
HAL Id: hal-04127201
https://hal.science/hal-04127201

Submitted on 19 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A middleware architecture for mastering energy
consumption in internet of things applications

Pedro Victor Borges, Chantal Taconet, Sophie Chabridon, Denis Conan,
Everton Cavalcante

To cite this version:
Pedro Victor Borges, Chantal Taconet, Sophie Chabridon, Denis Conan, Everton Cavalcante. A
middleware architecture for mastering energy consumption in internet of things applications. 2023
International Conference on ICT for Sustainability (ICT4S), IEEE, Jun 2023, Rennes, France.
�10.1109/ICT4S58814.2023.00016�. �hal-04127201�

https://hal.science/hal-04127201
https://hal.archives-ouvertes.fr


A Middleware Architecture for Mastering Energy
Consumption in Internet of Things Applications

Pedro Victor Borges
Samovar, Télécom SudParis

Institut Polytechnique de Paris
France

pedro.borges@telecom-sudparis.eu

Chantal Taconet
Samovar, Télécom SudParis

Institut Polytechnique de Paris
France

chantal.taconet@telecom-sudparis.eu

Sophie Chabridon
Samovar, Télécom SudParis

Institut Polytechnique de Paris
France

sophie.chabridon@telecom-sudparis.eu

Denis Conan
Samovar, Télécom SudParis

Institut Polytechnique de Paris
France

denis.conan@telecom-sudparis.eu

Everton Cavalcante
Federal University of Rio Grande do Norte

Natal, Brazil
everton.cavalcante@ufrn.br

Abstract—The Internet of things (IoT) has been identified as
a significant contributor to increasing Information and Com-
munication Technology (ICT) energy consumption in the future.
Carefully designing interactions between client applications and
systems in the IoT may positively impact energy saving. For this
purpose, IoT middleware, the underlying software that manages
those interactions, should consider energy efficiency strategies
a first-class concern. Furthermore, adding an energy-awareness
capability to the middleware could significantly contribute to
deepening developers’ understanding of energy consumption by
applications and helping them minimize the energy demand. In
this paper, we propose energy-efficiency strategies and integrate
them into an IoT middleware. We also offer a model to calculate
the energy consumption of the interactions between an IoT
consumer application and an IoT system, which the middleware
could use to choose the best strategy to constrain the application’s
energy consumption to a given budget.

Index Terms—Internet of Things, middleware, energy con-
sumption, energy efficiency, energy-awareness

I. INTRODUCTION

In 2019, the energy consumption of Information and Com-
munication Technology (ICT) reached 5% of the worldwide
electricity consumption, with estimates to almost double by
2025 [1]. The relentless increase in ICT energy demand at a
time when energy efficiency is a priority concern for society
is a paradox.

The world is experiencing a massive surge of things con-
nected to the Internet known as the Internet of Things (IoT).
By the end of 2025, estimates indicate the world will comprise
nearly 100 billion IoT devices [2], [3]. Furthermore, the
increase in the number of IoT systems requires dealing with
energy-awareness and energy efficiency in the IoT context as
first-class concerns [4]. In the IoT, energy efficiency has first

This work is a contribution to the Energy4Climate Interdisciplinary Center
(E4C) of the Institut Polytechnique de Paris and École des Ponts ParisTech,
supported by 3rd Programme d’Investissements d’Avenir [ANR-18-EUR-
0006-02]. It has been partially funded by the “Futur & Ruptures” program
from Institut Mines-Télécom, Fondation Mines-Télécom, and Institut Carnot.

been considered in the design of software deployed on IoT
devices [5]. However, reducing software energy consumption
in IoT may be broader than at the device level. IoT devices
generated around 67 zettabytes of data in 2020 [6], and IoT
applications consume part of such a volume of data. Therefore,
carefully designing interactions between consumer applica-
tions and IoT systems with an energy-efficiency concern is
also essential.

Designing and implementing IoT applications is complex
because it involves different challenges, such as adequately
identifying various stakeholder roles at the different phases
of application development, dealing with heterogeneity in IoT
systems, and handling a vast amount of data from disparate
devices [7]. Moreover, energy efficiency is a new requirement
that IoT system designers need to address. This aspect is
even more challenging because developers still lack knowledge
about software energy consumption [8].

Developers can alleviate the complexity of IoT applications
by relying on IoT middleware that abstracts the heterogeneity
of devices and protocols [9]. IoT specialized middleware
provides (i) abstractions for accessing volatile physical de-
vices and managing the data produced by these devices, (ii)
virtualization and aggregation functions of many devices into
IoT systems, and (iii) interoperability for managing software
entities [10]–[13]. To facilitate the communication and data
flow between IoT applications and devices, developers can also
use IoT platforms [14]. These platforms provide interfaces,
interaction patterns, communication protocols, and compu-
tational capabilities to support IoT application development.
They also include services that provide functionalities such as
device discovery, context management, and data analysis [15].
IoT client applications can take advantage of the capabilities
of IoT platforms and middleware to access IoT data.

Noureddine et al. [16] highlight that middleware for dis-
tributed applications could contribute to optimizing or reduc-
ing the energy consumption of hardware devices, software



services, and the platform itself. IoT middleware should hence
not consider energy efficiency solely as a non-functional
requirement at the application level. Instead, it must be at
the solution’s core because the middleware is expected to be
shared by many applications and to offer facilities to ease
application development. This capability is even more rele-
vant considering that application developers and users often
have limited knowledge of how much energy their software
consumes and which parts use the most energy [8].

IoT middleware should ensure that applications keep energy
consumption at only what is necessary for the expected
functionalities. For this purpose, the middleware should be
carefully designed with energy-efficient mechanisms, e.g., al-
gorithms, protocols, and interaction patterns. To go a step
further and provide energy consumption estimations and mea-
sures to the IoT applications and end-users, it is also essential
to consider energy-awareness, i.e., understanding the energy
consumption and how efficient each mechanism is [17]. For
this purpose, an energy-aware IoT middleware provides a
service that can be used by an IoT application to precisely
know the energy consumption of the interactions between the
application and the IoT system. This facility can contribute to
easing the task of decreasing energy consumption and limiting
the energy to a given budget.

