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Abstract problems, which embeds simple machine learning methods
for recognition and utilization of specific numerical prob-

Different successful heuristic approaches have been pro-lem properties. On every search state of the solving path, al
posed for solving combinatorial optimization problems. ternative choices are evaluated bifernel Regressio(KR)
Commonly, each of them is specialized to serve a differ-scheme. The evaluation of each choice is an estimation of
ent purpose or address specific difficulties. However, mostthe expected objective function value, under the assump-
combinatorial problems that model real world applications tion that the solving path extends in favour of the respec-
have a priori well known measurable properties. Embeddedtive choice. Solutions previously found by the proposed
machine learning methods may aid towards the recognition methodology are utilized as training examples, for evalu-
and utilization of these properties for the achievement of ation of partial solutions on each search state. The huge
satisfactory solutions. In this paper, we present a heuris- search spaces of the CO problems faced in this work are not
tic methodology which employs the instance-based machineexpected to supply consistent training sets. Therefoee, th
learning paradigm. This methodology can be adequately widely knownLeave One Out Cross ValidatidhOOCV)
configured for several types of optimization problems which test adjusts th&R approximator’s parameters with respect
are known to have certain properties. Experimental re- to the underlying training set, so that a minimal estimation
sults are discussed concerning two well known problems,error is achieved.

namely the knapsack problem and the set partitioning prob-  The application of machine learning towards achieve-
lem. These results show that the proposed approach is ablement of optimized solutions is a relatively recent aspect.
to find significantly better solutions compared to intuitive However, there have been some remarkable, as well as pi-
search methods based on heuristics which are usually ap-oneering, works dealing with it. We discuss here some of
plied to the specific problems. them by reporting briefly their point of view.

In [3], a reinforcement learning system is described
for learning evaluation functions of startup search states
1. Introduction for a local search algorithm. Reinforcement learning [6]
methods have gained great attention because of their state-
An important issue to notice in combinatorial optimiza- reward policy, which seems to fit well in the search state
tion (CO) problems that emerge from real world applica- paradigm imposed by problem solving. Interesting works
tions is that they exhibit some inherent structural and sta- have emerged, such as [12], where a job-shop scheduling
tistical properties. These properties constitute obddeva problem is addressed through a reinforcement learning ap-
common knowledge for the humans that are in charge ofproach. In [10], scheduling control knowledge is accumu-
solving the problem. The human experience transformslated through reinforcements and exploited for schedule re
into heuristic tools for obtaining a satisfactory solutidn pair. Machine learning has also been used for deciding the
most heuristic algorithms, important knowledge concegnin  best search policy on a problem [4], as well as for config-
a particular problem is embedded in an abstracted and morairing specific problem solving methods [11]. In [8], an an-
generic form, so that it can be applied in multiple instances alytical learning technique is used for heuristic inductio
of the same problem model. This abstraction, however, isFour main research directions of statistical machine learn
an obstacle in recognizing specific numerical and struttura ing application to combinatorial optimization are survegye
properties of the particular instance being solved. in [2]. The approach presented in our paper shares a com-
In this paper, we propose a heuristic methodology for CO mon part with thesearch space understandidgection be-



cause it gathers statistical information relative to prtips

of the search space during the solving process. It also lies

in part within theevaluation function learningliscipline,
since aKR scheme is employed for the approximation of
an evaluation function, which shares its optimum with the
objective function of the problem.

To our knowledge, machine learning techniques have
been mostly integrated in local search procedures. In this

paper, we present a heuristic function which emplk&Rs
and is designed to cooperate wifolution constructive
search methodfor global optimization. This aspect is of
particular interest in solving CO problems, since construc
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Figure 1. The overall algorithmic schema

tive search methods are able to preserve the validity of a

problem’s constraints during the search. This is not the cas
with local search procedures. They often visit invalid sbar
states, and thus it is harder to even find a feasible solution.
In the following, the proposed methodology is presented
initially at a higher level and then, the machine learn-
ing based heuristic algorithm is described in more detail.

The application of the approach on two specific problems,
namely the knapsack problem and the set partitioning prob-
lem, is discussed next. Comments on the experimental re
sults are made and, finally, the concluding remarks are pre S

sented and further work is briefly described.

