
A Fast Method for Steady-State
Memristor Crossbar Array Circuit
Simulation
Rui Xie1, Mingyang Song1, Junzhuo Zhou1, Jie Mei1, Quan
Chen∗1 (Corresponding Author)
1School of Microelectronics, Southern University of Science
and Technology

Abstract—In this work we propose an effective preconditioning
technique to accelerate the steady-state simulation of large-scale
memristor crossbar arrays (MCAs). We exploit the structural
regularity of MCAs to develop a specially-crafted preconditioner
that can be efficiently evaluated utilizing tensor products and block
matrix inversion. Numerical experiments demonstrate the efficacy of
the proposed technique compared to mainstream preconditioners.

Index Terms—Memristor, Neural Network, Crossbar Circuits, Pre-
conditioner, GMRES

I. INTRODUCTION

MCAs (Memristor Crossbar Arrays) [1] has gained substantial
attention recent years because of its potential application in
high-performance AI hardware and neuromorphic computing [2],
calling for efficient circuit simulation tools. However, efficient
simulation of MCAs has become increasingly challenging. The
expected size of MCA is growing rapidly to accommodate
the millions of weights involved in state-of-the-art neural net-
works [3]. Furthermore, a large amount of simulations are needed
for statistical characterization or if the training/inference proce-
dures are to be studied at circuit simulation level.

Existing steady-state simulation of MCA circuits is often done
by SPICE, in which a sparse linear system resulted from the
modified nodal analysis (MNA) must be solved in each Newton
iteration. The matrix size can be huge, e.g., a 1024× 1024 MCA
leads to a matrix size > 106, resulting in severe bottlenecks in
time and memory consumption if direct solvers are used. Iterative
solvers can improve the scalability, but existing general-purpose
preconditioners [4] are often not adequately efficient for large-
scale MCA circuits. In this work, we leverage the special topology
of MCAs to develop an efficient preconditioning technique to
accelerate the steady-state simulation of MCAs. Specifically, the
preconditioner has the following features:

1) It takes advantages of the topological regularity of MCAs to
generate special block structures;

2) Its inverse and application to vectors can be efficiently
evaluated by Kronecker product and block matrix inversion
formula.

II. BACKGROUND

A voltage-controlled MCA is illustrated by Fig 3. It can be
divided into three parts: the top metal layer, the middle vertical
memristor devices and the bottom metal layer, as shown in
Fig. 1(a), Fig. 1(b) and Fig. 1(c). The top and the bottom
metal layers are assumed to be two uniform grids, with equal
conductance for each grid segment (but the conductance per
segment can be different for the two layers). The memristor
devices lie between the corresponding points of the two grids.

The steady-state MNA equation is given in (1), where Gt and
Gb are the conductance matrices for the top and the bottom layers.

Vt and Vb are the corresponding nodal voltage unknowns. It and
Ib are the nonlinear functions of Vt and Vb relating the steady-
state memristor currents to the applied voltages. Additionally, Yt

and Yb are the boundary conditions. All of them combine to form
the matrix equation (9). The whole nonlinear equation is solved
by the Newton’s method (3) with the Jacobian matrix given in
(4).

W12 W13 W14

W22 W23 W24

W32 W33 W34

W42 W143 W44

W21

W31

W41

W11

(a) The middle layer of
memristors.

(b) The top metal layer
with conductance repre-
sented as Gt.

(c) The bottom metal
layer with conductance
represented as Gb.

Fig. 1: A division of MCA crossbar

Gt ∗ Vt + It(Vt, Vb)− Yt = 0 (1a)

Gb ∗ Vb − Ib(Vt, Vb)− Yb = 0 (1b)

Gt = I ⊗G (2a)

Gb = G⊗ I (2b)

J
(
~Vn

)
∗
(

~Vn+1 − ~Vn

)
=
(
−F

(
~Vn

))
(3)

J = F ′ =

[
Gt 0

0 Gb

]
+

[
∂It
∂Vt

∂It
∂Vb

−∂Ib
∂Vt

−∂Ib
∂Vb

]
(4)

III. THE PROPOSED PRECONDITIONING TECHNIQUE

In this work we focus on using the iterative solution method
of GMRES (Generalized minimal residual method) to solve the
sparse total Jacobian matrix in (4). J consists of two parts: the
linear conductance matrix from the interconnect and the nonlinear
Jacobian from the I-V functions of the memristor devices.

A. Preconditioner Formulation

Firstly, we choose a particular indexing scheme to give J a
special sparsity structure. The top and the bottom layers both
use natural indexing, but the directions are perpendicular to each
other, as illustrated in Fig. 1. There are two reasons for this
choice: 1) the four blocks in the nonlinear Jacobian matrix are
now all diagonal; 2) by assuming equal conductances for all
segments at the same layer, we can rewrite the top and the bottom
linear conductance matrices Gt, Gb ∈ Rn2×n2

into Kronecker
products (2a) and (2b), where G ∈ Rn×n is the conductance
matrix of single row or column (8).