The primary research question of this work is: What are
the strategies to be proposed by an IoT middleware to reduce
the energy consumption of IoT client applications? To address
this research question, we have defined and integrated energy
efficiency strategies in an IoT middleware and evaluated the
energy consumption of IoT applications with and without
those strategies. We also proposed a model to quantitatively
estimate the energy consumption of the interactions between
a client application and the IoT system. In this paper, we
demonstrate how our energy model can be used within the
IoT middleware to choose the appropriate strategies to not drift
away from the energy consumption of an IoT client application
from a given budget. The results of our computational experi-
ments revealed a decrease of up to 60% in energy consumption
by applying energy efficiency strategies at the middleware
level compared to not using them.

The remainder of this paper is structured as follows. Sec-
tion II analyzes energy strategies in existing IoT middleware.
Section III describes the software architecture of middleware
for IoT client applications. Section IV presents energy strate-
gies and their integration in an IoT middleware for client
applications. Section V shows the evaluation to compare
the middleware with and without the integration of energy-
efficiency strategies. Section VI gives the conclusion and
future steps of this work.

II. RELATED WORK

This section presents an analysis of related works concern-
ing IoT middleware and energy efficiency. We have studied
IoT middleware proposals and have identified the most rele-
vant energy efficiency strategies that would help reduce the
energy consumption of IoT applications.

Many strategies middleware uses for providing energy effi-
ciency concern network adaptation. Network adaptation refers
to introducing new protocols or modifying existing ones,
making network optimizations (e.g., choosing the network
technology), and reducing network usage at the middleware
level. For example, Al-Roubaiey et al. [18] modify the Data
Distribution Service (DDSTM) protocol [19] to improve energy
efficiency in a sensor network, choosing the nearest nodes to
interact with. Akkermans et al. [20], Padhy et al. [21], and
Sarkar et al. [22] propose each a protocol adaptation by using
new algorithms to select a subset of requested sensors while
keeping an acceptable accuracy or to predict sensor values.
Akkermans et al. [20] particularly explore the capabilities
of IPv6 multicast to replace client-server interactions with
publish-subscribe interactions, resulting in lower network and
energy consumption. Switching the communication protocol
does result in significant improvements. In this paper, we
propose several strategies related to network adaptation for
grouping requests into one message and changing the com-
munication protocols or modifying the interaction pattern.

The data filtering capability offered by some middleware al-
lows for pre-processing data to reduce the amount of transmit-
ted data or limit the size of the messages according to specific
criteria, such as network load, CPU usage, and energy usage.
Oliveira et al. [23], Li et al. [24], Podnar Zarko et al. [25],
Al-Madani and Shabra [26], and Ramachandran et al. [27]
use data filtering strategies to continuously remove unused
data to reduce the amount of data to be processed/transmitted,
thereby reducing the energy consumption of the system. For
example, Oliveira et al. [23] provide an energy-aware data
collection that can reduce the amount of data processed
and sent to the network while maintaining an accurate data
flow for applications. This strategy is particularly suitable for
applications that need high quality of service (QoS), such as
real-time applications. Our work allows data filtering based on
the frequency of updates by adapting the refresh time.

Our contributions rely on an energy model we propose to
compute the energy consumption due to interactions. This
mathematical model may set parameters such as the frequency
of updates and grouping of requests that enable the application
to respect an energy budget. It also provides interaction
energy-awareness at the application level that may be used
for end-user energy-awareness.

In the literature, we can observe four main targets of energy-
awareness: (i) end-user application, representing the device
used by the user to access an IoT application; (ii) connected
objects, such as sensors and actuators; (iii) server, referring to
middleware usually deployed in fogs or clouds; and (iv) sensor
network, related to techniques to reduce energy consumption
over the whole sensor network. TThe middleware presented by
Aazam et al. [28] and Pasricha [29] save energy at the server
level. For instance, the one described by Aazam et al. [28]
processes data at the cloud/fog level, and only the necessary
data are sent to the server. Other studies target the end-user
application side or the connected object side. For example,
Cecchinel et al. [30] propose a deep sleep of connected objects



to save device battery. Al-Roubaiey et al. [18], Cecchinel
et al. [30], Sarkar et al. [22], Li et al. [24], Al-Madani
et al. [26], and Huang et al. [31] propose to reduce the
energy consumption in the sensor network, e.g., by changing
communication among nodes in the same network.

The middleware in the IoT system is deployed in different
locations. Song et al. [32], Padhy et al. [21], Pasricha [29],
and Aazam et al. [33] propose deploying the middleware at
the end-user application side. On the other hand, Kalbarczyk
and Julien [34], Shekhar et al. [35], and Podnar Zarko et
al. [25] propose a middleware deployed in both the end-user
applications and the cloud. Jeon and Jung [36], Sarkar et
al. [22], Li et al. [24], Huang et al. [31], and Ramachandran et
al. [27] deploy the middleware in the connected objects. It is
also possible to notice that servers have been used to deploy
the middleware without being the energy-efficiency target in
the proposals.

Al-Roubaiey et al. [18], Cecchinel et al. [30], Al-Madani
et al. [26], and Ramachandran et al. [27] present middleware
on the cloud side. Aazam et al. [28], Akkermans et al. [20],
Oliveira et al. [23], and Banouar et al. [37] present middleware
deployment in a gateway, while Mukherjee et al. [38] deploy
their middleware in the gateway and the connected object.
The choice to deploy the middleware on the cloud, gateway, or
other parts of a system is highly influenced by the implemented
solution, and there is no rule to choosing the right place.
Furthermore, Kalbarczyk and Julien [34], Shekhar et al. [35],
and Podnar Zarko et al. [25] deploy their middleware in
multiple places so that the placement of the middleware is
related to how the middleware energy-awareness or energy
efficiency strategy works.

The strategies proposed in this paper target reducing energy
consumption on the end-user application side. The impact
would be to save energy on mainly mobile devices with
battery-constrained devices such as smartphones.

III. IOT MIDDLEWARE ARCHITECTURE

This section first describes the IoT systems’ distributed
architecture considered in this work. Next, we present the
software architecture of an IoT middleware for IoT consumer
applications.

Fig. 1 illustrates the distributed architecture of classical
IoT systems such as those considered in this work. An IoT
system consists of (i) IoT devices (sensors and actuators), (ii)
gateways, (iii) IoT platforms, and (iv) end-user applications.
This paper focuses on applications that consume sensor data
we call IoT consumer applications. In our experiments (see
Section V), we interact with FIWARE/Orion [39], a well-
known IoT platform.