2. An Overview of the Search Schema

Constructive searcls the kind of solving procedure ex-
ploited in this work. By the term constructive search, we

designate the construction of a solution to the CO problem

limit, is met. The training sef is augmented with informa-
tion extracted from newly found solutions and the process
is repeated. The number of iterations is subject to experi-
mentation. It is important to note that there is no constrain
dictating that solutions obtained in each iteration shdndd
better than those found in the previous iterations. The ab-
sence of such a constraint contributes to the enrichment of

the training set with feasible solutions of varying quatti

which contribute to a more detailed picture of the search
pace.

3. Design Details and the Heuristic Function

In this section, various aspects of the heuristic algo-
rithm are discussed concerning the instance-based Igarnin
method, the representation of training examples and the dy-

by assigning a value to each decision variable in turn, and"@mic KR approximator selection.

thus by searching a tree of variable assignments. Thisypolic

comes in contrast with the various local search techniques3-1. Kernel Regression on Nearest Neighbours

such as hill climbing and simulated annealing, which alter

an already known complete assignment at each step, in or-

der to obtain a new one.
The algorithmic schema is iterative. An overview of the
approachis presented in Fig. 1./Ifs a problem instance to

be solved, the first thing to do is to use some simple heuris-

tic method to obtain initial solution§. A simple method
might be aDepth First Searc{DFS), guided by a common
heuristic that intuitively fits the problem. This step stafs
ter a limited time interval, which suffices for obtaining sem
initial solutions. The sef is then used for the production of
an initial training set for the machine learning algorithm
employed by the heuristic.

The first step of the iterative process shown in Fig. 1is a
preprocessing procedure, which adaptsKeapproxima-
tor to the training set, in order to achieve higher predictio
accuracy with respect to the underlying training SeiThe

The machine learning methodology exploited within the
proposed framework belongs to the family of memory-
based or instance-based methods [9]. Memory-based learn-
ing methods explicitly store all training examples they are
shown. Only at prediction time do they perform non-trivial
amounts of computation, which is their main disadvantage.
We use th&ernel Regressio(KR) method for approximat-
ing the value of a real function. Thi€R method is also
known asLocally Weighted AveragingThere is a generic
scheme forKR, which might be configured in many dif-
ferent ways as is the case flwcally weightedlearning
methodologies [1].

The exact configuration &R used in this work follows.
The KR algorithm is used here for real function value es-
timation. The function being approximated can be consid-
eredasf : R — R.

problem instance is then solved by some constructive search The training set for th&R algorithm contains pairs of

algorithm, guided heuristically by tH€R supported heuris-

input vectors tof and their correspondinfroutputs. Thus,

tic. The search stops when some criterion, such as a timdf & € R" is an input vector to the function, the respective



training example contained in the training set will be the decision variable is selected to be assigned a value, the fea

pair (Z, f(¥)). tures of each vector should be calculated upon the solution
Let z; be a query to th&R algorithm. The prediction  path. The only limitations on the features that might belong

f(:z?q) is calculated by the algorithm as follows: in a features vector are imposed by the problem structure.
As discussed later, a solution can be described through sta-

k tistical information that is considered to be characterist

> K(d(, ay)) £ () of the solution’s quality in terms of the objective function

1) == (1)  vale
Z K(d(a3, 24)) 3.3. Selection oKR Approximator

In formula (1),d(}, ;) denotes the Euclidean distance  The Leave One Out Cross ValidatighOOCV) test ap-
of the query vectog; from the i-th training example vector pears to be quite appropriate for adaptingRapproxima-
#;. Thek parameter stands for the number of training ex- tor to the training set of each iteration in Fig. 1. A discus-
amples nearest t8,, that contribute their knowif-values  sjon on cross validation tests can be found in [7]. Within our
to the predictionf(z7). study we have limited the selection of a progét approxi-

The functionK : R — R is thekernelfunction, which mator to the selection of &-value and a kernel functioR
assigns a smaller weight to the contributionfdf;) to the from a set of available kernel functions. A brief overview
sum, as much as greater is the distancé dfom the query ~ of commonly used kernel functions can be found in [1].
vectorzy. Thus, the contribution of less significant values, Each different pair ok-value (number of nearest neigh-
i.e. values that correspond to more distant vectors, is pun-bours contributing to the estimation) and kernel function
ished. The kernel function to be used at each iteration ofyields a differenKR approximator. For each candidate ap-
the search schema is determined dynamically-6DCV, proximator, each training example is estimated, as if itavas
from a repertoire of available kernel functions. Dynamic novel example, using as training set the remaining training
selection of kernel function is a part of th&R approxima-  examples. The distance of this estimation from the actual
tor's adjustment, and will be discussed in a following para- target value is a measure of the error in prediction. The se-
graph in more detail. When the algorithm is presented with |ected approximator is the one that yields the lowest awerag

a query, all attributes are scaled down to ffgl] range. prediction error over all training examples.