P =

[
Gt + a1I −a1I
−a2I Gb + a2I

]
(5)

ar
X

iv
:2

10
9.

07
92

9v
1 

 [
cs

.E
T

] 
 1

5 
Se

p 
20

21



Next, we develop a special preconditioner of the form in (5)
with the same block structure. The a1 and a2 are the mean of
the diagonal elements of ∂It

∂Vb
and −∂Ib∂Vb

, which can be considered
as the average conductance of the memristor devices. Notice that
∂It
∂Vt

and ∂It
∂Vb

are opposite, as well as −∂Ib∂Vt
and −∂Ib∂Vb

, since Vb

and Vt are the voltages across the memristors.

B. Fast Evaluation of Preconditioner

[
A B
C D

]−1
=

[
−M−1DB−1 M−1

B−1 +B−1AM−1DB−1 −B−1AM−1
]
(6)

M = (C −DB−1A)

= (−a2I − (Gb + a2I)(−a1I)−1(Gt + a1I))

= (−a2I +
1

a1
(G⊗ I + a2I)(I ⊗G+ a1I))

= (−a2I +
1

a1
(G2 ⊗ I)(I ⊗G1))

= (−a2I +
1

a1
(G2 ⊗G1))

(7)

It is important to have a fast scheme to evaluate P−1v. We
first apply the Woodbury block matrix inversion identity (6). Note
that the off-diagonal blocks B and C are just identity matrices
whose inverse is trivial. The core operation is to obtain M−1v =
(C −DB−1A)−1v.

To this end, we rewrite M into (7), with G1 and G2 given
in (10a) and (10b). In typical MCAs, the memristor conductance
is generally much smaller than that of interconnects. Therefore,
one can drop the first term on the right hand side of (11) and
approximate M as in (15) and (14). To compute (16), where ĝ2i,j
is the element of Ĝ2. Vector v can be rearranged by (17), V̂j

represent the jth column of V̂ . Consider the jth row in (18).
Finally, we can deduce original equation to (19).

IV. NUMERICAL RESULTS

In the following tests, the top and bottom wire conductance
g per segment are normalized to 1. We adopt the Yakopcic
model [5] as the RRAM model. Since the proposed method is
expected to handle RRAM devices of various states, we obtain
the conductance matrix of RRAM by randomly setting the internal
state variable of their model, with a maximum conductance being
0.4 to meet the approximation condition (12). The GMRES solver
from Scipy is used with a uniform relative tolerance of 10−6.

Fig. 2 shows the residual history of GMRES with and with-
out the proposed preconditioner. The test case is a 128 × 128
crossbar with the matrix dimension of 32768× 32768. It can be
seen that the proposed preconditioner drastically accelerates the
convergence of GMRES.

Fig. 4 compares the iteration number for MCAs of five differ-
ence sizes (32×32, 64×64, 128×128, 256×256 and 512×512).
The matrix sizes are labeled on the lines and the corresponding
iteration numbers summarized in the table. It is clear that the
computational saving from the proposed preconditioner grows
rapidly as the matrix size increases.

Table I compares the proposed preconditioner against other
mainstream preconditioners such as the Jacobi and the ILU pre-

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1 101
201

301
401

501
601

701
801

901
1001

1101
1201

1301
1401

1501
1601

Residual of 128*128 crossbar

PGMRES GMRES

Fig. 2: Residual of preconditioned GMRES (PGMRES) and
baseline GMRES for 128× 128 crossbar .

TABLE I. Comparison of Total CPU Time Consumption and
Iteration Steps to Coverage

Before
Preconditioned

Jacobi
Preconditioner

ILU
Preconditioner

Our
Preconditioner

Crossbar
Dimension (n) Steps CPU time

consumption/s Steps CPU time
consumption/s Steps CPU time

consumption/s Steps CPU time
consumption/s

16*16 67 0.01596 60 0.00897 3 0.00598 11 0.00299

32*32 227 0.05785 203 0.03092 15 0.01396 11 0.02194

64*64 678 0.30377 551 0.14319 111 0.14561 13 0.09275

128*128 1645 1.97858 1610 0.95511 308 1.24064 13 0.57907

256*256 7526 28.51413 5361 23.41768 589 11.05555 13 4.77912

512*512 22801 331.31852 19273 324.20583 3120 309.91122 17 225.12859

conditioner. The iteration number and the total CPU runtime are
recorded for MCAs of different sizes. For small cases, the three
types of preconditioners perform comparably well. For larger
cases, the proposed preconditioner requires much fewer iterations
than the other two preconditioners. The runtime reduction is less
significant due to the evaluation of preconditioner not being fully
optimized. Future efforts will be devoted to speed up this part.