IoT middleware, which handles the interactions between the
distributed components of the IoT system, is present in all the
distributed components of the IoT system. This work focuses
on the middleware supporting the interactions of applications
with IoT platforms. This middleware is deployed on the end-
user device. Our goal is to reduce the energy consumption of

IoT PlatformGet data
Sensor

Register sensors

Gateway

Sensor

Sensor

IoT
Consumer
Application

IoT Middleware

IoT Middleware

IoT
Consumer
Application

Fig. 1. IoT distributed architecture

IoT applications by integrating energy-efficient strategies and
energy-awareness mechanisms within the IoT middleware.

As Disdarevi et al. [40] discuss, the protocols commonly
used for the interactions between IoT consumer applications
and platforms are HTTP [41], which brings to play the
synchronous client/server interaction pattern, and MQTT [42],
which brings to play the asynchronous publish/subscribe inter-
action pattern. In the synchronous pattern, a client application
consumes IoT data by sending a request to the IoT platform,
which responds to the request. In the publish/subscribe pattern,
a consumer application registers to the IoT platform and asyn-
chronously receives publications when they are available [43].

Fig. 2 describes the components of IoTvar, a middleware
library deployed on IoT consumer applications that manage
all the interactions with IoT platforms [44], [45]. IoTvar relies
on declaring variables automatically mapped to sensors whose
values are transparently updated with sensor observations
through proxies on the client side. IoTvar components are
organized in layers. Some components are specific to IoT
platforms and should be adapted to the platform APIs and
data model.

All the IoT platforms share the two bottom layers. The
protocol layer defines components that interact with pro-
tocols commonly used between IoT consumer applications
and IoT platforms such as HTTP and MQTT. When needed,
developers can add other protocols. The interaction layer
provides two components that manage the interaction patterns,
i.e., request/reply and publish/subscribe, regardless of the IoT
platform.

The top layers contain components specific to IoT plat-
forms: the API layer and the unmarshaller layer act as a
glue that maps the API calls and data structures to the IoT
platforms. The discovery layer provides functionalities for
discovering devices and managing filtering mechanisms.

IV. ENERGY STRATEGIES FOR AN IOT MIDDLEWARE

Section IV-A describes the energy efficiency strategies we
propose at the middleware level for IoT consumer applications.
Next, Section IV-B introduces the concept of energy budget
at the middleware level and how it can be controlled using an
energy model. Finally, Section IV-C presents the architecture
of the IoTvar middleware with the necessary modifications to
support energy-efficient mechanisms and budget management.



IoT Application

IoT Middleware IoTvar

Interaction

Protocol HTTP MQTT ...

Pub/Sub
Handler

Synchronous
Handler

IoTvar API

IoTvar Platform Specific Level

Discovery

API Unmarshaller
Platform Specific...

Platform Specific Di...

Platform Specific...Platform Specific
API adapter

Platform...

Platform Specific Di...Platform Specific
Discovery

Platform...Platform specific
Unmarshaller

Fig. 2. A generic architecture for IoT middleware

A. Energy-efficient Strategies

IoT middleware is a relevant software level for improving
energy efficiency as it is where many applications may share
energy-efficient interaction practices. Although many strate-
gies have been proposed by IoT middleware (see Section II),
few of them are dedicated to IoT middleware for IoT con-
sumer applications. Therefore, we offer a set of strategies that
could be implemented by IoT middleware in providing energy
efficiency to IoT consumer applications: 1 communication
protocol choice, 2 message grouping, 3 refresh-time adap-
tation, and 4 interaction pattern switch.

We implemented two of those strategies in IoTvar, namely
strategies 2 and 3 . We have not implemented strategies 1
and 4 as they depend on the availability of protocols and
interaction patterns on the IoT platforms. The IoT platform did
not provide grouping sensors for the two interaction patterns
in our experiments. We present the results of a quantitative
evaluation of strategy 2 in Section V-B, while Canek et
al. [46] evaluated other strategies.

1) Communication protocol choice: IoT middleware for
consumer applications may abstract several protocols and
choose among the protocol proposed by the IoT platform
that provides the best energy efficiency. For example, an IoT
application that wants to communicate with an IoT platform
using the publish/subscribe pattern that both MQTT and HTTP
support could lead to the middleware automatically choosing
MQTT because it is known to be a more energy-efficient
protocol. Canek et al. [46] show that the gain over a Wi-Fi

HTTP Request

HTTP Request

HTTP Request

Grouped
HTTP Request

Refresh time 30s

IoT Platform

HTTP Request

HTTP Request

Observe sensor 1 HTTP Request

IoT Platform

Grouped
HTTP Request

Refresh time 10mn

Observe sensor 2

Observe sensor 3

Observe sensor 4

Observe sensor 5

Observe sensor 6

Observe sensor 1

Observe sensor 2

Observe sensor 3

Observe sensor 4

Observe sensor 5

Observe sensor 6

Fig. 3. Grouping sensor observations into one message

network is 20% of energy consumption.
2) Message grouping: Canek et al. [46] showed that HTTP

on a Wi-Fi network, for the same number of messages, using
different payloads, from 24 up to 3120 bytes, has a small
impact on the energy consumption of the application [46].
If the application requires multiple sensor observations, this
strategy enables the middleware to automatically combine the
different observations into one single message (see Fig. 3.
This has a positive impact because it reduces the number of
messages sent in a given time while increasing the payload
sent in each request.

Some IoT platforms, such as FIWARE/Orion, provide the
possibility to query (or subscribe to) a group of sensors.
Implementing this feature is both time-consuming and error-
prone for a developer. This is typically the middleware’s role in
bringing this technical feature into play. Furthermore, when a
host runs multiple IoT consumer applications, the middleware
is the right place to factor in and take advantage of this
grouping capability.

3) Refresh time adaptation: Updates to sensor observations
are made periodically by the middleware. In a publish/sub-
scribe interaction pattern, limiting updates to a given refresh
time requires a mechanism in the IoT platform to impose a
minimum delay between two notifications. In a request/re-
sponse mode, requests are sent from the middleware to the
IoT platform at the refresh time period. In either interaction
mode, the data refresh time must be defined. The lower the
refresh time is, the more energy the middleware consumes.
The middleware can manage this to consider a maximum
energy budget set by the user and then increase the refresh
time if necessary to reduce energy consumption. This trade-
off between data freshness and energy consumption can be
the basis for a more sophisticated adaptation algorithm. For
example, freshness can be adapted to the variability/stability



of sensor observations and the resolution required by the
application.