This normalization helps avoiding the domination of large-  As the proposed methodology is supposed to solve prob-

ranged attributes in computations. lems that enclose properties in a rather statistical than pr
cisely defined manner, training data collected during the

3.2. Representation of Training Examples solving process are expected to be inconsistent. Search

spaces of CO problems are extremely large and different

An important issue for the applicability iR is the solutions to a CO problem might belong to different neigh-
implicit definition of the f function, mentioned in para- bourhoods of the problem’s search space. The features used
graph 3.1, whose value is going to be estimated. The func-for the description of the solutions are chosen empirically
tion input consists of vectors in the Euclidean sp&e as representative of the problem’s a priori known statisti-
which describe feasible solutions to the CO problem. The cal properties. However, the selected features might prove
function value for each of these vectors is the value of the to be insufficient for the discrimination of certain soluti
objective function of the problem for the corresponding so- It is €xpected that some solutions might belong to different
lution. neighbourhoods, whereas their discrimination in terms of

Each training example for tH€R approximation scheme dista_nce of features v_e<_:tors mig_ht be impos_sible. Such |n
is a pair of a solution descriptive vectdt, known as the ~ consistency of the training data is handled via the dynamic
features vectgrand the respective objective function value aPProximator selection.

obj(F). Thus, the training set can be defined as
3.4. The Heuristic Function

& = {(F,obj(F)) | F: extracted from a solutign .
During the construction of a potential solution, the sys-
The features (i.e. the dimension values) of the featurestem simultaneously constructs a path towards the bottom of
vectors are real arithmetic values that correspond to 8peci the search tree. On each node of the tree visited, decisions
properties of the solution to the optimization problem.fEac must be taken, so that the next step down the tree is the
feature should be an aggregate function on the assignmentmost promising for the solution quality among all available
of the problem variables. As in every step of the search achoices. We describe the heuristic function which guides
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the search by exploiting the previous experience acquired
by the system.

Let P be the so far constructed path during the search.
This is apartial path. Each search step consists of two .
choices: the selection of an unassigned decision varidble o4-1. Generation of Problem Instances
the problem and the determination of a value to be assigned
to it. Let.A be the set of all possible (i.e. feasibility pre- An important assumption mentioned in the very begin-
serving) such assignments and, consequently, the set of alhing of this paper is that the CO problems faced have some
possible ways to augment the partial p&hThe heuristic  a priori known properties. For the previous problems, in-
function should dictate an assignment frofnas the next  stances were generated that have such properties. In [11],
step for the extension &?. a generation method for knapsack instances is briefly dis-

As mentioned in paragraph 3.2, the training examples for cussed. ThéV vector mentioned previously is determined
KR are features vectors calculated upon feasible solutionsfrom a normal distribution, while the fractiaf; /1V; is also
of the problem, i.e. upon complete paths. However, evencalculated from a normal distribution. Ea¢h element of
a partial path can be used to calculate such a vector, if thethe P vector is computed aB; = W; - P;/W;. The knap-
unassigned decision variables are ignored. If statistical sack instances created in this way tend to associate greater
aggregate information is used to describe the partial pathP; values to greatel¥’; values. These problems have been
extension by using a features vector, then it is reasonable t shown to be more difficult.
prefer extensions whose features present similarity teethe For the SP problem, instances were generated in a sim-
of the best known solutions contained in the training set. In jlar way as for the knapsack problem. The number of 1s
this way, portions of the search space that have previouslycontained in the column ofA,, ., and the ratio of the col-
produced good solutions are explored further. Pete the  umn costC; to the number of 1s were determined by two
partial path resulting after augmentifgwith a choice from  different normal distributions, while th€; quantity was
A. The features vectaF; is calculated upo®. TheKR ~  computed as a dependent variable. Thus, columns contain-
approximation scheme is requested to produce an objectiveng more 1s, tend to have higher cost val@&s Because

subjectto  Ajz; =1, i=1...m .
j=1

function value estimation faf’; The extension dP which  the 1s in each column are decided via a uniform distribution,
yields the optimum estimation is preferred over all other the mentioned property is slightly depressed by the satisfia
choices. An overview is presented in Fig. 2. bility of the problem constraints.

