,
however, the inter-stream interferenceµk,i,k,n

M
remains in (16)

as well. However, the impact of this part reduces to zero asM
grows. It shows that the SE improvements with multi-antenna
users can be harvested in massive MIMO by linear detectors,
thus a simple hardware implementation is possible.

Next, we derive large-system approximations of the down-
link performance. The precoder used by the BS can be any
linear precoder such as the matched filtering (MF), block-
diagonal zero-forcing or MMSE precoding. Due to the limited
space, we only consider the MF case:

Wk =
1

√

E

{

tr
(

ĤkĤ
H
k

)}

Ĥk. (17)

Theorem 4 For the downlink MMSE-SIC detector and the
linear MMSE detector, if the BS utilizes the MF precoder, the
large-system approximations of the SEs in Theorem 2 and (14)
are the same, which is

R̄SIC
dl,k ,

N
∑

i=1

log2



1 +
λk,iωk,i

α2
k,i

θk
1
M
γkλk,i +

σ2

M



 , (18)

such thatRSIC
dl,k − R̄SIC

dl,k −−−−→
M→∞

0, where θk =
∑N

i=1 αk,i,

αk,i =
1
M
tr(Φk,i) andγk = 1

M
tr(Rr,k

∑

l 6=k

∑N
i=1

ωl,i

θl
Φl,i).

Proof: The proof is similar to Theorem 3 and thus omitted.
Theorem 4 shows that the SIC processing at users does not

bring any advantage over the linear MMSE detector in the
downlink. The reason is that̄Hk is a diagonal matrix, which
means that no inter-stream interference is introduced in this
assumed true channel. Therefore, the SIC processing is neither
necessary nor beneficial when there are no uplink pilots. This
result has positive influence on the design of user devices since
it indicates low hardware requirements and simplifies the SE
optimization.

IV. POWER SCALING LAWS

It is shown in [2], [3] that forN = 1, the transmit power
can be reduced with retained performance as the number of BS
antennas grows. Next, we generalize the fundamental resultto
handle any fixedN .

Assume the pilot power is reduced asLk = 1
MαL

(0)
k and the

payload powers arePk = 1
M1−αP

(0)
k andΩk = 1

M1−αΩ
(0)
k ,

where 0 ≤ α ≤ 1 and the(•)(0) matrices are fixed. We
considerRr,k = βkIM whereβk is the large-system fading
of user k, so that the correlation matrix at the BS remains
unchanged asM grows. A different large-system limit is
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Fig. 1. Uplink and downlink achievable sum SE as a function ofthe number
of BS antennas forK = 10.

considered in this section:M goes to infinity whileK and
N are fixed.

Lemma 1 For the uplink MMSE-SIC receiver on a per-user
basis, if the pilot power is reduced asLk = 1

MαL
(0)
k and the

payload powers isPk = 1
M1−αP

(0)
k , thenRSIC

ul,k−R̄
′

ul,k −−−−→
M→∞

0 where

R̄
′

ul,k =
N
∑

i=1

log2

(

1 + β2
kλ

2
k,i

Bl
(0)
k,ip

(0)
k,i

σ2 (z + σ2)

)

, (19)

with z=0 if 0 ≤ α < 1 andz =
∑K

l=1 βltr(ΛlP
(0)
l ) if α=1.

Proof: The result can be obtained by deriving the SE with
the power reduction, and investigating the limiting behavior
of each parameter. The detailed proof is omitted.

Lemma 2 For the downlink MMSE-SIC detector and the
MMSE detector, ifLk = 1

MαL
(0)
k andΩk = 1

M1−αΩ
(0)
k , then

RSIC
dl,k − R̄

′

dl,k −−−−→
M→∞

0 where

R̄
′

dl,k =
N
∑

i=1

log2

(

1 +Bβ2
kλ

2
k,i

ω
(0)
k,i l

(0)
k,iυk,i

σ2 (βkλk,iγ + σ2)

)

, (20)

with υk,i =
λk,il

(0)
k,i

tr(ΛkL
(0)
k

)
∈ [0, 1]. γ = 0 if 0 ≤ α < 1 and

γ =
∑K

l=1

∑N
i=1 ω

(0)
l,i υl,i if α = 1.