4) Interaction pattern switch: Depending on the required
refresh time and the frequency of the notifications, using
the publish/subscribe interaction pattern may be more or less
efficient than the request/reply one. The principle of the
interaction pattern switching strategy is to use the energy
consumption model to decide to change the interaction pattern
dynamically.

B. From Energy-efficiency Strategies to Energy Budget Man-
agement

We propose a model that quantitatively estimates the energy
consumption of IoTvar according to applied energy-efficient
strategies. At the middleware level, energy consumption comes
from the interactions necessary to update the sensors’ data
required by IoT consumer applications and the treatment of
data, e.g., marshaling/unmarshalling.

In this work, we formulate the estimation of energy con-
sumption E (in Joules) as depending mainly on (i) the refresh
time chosen by an application for each sensor and (ii) the
grouping factor, i.e., the number of sensors with similar refresh
time that may be grouped:

E =
nbG

∑
i=0

(CV ∗nbVGi
)+(Cnet ∗MnetS ∗MnetI)+Ccpu

RGi

with:
• nbG is the number of groups of sensors that are managed

by IoTvar (one group per similar refresh time);
• RGi is the refresh time of a group (in seconds);
• CV is a constant energy value for each sensor inside a group.

It represents the cost of the small processing that each sensor
observation adds within a group (e.g., for unmarshalling
purposes);

• nbVGi
is the number of sensors inside the group;

• Cnet is the energy value (a constant) consumed for making
a request for a group;

• MnetS is a modifier for the network calculation that depends
on the latency, package loss, and reachability of the IoT
platform;

• MnetI is a modifier that depends on the network interface
being used (cellular, WiFi, or Ethernet);

• Ccpu is a constant given for the CPU processing of one group
of sensors in IoTvar.
Thanks to this model, the middleware may communicate

energy consumption to the application through an API, thus
providing to the application, and finally to the end-user,
runtime energy-awareness. In addition, provided that the end-
user allows reducing the refresh time of some variables, the
strategies to be applied by the middleware could be adapted
when the energy consumption exceeds an energy budget
desired by the end user. For example, IoTvar could modify
the refresh time of some variables in the objective to reduce
energy consumption. This modification may also lead to a
better grouping factor.

IoT Application

IoT middleware IoTvar

Interaction pattern

Protocol HTTP MQTT ...

Pub/Sub...
Request/Reply

IoTvar API

IoTvar Platform Specific Level

Discovery

API Unmarshaller
Platform Specific...

Platform Specific Di...

Platform Specific...
Platform Specific API

Platform...

Platform Specific Di...
Platform Specific

Discovery

Platform...
Grouping

unmarshaller

Energy layer
IoTvar
Energy

component

Green
Synchronous

Handler

Green
PubSub
Handler

Pub/sub

Fig. 4. Energy components in the IoTvar architecture

C. IoTvar Architecture for Energy Efficiency Strategies

The architecture of IoTvar (see Fig. 4) is built on the generic
architecture presented in Section III to integrate the energy-
efficient strategies and to manage the energy budget of IoT
consumer applications. The architecture of IoTvar includes the
Energy layer with a component and changes the Grouping
unmarshaller, Green PubSub Handler, and Green Synchronous
Handler components.

The Grouping unmarshaller is specialized to unmarshal a
group of sensors, and the Pub/Sub and Synchronous Handlers
have been adapted to group several sensors in one notification
or request. The Energy layer contains the IoTvar Energy
component detailed in Fig. 5. This component receives input
from a configuration file (see Table I) defining a particular
energy budget. The IoTvar energy component is decomposed
into three sub-components. The Energy-Awareness component
monitors the network status (package loss, latency, availabil-
ity of the IoT platform, and type of network, e.g., Wi-Fi,
Ethernet, or 3G/4G/5G. It also interprets the energy budget
requirements and estimates energy consumption using the
energy consumption formula E. The Decision component
chooses the strategies to apply. Finally, the Energy-Efficiency
component applies the decision in terms of communication
protocol choice, message grouping, refresh time control, and
interaction pattern switching.



TABLE I
IOTVAR CONFIGURATION FILE PROPERTIES

Property Behavior Default value
Status refresh period (in
seconds)

Period for recalculating the status of the middleware (network and sensor conditions) 10

Maximum refresh time
increase (in seconds)

This configuration imposes a limit to how much IoTvar will increase the refresh time. When
IoTvar increases the refresh time the QoS will be lowered, thus this configuration will limit
this degradation of QoS up to a maximum (by refresh period).

10

Use energy model This property indicates if IoTvar should use the energy model to calculate the energy being
consumed considering the sensors declared in the code. If it is false, IoTvar does not report
the estimation of the energy being used.

false

Use energy budget If the energy model is true and this property is true, then IoTvar will start to consider the
budget provided in the property Energy Budget.

false

Energy budget
(in Joules for five minutes)

This value is used by IoTvar to lower the amount of energy calculated until reaching the desired
budget. This value is given in Joules and is the budget for five minutes.

400

Energy Awareness

Network Monitoring

Energy Budget Decision

Energy Efficiency

Message Grouping

Refresh time Control

Energy Model

Communication
Protocol Choice

Interaction pattern
Switching

Fig. 5. IoTvar energy component

V. EVALUATION

We implemented the proposed architecture for interactions
with the FIWARE/Orion IoT platform. It handles the message
grouping and refresh time adaptation strategies and energy
budget management for the request/reply interaction pattern.

This section reports a quantitative evaluation of the IoT-
var middleware using the message grouping strategy. This
evaluation comprised a performance assessment that considers
the same application (i) written without IoTvar, i.e., directly
accessing the IoT platform, (ii) written with IoTvar without
energy-efficiency strategies, and (iii) written with IoTvar using
the energy strategies. The evaluation aimed at measuring the
impacts of the strategies in terms of CPU usage and energy
consumption.

The IoT consumer application used in the performance
evaluation receives and displays the data that is returned from a
temperature sensor around the Eiffel Tower in the console. The
tests done with this application varied the number of sensors
observed by the application from 25 to 200 in a step of 25
sensors (25, 50, . . . , 200), with a refreshing time of one second
for each sensor, and having a small local history of the ten
latest values for each sensor. The payload of the data of one
sensor is around 117 bytes, while it is around 10,282 bytes
for 200 sensors.