V. CONCLUSION

We have devised an efficient preconditioner for fast iterative
solution of the Jacobian matrices appearing in steady-state MCA
simulation. The preconditioner leverages the special sparsity pat-
tern in the Jacobian matrices resulted from a deliberately crafted
indexing scheme. Tensor product and block matrix inversion tech-
niques are utilized to significantly accelerate the preconditioner
evaluations during the iterative solutions. Numerical results have
demonstrated the efficacy of the proposed preconditioner.

REFERENCES

[1] Chua, L. (1971). Memristor-the missing circuit element. IEEE Transactions
on circuit theory, 18(5), 507-519.

[2] Zhang, F., & Hu, M. (2020, November). CCCS: customized spice-level
crossbar-array circuit simulator for in-memory computing. In Proceedings
of the 39th International Conference on Computer-Aided Design (pp. 1-8).
[2] A. N. Expert, A Book He Wrote, His Publisher, 1989.

[3] Truong, S. N., Van Pham, K., Yang, W., & Min, K. S. (2016, October). Mem-
ristor circuits and systems for future computing and bio-inspired information
processing. In 2016 IEEE Biomedical Circuits and Systems Conference
(BioCAS) (pp. 456-459). IEEE.

[4] Ferronato, M.. Preconditioning for sparse linear systems at the dawn of
the 21st century: History, current developments, and future perspectives.
International Scholarly Research Notices, 2012.

[5] C. Yakopcic, T. M. Taha, G. Subramanyam, R. E. Pino and S. Rogers, ”A
Memristor Device Model,” in IEEE Electron Device Letters, vol. 32, no. 10,
pp. 1436-1438, Oct. 2011,



A. Equations and Figures

G =


2g −g
−g 2g

· · · 0

...
. . .

...

0 · · · 2g −g
−g 2g


n∗n

(8)

F =

[
Gt 0
0 Gb

]
∗
[
Vt

Vb

]
+

[
It
−Ib

]
−
[
Yt

Yb

]
= 0 (9)

G1 =


2g + a1 −g
−g 2g + a1

· · · 0

...
. . .

...

0 · · · 2g + a1 −g
−g 2g + a1


n∗n

(10a)

G2 =


2g + a2 −g
−g 2g + a2

· · · 0

...
. . .

...

0 · · · 2g + a2 −g
−g 2g + a2


n∗n

(10b)

diag(M) = (−a2 +
1

a1
(2g + a2)(2g + a1)) (11)

20a2 <
1

a1
(2g + a2)(2g + a1) (12)

M ∼= M̂ = Ĝ2 ⊗G1 (13)

Ĝ2 =



2g+a2
a1

−g

−g 2g+a2
a1

· · · 0

...
. . .

...

0 · · ·
2g+a2

a1
−g

−g 2g+a2
a1


n∗n

(14)

M−1 ∼= M̂−1 = Ĝ2

−1
⊗G1

−1 (15)(
Ĝ2

−1
⊗G1

−1
)
v

=
(
Ĝ2

−1
⊗G1

−1
)



v1,1
v1,2

...
v1,n−1

v1,n
v2,1

...
v2,n

...
vn,n



=


1

ĝ21,1
∗G1

−1 · · · 1
ĝ21,n

∗G1
−1

...
. . .

...
1

ĝ2n,1
∗G1

−1 · · · 1
ĝ2n,n

∗G1
−1





v1,1
v1,2

...
v1,n−1

v1,n
v2,1

...
v2,n

...
vn,n



(16)

V̂ =

v1,1 · · · v1,n
...

. . .
...

vn,n · · · vn,n


n∗n

=
[
V̂1 · · · V̂n

]
(17)

1

ĝ2j,1
∗G1

−1V̂1 +
1

ĝ2j,2
∗G1

−1V̂2 + . . .+
1

ĝ2j,n
∗G1

−1V̂n

=
[
G1

−1V̂1 . . . G1
−1V̂n

]
1

ĝ2j,1

...
1

ĝ2j,n

 (18)

(
Ĝ2

−1
⊗G1

−1
)
v = G1

−1V̂ G2
−1 (19)

W12 W13 W14

W22 W23 W24

W32 W33 W34

W42 W43 W44

W21

W31

W41

W11

WL

BL

Fig. 3: A general MCA is shown with BL (bit line) and WL (word
line).

32 64 128 256 512
PGMRES 11 13 13 13 17
GMRES 227 678 1645 5361 28201

32, 11 64, 13 128, 13 256, 13 512, 17

32, 227
64, 678

128, 1645
256, 5361

512, 28201

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05
Iteration number to converage (tol = 1e- 6)

PGMRES GMRES

Fig. 4: Iteration number to coverage of dimension of crossbar
32× 32, 64× 64, 128× 128, 256× 256 and 512× 512.


	I Introduction
	II Background
	III The Proposed Preconditioning Technique
	III-A Preconditioner Formulation
	III-B Fast Evaluation of Preconditioner

	IV Numerical Results
	V Conclusion
	References
	V-A Equations and Figures