Proof: The result can be obtained by plugging the reduced
power into Theorem 4 and compute its limit asM → ∞.

Notice thatR̄
′

ul,k and R̄
′

dl,k are fixed non-zero values inde-
pendent ofM . Consequently, when the number of BS antennas
is large enough, we can reduce the multiplication of the pilot
power and the payload power as1

M
and achieve a non-zero

asymptotic fixed SE. Whenα = 0.5 andN = 1, our results
reduce to the1/

√
M scaling law for the pilot/payload powers

proposed by [2].
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V. SIMULATION RESULTS

We consider a cell with a radius of500 m. The user
locations are uniformly distributed at distances to the BS of
at least70 meters. Statistical channel inversion power control
is applied in the uplink, equal power allocation is used in the
downlink, and the power is divided equally between theN
streams of each user; i.e.,βlll,i=βlpl,i=

ρ
Nσ2 andωl,i=Pd,

whereβl =
1
M
tr(Rr,l), with ρ/σ2 being set to0 dB. Pd is set

to a value such that the cell-edge SNR (without shadowing)
is −3 dB. The exponential correlation model from [16] is
used forRt,k andRr,k. The correlation coefficients between
adjacent antennas at the BS and at the users areare

jθr,k

and ate
jθt,k , respectively, withar = at = 0.4, andθr,k, θt,k

uniformly distributed in[0, 2π). The coherence block length
is S = 200, which supports high user mobility.

The uplink and downlink sum SE of the MMSE-SIC and
MMSE detectors are shown in Fig. 1. It shows that the two
detectors achieve almost the same SEs, which verifies the
conclusion that a linear detector can achieve most of the SE
improvements from equipping users with multiple antennas
in massive MIMO. Moreover, although the pilot overhead
increases,90% and 75% performance gains are achieved for
the uplink and the downlink, respectively, by increasingN
from 1 to 3 for M = 200. Fig. 1 also verifies the tightness of
the large-system approximations derived in Theorems 3 and 4.

Fig. 2 testifies the power scaling laws in Lemmas 1 and 2.
Results forα = 0.5 andα = 1 are shown. It is observed that,
even with a1/M reduction of the multiplication of pilot and
payload powers, a notable increase of SE can still be obtained
for an extremely wide range ofM before reaching the limit,
especially forM ∈ [50, 1000] which is of practical interest.

Recall that the channel estimation overheadNK equals
the number of data streams that are transmitted. For a fixed
number of data streamsNK, the system can scheduleNK
single-antenna users and send one stream to each user, or
schedule fewer multi-antenna users and send several streams to
each. The downlink performance of these different scheduling
approaches is compared in Fig. 3 forN ∈ {1, 3, 10}. The
power per stream isPd as in Fig. 1. Fig. 3 shows that for any
given NK, schedulingNK single-antenna users is always
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Fig. 3. Achievable sum SE as a function ofNK for M = 200.

(slightly) beneficial. The optimalNK is around100, which
requires 100 active users per coherence block ifN = 1. With
multi-antenna users, more realistic user numbers are sufficient
to reach the sweet spot ofNK ≈ 100. Therefore, additional
user antennas are beneficial to increase the spatial multiplexing
in lightly and medium loaded systems.

VI. CONCLUSIONS

We analyzed the achievable SE of single-cell massive
MIMO systems with multi-antenna users. With estimated CSI
from uplink pilots, lower bounds on the ergodic sum capacity
were derived for both the uplink and the downlink, which are
achievable by per-user MMSE-SIC detectors. Large-system SE
approximations were derived and shows that the MMSE-SIC
detector has an asymptotic performance similar to the linear
MMSE detector, indicating that linear detectors are sufficient
to handle multi-antenna users in massive MIMO. We general-
ized the power scaling laws for massive MIMO fromN = 1 to
arbitraryN . We showed that the SE increases withN , but for
a fixed value ofNK the highest SE is achieved by having
NK single-antenna users. Hence, additional user antennas
are mainly beneficial to increase the spatial multiplexing in
systems with few users.