For the SP and knapsack instances, optimum solutions
4. Application on Two Problems were planted in a simple manner.

The heuristic methodology was tested on two well kno- 4.2. Selection of Features
wn CO problems, namely thenapsackand theset parti-

tioning problems. These are described below. The selection of features that assemble the features vec-

. _ _ = tors is mostly important for the accuracy of the predictions
Knapsack. Given the n-dimensional vectors: profifS  of theKR scheme. Features that encapsulate some informa-
with P; € 2%, weightsW with W; € Z%, X a vector tjon relevant to the objective function’s value are predelr

of binary decision variables and some capacltg Z, since they are expected to provide a quantitative partitfon
" the search space into regions with expected objective func-
maximizeZ — Z Pjx; tion value. For each of the aforementioned problems, their

r features are presented, which were selected intuitively.



Knapsack. Three features constitute the features vector E,(d) = 1/eda, fora = 1,2,3. The formsK, and E,
for the knapsack problem: lie among the most commonly used [1]. Particularly for
the K, form, rared = 0 cases were handled by assigning
1. The mean value of the fractidr} /WW; for js suchthat  the query vector an estimation equal to the known value for
X; = 1inthe solution. the corresponding nearest (zero distance) neighboure¥alu
of a greater than 3 were not considered, since they would
yield very low kernel values, and thus, tK&R estimation
would be dominated by the contribution of one unique near-
est neighbour.

3. The weighted average of profits that participate in the ~ The training set expands from one iteration to the next.
Objective function value. The contribution of eaE;:] In Ol‘del’tO a.V0|d cases Where th@OCVteSt WOUld deC|de

profit to the average is weighted by the inverse corre- large values fok, and thus, slowing down théR approxi-
spondingv; value. mator, the size of the training set was kept stable to, at,most
25 training examples. At the end of each iteration, the frain
ing examples that represent solutions of worse qualities ar
removed.

The measurement of success for the experiments pre-
1. The mean value of the number of 1s contained in the S€nted in this section is defined as the percentage of im-

columns of the binary matrixi that participate in a provement achieved by our methodology towards the op-
solution. timal solution, in comparison with the performance of the

common method. Thus i, is the best solution found by

2. The mean value of the costs of the columns of matrix the common methodnl, is the best solution obtained by

A that constitute the solution. our methodology andpt is the optimal solution, perfor-
mance is measured as

2. The mean value of the profif3; which participate in
the objective function value, i.e. fgs such thafX; =
1.

Set Partitioning. For the SP problem, the features vector
constituted of two features:

The j-th column of the matrix4 is part of a solution if l
o — My

X; =1 a =100 x &
Co — Opt

5. Experimental Results 5.2. Knapsack

Experiments were carried out on 10 instances for each

problem. The instances were of varying sizes. For the knapsack problem, the simple heuristic policy

of “try the most profitable choice firstbn a DFS proved
to be quite successful in obtaining soon some high quality
solutions.

o ) Twelve iterations, of 5 minutes each, were performed on

Foreach problem, a heuristic solving method was choseng,ch problem instance after the construction of the initial
among the most commonly used. The chosen method proygining set. Limited Discrepancy SearcfLDS) [5] was
vided the best results for the corresponding problem, withi | ,sa4 as constructive procedure for the proposed méthod.
the experimentation time interval, and was employed for the the quality of solutions which were obtained for all in-
construction of the initial training set. The results ob&ad stances significantly exceeded the quality of solutionaéou
by the proposed methodology were compared to those proy,y, the employed common heuristic method. Table 1 sum-
vided by the common method in the same time. Only SO- ari76s the results. The characteristics of each problem ar
lutions found by the common method within the first 10 depicted, namely the parameter and an estimatignof
minutes were considered for the construction of the initial {,o average number of “items” that fit in the knapsack, cal-
training set. The common methods were applied for 4200 . ,jated as the ratio of the capacifyto the mean value of
seconds. The overall running time of the iterative part af ou 4,4 weights in vector .
methodology was arranged to last for 3600 seconds, so that
summed to the initial training set construction time equals 5.3. Set Partitioning
to 4200 seconds. o

The system was provided a set of kernel functions to
choose from, in order to configure &R approximator,
which would yield a minimum expected prediction er-
ror during theLOOCYV test. We let the system choose 1 ps was also tested with common heuristics on both problem in
among the following kernel functiondy, (d) = 1/d* and stances but did not outperform DFS.