We collected the performance measurements (CPU usage

and energy consumption) by wrapping the energy-efficient
synchronous handler method. This is implemented using As-
pectJ [47], which allows collecting performance measures
around the most critical methods of the IoTvar structure. This
enabled us to measure the CPU and memory usage only
for the data processing and communication methods without
modifying the middleware code.

Tools such as RAPL [48] currently can perform energy
measurements but are still limited to CPU and RAM energy
consumption. So, no energy measurement software includes
the consumption of the network interface in the energy
consumption measurements. Consequently, we used a Yocto
wattmeter [49] to measure the energy consumption of the
whole computer. The wattmeter counter is reset at the begin-
ning of the tests, and the total energy consumed is retrieved
at the end and saved in a file along with CPU consumption.
Because the wattmeter measures the consumption of the whole
computer, we had another test to get the energy consumption
of the computer running without the application (idle con-
sumption) to isolate its consumption.

For quantitative analysis purposes, we performed hypothesis
testing. Our null hypotheses is that there are no statistically
significant differences regarding CPU and energy consumption
when using IoTvar with energy efficiency strategies and not
using them. To decide the test to use, we first performed
the Shapiro-Wilk test [50] to verify if a sample follows a
normal distribution. For the significance level α = 0.05, we
noticed that the values did not follow a normal distribution,
thus leading us to perform a non-parametric hypothesis test.

We used the Mann Whitney’s U-test to check for a sta-
tistically significant difference between the analyzed samples
(IoTvar with and without energy-efficiency strategies). Fol-
lowing these results, we ran an effect-size statistical analysis
over the testing data using the A-index by Delaney and
Vargha interpreted with Hess and Kromrey magnitude levels
(negligible, small, medium, and large).

A. Setup

Fig. 6 illustrates the setup of the tests. A server computer
with i7-4770K CPU at 3,9GHz, 16 GB of volatile memory, and



Client Notebook

Consumer
App

YoctoMeter
Service

Green

IoTvar

YoctoWattmeter

Server

IoT platforms

Sensor Simulator

Router
FIWARE MuDEBSOM2M

API

<AspectJ>

IoTvar

Direct

without

mid

Fig. 6. Experimental setup

Ubuntu 16.04 executed the IoT platform and data producers,
which simulates IoT sensors that send data through the plat-
form. The computer running the client application consuming
IoT data had an i7-8665U CPU at 1.90GHz, 32GB of volatile
memory, and Debian 9. Furthermore, we plugged the client
computer into a YoctoPuce YoctoWatt wattmeter to collect
energy-related measures. The client application communicated
with the server through a locally isolated Wi-Fi network.

Data for each measure (CPU and energy) are collected for
30 executions of five-minute testing. The first minute of the
test is the warm-up phase, which was not recorded: it ensures
that the class loading is complete in the Java Virtual Machine
(JVM) to avoid interference in the results [51]. The last four
minutes constituted the effective run phase. When running the
tests, the IoT application created the number of sensors for
the specific test and called the FIWARE/Orion platform to get
the sensor observations.

B. Results
Fig. 7 and Fig. 8 show the CPU usage and energy consump-

tion of IoTvar upon varying the number of sensors. Table II
provides the numbers. For 25 sensors, the message grouping
strategy lowers CPU usage of IoTvar from 35 seconds to less
than one second and energy consumption from 1,150 to 1,000
Joules. For 200 sensors, the increase in CPU usage is more
than 99%, and the increase in energy consumption is more than
45%. As a result, using IoTvar (compared to direct access to
the IoT platform) has a cost, but message grouping reduces
CPU usage and energy consumption on the application.

Concerning the statistical analysis of the data, we obtained
that our null hypotheses were rejected for all the scenarios (p-
value < α = 0.05), thus leading us to conclude that not using
the energy efficiency strategies for IoT middleware inside
IoTvar brings an impact on these resources. The p-value using
the A-index test which interprets the values prove a large effect
for all the scenarios. Therefore, the impact of not using energy
efficiency strategies causes a large impact on the resource
consumption of the IoT application using an IoT middleware
such as IoTvar.

C. IoTvar Energy Model Calibration
Section IV-B presented the energy model that IoTvar imple-

ments. Concerning energy model calibration, we initiated an

Fig. 7. IoTvar CPU usage using energy efficiency strategies

Fig. 8. IoTvar energy consumption using energy efficiency strategies

exploratory study. We have performed a campaign of measures
for a given end-user device to calibrate the constants. The
calibration shall be done for each new type of computer.

The model constants and modifiers were obtained by cali-
bration: several experiments until the model could estimate the
energy consumption without deviating from the values given
by the power meter tests. Fig. 9 shows the results of the tests



TABLE II
INCREASE OF JOULES USING IOTVAR WITHOUT ENERGY EFFICIENCY STRATEGIES

Metric
Number of IoTvar sensors

25 50 75 100 125 150 175 200
CPU usage 97.36% 98.68% 99.04% 99.23% 99.36% 99.46% 99.5% 99.57%

Energy consumption 11.44% 21.62% 24.82% 29.73% 37.17% 40.53% 42.29% 45.87%

Fig. 9. IoTvar energy consumption using the energy model

TABLE III
VALUES OF CONSTANTS AND MODIFIERS OF THE ENERGY MODEL

Variable CV Cnet MnetS MnetI Ccpu

Value 0.02 90.0 1.0 10.0 87.0

with the Wattmeter along with an estimation of the energy
consumption for five minutes.

D. Discussion

The results of the tests have shown that the message
grouping strategy significantly lowers the amount of energy
consumed by IoTvar, especially when the refresh time of
sensors enables a good level of grouping. Moreover, the
implemented energy-awareness enables IoTvar to have further
knowledge of the energy context of the application, e.g.,
network status, sensor energy consumption, etc. This energy
context information is used to provide enough information to
build an energy model to estimate the energy consumption of
the middleware.

Nonetheless, there are still some limitations to the results.
First, we run the tests using only the Wi-Fi interface, leaving
a gap to other types of communication, such as 3G and 4G,
which are popular in IoT consumer applications. Second, the
performance evaluation is specific to a computer hardware and
software architecture. Third, the model calibration is specific
to a computer and has to be calibrated for each new computer
IoTvar is deployed on. Fourth, the performance evaluation
was made to be comparable with the tests of the IoTvar

middleware without the energy efficiency strategies, which
limits the statistical analysis to a smaller number of sensors
than the IoTvar grouping strategy can support.