APPENDIX A

Theorem 5 ( [17]): Let D ∈ CM×M and S ∈ CM×M be
Hermitian nonnegative definite and letH ∈ CM×B be random
with independent columnshb ∼ CN

(

0, 1
M
Rb

)

. Assume that
D and Rb (b = 1, ..., B), have uniformly bounded spectral
norms (with respect toM ). Then, for anyρ > 0,

1

M
tr

(

D

(

HH
H + S+ ρIM

)

−1
)

−
1

M
tr (DT (ρ))

a.s.
−−−−→
M→∞

0,

whereT(ρ) = ( 1
M

∑B
b=1

Rb

1+δb(ρ)
+ S + ρIM )−1, and δb is

defined asδb (ρ) = limt→∞ δ
(t)
b (ρ), b = 1, ..., B where

δ
(t)
b (ρ) =

1

M
tr



Rb

(

1

M

B
∑

j=1

Rj

1 + δ
(t−1)
j (ρ)

+ S+ ρIN

)−1




for t = 1, 2, . . . , with initial valuesδ(0)b = 1/ρ for all b.



Theorem 6 ( [17]): Let Θ ∈ C
M×M be Hermitian nonneg-

ative definite with uniformly bounded spectral norm (with
respect toM ). Under the same conditions as in Theorem 5,

1

M
tr
(

DA
−1

ΘA
−1
)

−
1

M
tr
(

DT
′ (ρ)

) a.s.
−−−−→
M→∞

0 (21)

whereA = HHH + S+ ρIM andT′(ρ) ∈ CM×M is

T
′ (ρ) = T (ρ)ΘT (ρ) +T (ρ)

1

M

B
∑

b=1

Rbδ
′

b (ρ)

(1 + δb (ρ))
2T (ρ) . (22)

T(ρ) and δb(ρ) are defined in Theorem 5, andδ′(ρ) =
[δ′1(ρ), ..., δ

′
Bt(ρ)]

T is δ′(ρ) = (IB − J(ρ))−1v(ρ) where

[J (ρ)]
bl
=

1
M
tr (RbT (ρ)RlT (ρ))

M (1 + δl (ρ))
2 , 1 ≤ b, l ≤ B (23)

[v (ρ)]
b
=

1

M
tr (RbT (ρ)ΘT (ρ)) , 1 ≤ b ≤ B. (24)

APPENDIX B
PROOF OFTHEOREM 2

According to the definition of mutual information, we have

I(zk;xk) = h(xk)− h(xk|zk), (25)

whereh(·) denotes the differential entropy. Then choosing the
potentially suboptimalxk ∼ CN (0, IN ) yields

h (xk) = log2 |πeIN | . (26)

Meanwhile, letx̂k be the linear MMSE estimate ofxk given
zk andH̄k, then x̂k = H̄H

k Ξkzk, where

Ξk =

(

Λ

1
2
k E

{

H
H
k

K
∑

l=1

WlΩlW
H
l Hk

}

Λ

1
2
k + σ

2
IN

)−1

. (27)

Moreover, letx̃k = xk − x̂k denote the estimation error of
xk, thenh(xk|zk) is upper bounded by the entropy of a zero-
mean Gaussian vector that has the same covariance matrix as
x̃k, and therefore, can be expressed as

h (xk|zk) ≤ log2
∣

∣πeE
{

x̃kx̃
H
k

}∣

∣

= log2
∣

∣πe
(

IN − H̄H
k ΞkH̄k

)∣

∣ , (28)

where the expectationE{·} is with respect to the stochastic
channel realizations. Plugging (26) and (28) into (25), and
applying the matrix inversion lemma, we haveI(zk;xk) ≥
log2 |IN + H̄H

k Ξ̄kH̄k|, whereΞ̄k = (Ξ−1
k − H̄kH̄

H
k )−1. �
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