5.1. Experimental Configuration

The common method that provided the best results for
the SP problem was the heuristic poli¢yry the col-




Instance Performance knapsack (3000, 15) instance

n Jpl co [ mb | opt | o conl RIS .
3000 15 || 53848 | 54856 | 57499 | 27.6 feature 2 o

4000 | 20 || 73954 | 77976 | 78693 | 84.8 5000 o0

4000 | 40 || 140669| 143079] 151415| 22.4 4000 S

4000 | 51 || 179656| 186341| 189211 69.9 3500 g

4000 | 23| 82385 | 83882 | 88849 | 23.1 2500 e

4000 30 || 107621| 109785 113112 39.4 First Assignment = 5000
6000 | 30 || 108744| 111043| 116577| 29.3 113 oo

6000 | 20 || 70956 | 71750 | 76909 | 13.3 feawre T 117 118 3000

119 2500

8000 | 15 || 56049 | 57100 | 60031 | 26.4
8000 | 23 || 90257 | 91352 | 96367 | 17.9

Figure 3. Solution construction path for a
knapsack instance

Table 1. Experimental results for the knap-

SaCk prOblem Set Partitioning (6000, 25) instance

1150 T T T . T
: : : KR heuristic solving process—<—

Instance Performance 1100

n | m Co | ml, | opt | «@
4000| 15| 1175 | 1063 | 898 | 40.4
4000 | 18 | 1474 | 1401 | 1113 | 20.2
4000| 20| 900 481 452 | 935
5000 | 18 || 15698 | 12563 | 10669 | 62.3 000 ; ; ; ; 3
5000 | 25 || 993 910 544 | 18.5 ‘ ‘ ‘ ‘ P Best

1050 [

1000

950

objective function

i i i i i Solution
5000 30 2720 2538 1734 184 8500 600 1200 1800 2400 3000 : 3600
6000 | 20 754 580 407 | 50.1 time (seconds)

6000 | 25 || 1148 | 893 593 | 45.9
6000 | 30 || 1133 | 1088 | 779 | 12.7
7000 | 25 || 1128 | 905 569 | 39.8

Figure 4. Solving process for an SP instance

for a knapsack instance, whereas the overall solving perfor
mance of the proposed iterative methodology is depicted in
Fig. 4 on an SP instance.

Figure 3 depicts the features vectors for known solutions
to the(n = 3000, » = 15) knapsack instance that belong
to the training set. It also demonstrates the trajectory of
umn with the minimum cost firstivith DFS. The pro- 3 solution construction using the given training set. Every
posed methodology performed significantly better on all in- cross point in the trajectory represents a features veater ¢
stances. Table 2 depicts the characteristics of the SP in¢ylated upon a partial path, after a new assignment to some
stances and the performance of our methodology. The di-decision variable is performed. At every search step, the
mensions of thel,, ., binary matrix are also shown as the heuristic function chooses the assignment which brings the

major characteristics for an SP instance. features vector of the extended path closer to specific fea-
Six iterations, of 10 minutes each, were performed on tyres vectors of the best known solutions.

each SP instance. Remarkably better solutions were found The overall functiona"ty of our methodok)gy is demon-
by the proposed methodology using LDS, than those ob-strated in Fig. 4, on thén = 6000, m = 25) SP instance.

Table 2. Experimental results for the SP prob-
lem

tained by the common heuristic policy. Each ascending line in the diagram is@rderbetween two
_ subsequent iterations of the schema in Fig. 1, because only
5.4. Behaviour of the Methodology then a solution might be of worse quality than the previous

one. Within the iterations each solution should be better

The experimentations on the SP and the knapsack probthan the previous found. The best solution is found in the
lems gave a view of the behaviour of the methodology dur- last iteration, but this was not the case for all SP instances
ing the solving process. Figure 3 gives a low level view of This fact confirms the need for information acquisition and
a solving path followed by the heuristic function of Fig. 2 exploitation regarding the search space, in order to egplor



its most promising portions. space in a locally exhaustive manner.
As an aspect of future work, extended experimentation
6. Conclusions and Further Work on a variety of optimization problems is expected to reveal
valuable statistical features, strongly informative agypre-

. - sentative of the corresponding search spaces.
In this paper, we propose a heuristic methodology for

combinatorial optimization, which employs instance-lohse
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