IoTvar supports multiple platforms, each with its own set of
functionalities and specific APIs. Implementing the message
grouping strategy was made possible by the availability of this
capability in the FIWARE/Orion platform. Such implementa-
tion in other platforms should be the first step towards energy
efficiency in IoT consumer applications.

VI. CONLUSIONS

The world is still experiencing a greater need for energy
production caused by the evolution of technology and the
expansion of many technological areas, such as the digital
sector. In particular, energy usage in the IoT domain presents
a significant challenge as the number of devices has increased
over the years. Consequently, many IoT applications are being
developed and must interact with an IoT system’s heteroge-
neous components. Those IoT applications need to be energy-
efficient.

Designing IoT applications that include energy efficiency
strategies is complex as such applications must deal with
heterogeneity and massive data. This paper showed how
IoT middleware could help to reduce this complexity while
introducing energy efficiency and energy-awareness into IoT
applications. We have presented (i) the architecture of the
IoTvar middleware, which integrates energy efficiency strate-
gies and energy-awareness mechanisms, and (ii) how we
have implemented the message grouping and refresh time
adaptation strategies and the management of an energy budget.
We evaluated the message grouping strategy through an ex-
periment using the IoTvar middleware, and the results indicate
that this strategy does lower energy consumption significantly.
The results reached a maximum percentage change of around
60% less energy consumption when using the strategy. We also
proposed other strategies for switching the interaction pattern
or choosing the communication protocol. We need to evaluate
them to confirm their efficiency, but we know they are expected
to further increase energy efficiency in IoT middleware.

Our evaluation of IoTvar considered only the IoT consumer
application device. Future work intends to support distributed
applications and enable IoT middleware-level cooperation to
provide energy-awareness in a multi-component system. This
can be done by implementing communication between the
different IoT applications through the IoT middleware run-
ning inside the application or an external middleware that
will coordinate the communication and exchange of energy
information. This information is related to network conditions,



CPU usage, energy budget, and other resources relevant to
the energy efficiency of the IoT middleware. Furthermore,
evaluating and showing the impacts of such energy features
is imperative.

The awareness provided by the IoTvar middleware is auto-
matically enabled with no input from the user. Shah et al. [52]
explain that “the maintenance of the balance between the com-
fort index and power consumption is also a significant issue.”
As awareness influences energy efficiency, which impacts the
quality of the applications (e.g., freshness), it should not be
transparent. The users should at least be in the loop and be
informed of what is happening in the application. The energy-
awareness of the user may have a positive impact by reducing
energy consumption in the future, thus contributing to IoT
sustainability.

REFERENCES

[1] Shift project, “Environmental impact of digital: 5-year trends and 5G
governance,” Shift project, Tech. Rep., March 2021.

[2] T. M. Attia, “Challenges and opportunities in the future applications
of iot technology,” in 2nd Europe - Middle East - North African
Regional Conference of the International Telecommunications Society
(ITS). Calgary: International Telecommunications Society (ITS), 2019.

[3] T. Okrasinski, T. Fleming, A. Moore, G. Gines, S. Kelly, S. Moore,
and M. Shackleton, “Smarter 2030,” Global eSustainability Initiative
(GeSI), Brussels, Belgium, Tech. Rep., 2015. [Online]. Available:
https://smarter2030.gesi.org/

[4] F. K. Shaikh, S. Zeadally, and E. Exposito, “Enabling technologies for
green internet of things,” IEEE Systems Journal, vol. 11, no. 2, pp.
983–994, 2017.

[5] D.-J. Munoz, J. A. Montenegro, M. Pinto, and L. Fuentes, “Energy-
aware environments for the development of green applications for
cyber–physical systems,” Future Generation Computer Systems, vol. 91,
pp. 536 – 554, 2019. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0167739X18307295

[6] S. P. directed by Hugues Ferreboeuf, “Lean ict – towards
digital sobriety,” https://theshiftproject.org/wp-content/uploads/2019/03/
Lean-ICT-Report The-Shift-Project 2019.pdf, 2019.

[7] P. Patel and D. Cassou, “Enabling high-level application development
for the internet of things,” Journal of Systems and Software, vol. 103,
pp. 62–84, 2015.

[8] C. Pang, A. Hindle, B. Adams, and A. E. Hassan, “What do pro-
grammers know about software energy consumption?” IEEE Software,
vol. 33, no. 03, pp. 83–89, may 2016.

[9] M. A. Chaqfeh and N. Mohamed, “Challenges in middleware solutions
for the internet of things,” in 2012 International Conference on Collab-
oration Technologies and Systems (CTS), 2012, pp. 21–26.

[10] G. S. Blair, D. C. Schmidt, and C. Taconet, “Middleware for internet
distribution in the context of cloud computing and the internet of things
- editorial introduction,” Ann. des Télécommunications, vol. 71, no. 3-4,
pp. 87–92, 2016.

[11] A. H. Ngu, M. Gutierrez, V. Metsis, S. Nepal, and Q. Z. Sheng,
“Iot middleware: A survey on issues and enabling technologies,” IEEE
Internet of Things Journal, vol. 4, no. 1, pp. 1–20, 2017.

[12] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Clarke, “Middle-
ware for internet of things: A survey,” IEEE Internet of Things Journal,
vol. 3, no. 1, pp. 70–95, 2016.

[13] G. Bouloukakis, N. Georgantas, P. Ntumba, and V. Issarny, “Automated
synthesis of mediators for middleware-layer protocol interoperability in
the iot,” Future Gener. Comput. Syst., vol. 101, pp. 1271–1294, 2019.
[Online]. Available: https://doi.org/10.1016/j.future.2019.05.064

[14] J. Mineraud, O. Mazhelis, X. Su, and S. Tarkoma, “A gap analysis of
Internet-of-Things platforms,” Computer Communications, vol. 89-90,
pp. 5–16, Sep. 2016.

[15] P. P. Ray, “A survey of iot cloud platforms,” Future Computing and
Informatics Journal, vol. 1, no. 1, pp. 35 – 46, 2016.

[16] A. Noureddine, R. Rouvoy, and L. Seinturier, “A review of energy
measurement approaches,” SIGOPS Oper. Syst. Rev., vol. 47, no. 3, p.
42–49, nov 2013. [Online]. Available: https://doi.org/10.1145/2553070.
2553077

[17] M. G. Hassan, R. Hirst, C. Siemieniuch, and A. Zobaa, “The impact
of energy awareness on energy efficiency,” International Journal of
Sustainable Engineering, vol. 2, no. 4, pp. 284–297, 2009. [Online].
Available: https://doi.org/10.1080/19397030903121968

[18] A. Al-Roubaiey, T. Sheltami, A. Mahmoud, and A. Yasar, “Eatdds:
Energy-aware middleware for wireless sensor and actuator networks,”
Future Generation Computer Systems, vol. 96, pp. 196–206, 2019.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0167739X18331777

[19] G. Pardo-Castellote, “Omg data-distribution service: Architectural
overview,” in 23rd International Conference on Distributed Computing
Systems Workshops, 2003. Proceedings., 2003, pp. 200–206.

[20] S. Akkermans, R. Bachiller, N. Matthys, W. Joosen, D. Hughes, and
M. Vučinić, “Towards efficient publish-subscribe middleware in the
iot with ipv6 multicast,” in 2016 IEEE International Conference on
Communications (ICC), 2016, pp. 1–6.

[21] S. Padhy, H.-Y. Chang, T.-F. Hou, J. Chou, C.-T. King, and C.-H.
Hsu, “A middleware solution for optimal sensor management of iot
applications on lte devices,” in Quality, Reliability, Security and Ro-
bustness in Heterogeneous Networks, ser. Lecture Notes of the Institute
for Computer Sciences, Social Informatics and Telecommunications
Engineering, J.-H. Lee and S. Pack, Eds. Switzerland: Springer
International Publishing, 2017, vol. 199, pp. 283–292.

[22] C. Sarkar, V. S. Rao, R. Venkatesha Prasad, S. N. Das, S. Misra, and
A. Vasilakos, “Vsf: An energy-efficient sensing framework using virtual
sensors,” IEEE Sensors Journal, vol. 16, no. 12, pp. 5046–5059, 2016.

[23] E. A. de Oliveira, F. Delicato, and M. Mattoso, “An energy-aware
data cleaning workflow for real-time stream processing in the internet
of things,” in Anais do IV Workshop de Computação Urbana. Porto
Alegre, RS, Brasil: SBC, 2020, pp. 71–83. [Online]. Available:
https://sol.sbc.org.br/index.php/courb/article/view/12354

[24] W. Li, F. C. Delicato, P. F. Pires, Y. C. Lee, A. Y. Zomaya, C. Miceli, and
L. Pirmez, “Efficient allocation of resources in multiple heterogeneous
wireless sensor networks,” Journal of Parallel and Distributed
Computing, vol. 74, no. 1, pp. 1775–1788, 2014. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0743731513002104

[25] I. Podnar Zarko, A. Antonic, and K. Pripužic, “Publish/subscribe
middleware for energy-efficient mobile crowdsensing,” in Proceedings
of the 2013 ACM Conference on Pervasive and Ubiquitous Computing
Adjunct Publication, ser. UbiComp ’13 Adjunct. New York, NY, USA:
Association for Computing Machinery, 2013, p. 1099–1110. [Online].
Available: https://doi.org/10.1145/2494091.2499577

[26] B. M. Al-Madani and E. Q. Shahra, “An energy aware plateform
for iot indoor tracking based on rtps,” Procedia Computer Science,
vol. 130, pp. 188–195, 2018, the 9th International Conference
on Ambient Systems, Networks and Technologies (ANT 2018) /
The 8th International Conference on Sustainable Energy Information
Technology (SEIT-2018) / Affiliated Workshops. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S187705091830379X

[27] G. Ramachandran, J. Proença, W. Daniels, M. Pickavet, D. St,
D. Staessens, C. Huygens, W. Joosen, and D. Hughes, “Hitch hiker 2.0: a
binding model with flexible data aggregation for the internet-of-things,”
Journal of Internet Services and Applications, vol. 7, 04 2016.

[28] M. Aazam, S. U. Islam, S. T. Lone, and A. Abbas, “Cloud of things
(cot): Cloud-fog-iot task offloading for sustainable internet of things,”
IEEE Transactions on Sustainable Computing, pp. 1–1, 2020.

[29] S. Pasricha, “Overcoming energy and reliability challenges for iot
and mobile devices with data analytics,” in 2018 31st International
Conference on VLSI Design and 2018 17th International Conference
on Embedded Systems (VLSID), 2018, pp. 238–243.

[30] C. Cecchinel, F. Fouquet, S. Mosser, and P. Collet, “Leveraging
live machine learning and deep sleep to support a self-adaptive
efficient configuration of battery powered sensors,” Future Generation
Computer Systems, vol. 92, pp. 225–240, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167739X18305740

[31] Z. Huang, K.-J. Lin, and L. Han, “An energy sentient methodology
for sensor mapping and selection in iot systems,” in 2014 IEEE 23rd
International Symposium on Industrial Electronics (ISIE), 2014, pp.
1436–1441.

[32] Z. Song, M. Le, Y.-W. Kwon, and E. Tilevich, “Extemporaneous micro-
mobile service execution without code sharing,” in 2017 IEEE 37th
International Conference on Distributed Computing Systems Workshops
(ICDCSW), 2017, pp. 181–186.

https://smarter2030.gesi.org/
http://www.sciencedirect.com/science/article/pii/S0167739X18307295
http://www.sciencedirect.com/science/article/pii/S0167739X18307295
https://theshiftproject.org/wp-content/uploads/2019/03/Lean-ICT-Report_The-Shift-Project_2019.pdf
https://theshiftproject.org/wp-content/uploads/2019/03/Lean-ICT-Report_The-Shift-Project_2019.pdf
https://doi.org/10.1016/j.future.2019.05.064
https://doi.org/10.1145/2553070.2553077
https://doi.org/10.1145/2553070.2553077
https://doi.org/10.1080/19397030903121968
https://www.sciencedirect.com/science/article/pii/S0167739X18331777
https://www.sciencedirect.com/science/article/pii/S0167739X18331777
https://sol.sbc.org.br/index.php/courb/article/view/12354
https://www.sciencedirect.com/science/article/pii/S0743731513002104
https://doi.org/10.1145/2494091.2499577
https://www.sciencedirect.com/science/article/pii/S187705091830379X
https://www.sciencedirect.com/science/article/pii/S0167739X18305740


[33] M. Aazam, S. Zeadally, and E. F. Flushing, “Task offloading
in edge computing for machine learning-based smart healthcare,”
Computer Networks, vol. 191, p. 108019, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1389128621001298

[34] T. Kalbarczyk and C. Julien, “Omni: An application framework for
seamless device-to-device interaction in the wild,” in Proceedings of
the 19th International Middleware Conference, ser. Middleware ’18.
New York, NY, USA: Association for Computing Machinery, 2018, p.
161–173. [Online]. Available: https://doi.org/10.1145/3274808.3274821

[35] S. Shekhar, A. Chhokra, H. Sun, A. Gokhale, A. Dubey, and X. Kout-
soukos, “Urmila: A performance and mobility-aware fog/edge resource
management middleware,” in 2019 IEEE 22nd International Symposium
on Real-Time Distributed Computing (ISORC), 2019, pp. 118–125.

[36] S. Jeon and I. Jung, “Mint: Middleware for cooperative interaction
of things,” Sensors, vol. 17, no. 6, 2017. [Online]. Available:
https://www.mdpi.com/1424-8220/17/6/1452

[37] Y. Banouar, T. Monteil, and C. Chassot, “Analytical model for adaptive
qos management at the middleware level in iot,” in 2017 IEEE Sympo-
sium on Computers and Communications (ISCC), 2017, pp. 1201–1208.

[38] A. Mukherjee, N. Dey, and D. De, “Edgedrone: Qos aware mqtt
middleware for mobile edge computing in opportunistic internet of
drone things,” Computer Communications, vol. 152, pp. 93 – 108,
2020. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0140366419315750

[39] FIWARE, “What is fiware?” https://www.fiware.org/.
[40] J. Dizdarević, F. Carpio, A. Jukan, and X. Masip-Bruin, “A survey of

communication protocols for internet of things and related challenges
of fog and cloud computing integration,” vol. 51, no. 6. New York,
NY, USA: Association for Computing Machinery, Jan. 2019. [Online].
Available: https://doi.org/10.1145/3292674

[41] H. Nielsen, J. Mogul, L. M. Masinter, R. T. Fielding, J. Gettys,
P. J. Leach, and T. Berners-Lee, “Hypertext Transfer Protocol
– HTTP/1.1,” RFC 2616, Jun. 1999. [Online]. Available: https:
//rfc-editor.org/rfc/rfc2616.txt

[42] OASIS, “MQTT version 3.1.1 plus errata 01,” https://docs.oasis-open.
org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.pdf, 12 2015, accessed on 21-05-2021.

[43] A. Reeve, “Chapter 12 - data integration patterns,” in Managing Data in
Motion, ser. MK Series on Business Intelligence, A. Reeve, Ed. Boston:
Morgan Kaufmann, 2013, pp. 79–85.

[44] P. V. Borges, C. Taconet, S. Chabridon, D. Conan, E. Cavalcante, and
T. Batista, “Taming internet of things application development with the
iotvar middleware,” ACM Trans. Internet Technol., feb 2023. [Online].
Available: https://doi.org/10.1145/3586010

[45] “IoTvar git repository,” https://gitlabev.imtbs-tsp.eu/m4iot/iotvar/, ac-
cessed: 2023-04-17.

[46] R. Canek, P. Borges, and C. Taconet, “Analysis of the Impact of
Interaction Patterns and IoT Protocols on Energy Consumption of IoT
Consumer Applications,” in DAIS 2022: 17th International Conference
on Distributed Applications and Interoperable Systems, ser. Lecture
Notes in Computer Science. Lucca, Italy: Springer, Jun. 2022, pp.
1–17. [Online]. Available: https://hal.archives-ouvertes.fr/hal-03710735

[47] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold, “An overview of aspectj,” in Proceedings of the 15th European
Conference on Object-Oriented Programming, ser. ECOOP ’01. Berlin,
Heidelberg: Springer-Verlag, 2001, pp. 327–353.

[48] E. Rotem, A. Naveh, A. Ananthakrishnan, E. Weissmann, and D. Ra-
jwan, “Power-management architecture of the intel microarchitecture
code-named sandy bridge,” IEEE Micro, vol. 32, no. 2, pp. 20–27, 2012.

[49] YoctoPuce, “Who are we?” https://www.yoctopuce.com/EN/aboutus.
php, accessed on 17-10-2021.

[50] S. S. Shapiro and M. Wilk, “An analysis of variance test for normality,”
Biometrika, vol. 52, no. 3-4, pp. 591–611, 1965.

[51] A. Georges, D. Buytaert, and L. Eeckhout, “Statistically rigorous java
performance evaluation,” SIGPLAN Not., vol. 42, no. 10, p. 57–76, oct
2007. [Online]. Available: https://doi.org/10.1145/1297105.1297033

[52] A. Shah, H. Nasir, M. Fayaz, A. Lajis, and A. Shah, “A review on
energy consumption optimization techniques in iot based smart building
environments,” Information, vol. 10, no. 3, p. 108, Mar 2019. [Online].
Available: http://dx.doi.org/10.3390/info10030108

https://www.sciencedirect.com/science/article/pii/S1389128621001298
https://doi.org/10.1145/3274808.3274821
https://www.mdpi.com/1424-8220/17/6/1452
http://www.sciencedirect.com/science/article/pii/S0140366419315750
http://www.sciencedirect.com/science/article/pii/S0140366419315750
https://www.fiware.org/
https://doi.org/10.1145/3292674
https://rfc-editor.org/rfc/rfc2616.txt
https://rfc-editor.org/rfc/rfc2616.txt
https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.pdf
https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.pdf
https://doi.org/10.1145/3586010
https://gitlabev.imtbs-tsp.eu/m4iot/iotvar/
https://hal.archives-ouvertes.fr/hal-03710735
https://www.yoctopuce.com/EN/aboutus.php
https://www.yoctopuce.com/EN/aboutus.php
https://doi.org/10.1145/1297105.1297033
http://dx.doi.org/10.3390/info10030108

	Introduction
	Related Work
	IoT Middleware Architecture
	Energy strategies for an IoT middleware
	Energy-efficient Strategies
	Communication protocol choice
	Message grouping
	Refresh time adaptation
	Interaction pattern switch

	From Energy-efficiency Strategies to Energy Budget Management
	IoTvar Architecture for Energy Efficiency Strategies

	Evaluation
	Setup
	Results
	IoTvar Energy Model Calibration
	Discussion

	Conlusions
	References

