
Combinatorial Optimization through Statistical Instance-Based Learning

Orestis Telelis Panagiotis Stamatopoulos
Department of Informatics and Telecommunications

University of Athens
157 84 Athens, Greeceftelelis,takisg@di.uoa.gr

Abstract

Different successful heuristic approaches have been pro-
posed for solving combinatorial optimization problems.
Commonly, each of them is specialized to serve a differ-
ent purpose or address specific difficulties. However, most
combinatorial problems that model real world applications
have a priori well known measurable properties. Embedded
machine learning methods may aid towards the recognition
and utilization of these properties for the achievement of
satisfactory solutions. In this paper, we present a heuris-
tic methodology which employs the instance-based machine
learning paradigm. This methodology can be adequately
configured for several types of optimization problems which
are known to have certain properties. Experimental re-
sults are discussed concerning two well known problems,
namely the knapsack problem and the set partitioning prob-
lem. These results show that the proposed approach is able
to find significantly better solutions compared to intuitive
search methods based on heuristics which are usually ap-
plied to the specific problems.

1. Introduction

An important issue to notice in combinatorial optimiza-
tion (CO) problems that emerge from real world applica-
tions is that they exhibit some inherent structural and sta-
tistical properties. These properties constitute observable
common knowledge for the humans that are in charge of
solving the problem. The human experience transforms
into heuristic tools for obtaining a satisfactory solution. In
most heuristic algorithms, important knowledge concerning
a particular problem is embedded in an abstracted and more
generic form, so that it can be applied in multiple instances
of the same problem model. This abstraction, however, is
an obstacle in recognizing specific numerical and structural
properties of the particular instance being solved.

In this paper, we propose a heuristic methodology for CO

problems, which embeds simple machine learning methods
for recognition and utilization of specific numerical prob-
lem properties. On every search state of the solving path, al-
ternative choices are evaluated by aKernel Regression(KR)
scheme. The evaluation of each choice is an estimation of
the expected objective function value, under the assump-
tion that the solving path extends in favour of the respec-
tive choice. Solutions previously found by the proposed
methodology are utilized as training examples, for evalu-
ation of partial solutions on each search state. The huge
search spaces of the CO problems faced in this work are not
expected to supply consistent training sets. Therefore, the
widely knownLeave One Out Cross Validation(LOOCV)
test adjusts theKR approximator’s parameters with respect
to the underlying training set, so that a minimal estimation
error is achieved.

The application of machine learning towards achieve-
ment of optimized solutions is a relatively recent aspect.
However, there have been some remarkable, as well as pi-
oneering, works dealing with it. We discuss here some of
them by reporting briefly their point of view.

In [3], a reinforcement learning system is described
for learning evaluation functions of startup search states
for a local search algorithm. Reinforcement learning [6]
methods have gained great attention because of their state-
reward policy, which seems to fit well in the search state
paradigm imposed by problem solving. Interesting works
have emerged, such as [12], where a job-shop scheduling
problem is addressed through a reinforcement learning ap-
proach. In [10], scheduling control knowledge is accumu-
lated through reinforcements and exploited for schedule re-
pair. Machine learning has also been used for deciding the
best search policy on a problem [4], as well as for config-
uring specific problem solving methods [11]. In [8], an an-
alytical learning technique is used for heuristic induction.
Four main research directions of statistical machine learn-
ing application to combinatorial optimization are surveyed
in [2]. The approach presented in our paper shares a com-
mon part with thesearch space understandingdirection be-

cause it gathers statistical information relative to properties
of the search space during the solving process. It also lies
in part within theevaluation function learningdiscipline,
since aKR scheme is employed for the approximation of
an evaluation function, which shares its optimum with the
objective function of the problem.

To our knowledge, machine learning techniques have
been mostly integrated in local search procedures. In this
paper, we present a heuristic function which employsKR
and is designed to cooperate withsolution constructive
search methodsfor global optimization. This aspect is of
particular interest in solving CO problems, since construc-
tive search methods are able to preserve the validity of a
problem’s constraints during the search. This is not the case
with local search procedures. They often visit invalid search
states, and thus it is harder to even find a feasible solution.

In the following, the proposed methodology is presented
initially at a higher level and then, the machine learn-
ing based heuristic algorithm is described in more detail.
The application of the approach on two specific problems,
namely the knapsack problem and the set partitioning prob-
lem, is discussed next. Comments on the experimental re-
sults are made and, finally, the concluding remarks are pre-
sented and further work is briefly described.

2. An Overview of the Search Schema

Constructive searchis the kind of solving procedure ex-
ploited in this work. By the term constructive search, we
designate the construction of a solution to the CO problem
by assigning a value to each decision variable in turn, and
thus by searching a tree of variable assignments. This policy
comes in contrast with the various local search techniques,
such as hill climbing and simulated annealing, which alter
an already known complete assignment at each step, in or-
der to obtain a new one.

The algorithmic schema is iterative. An overview of the
approach is presented in Fig. 1. IfI is a problem instance to
be solved, the first thing to do is to use some simple heuris-
tic method to obtain initial solutionsS. A simple method
might be aDepth First Search(DFS), guided by a common
heuristic that intuitively fits the problem. This step stopsaf-
ter a limited time interval, which suffices for obtaining some
initial solutions. The setS is then used for the production of
an initial training setE for the machine learning algorithm
employed by the heuristic.

The first step of the iterative process shown in Fig. 1 is a
preprocessing procedure, which adapts theKR approxima-
tor to the training set, in order to achieve higher prediction
accuracy with respect to the underlying training setE . The
problem instance is then solved by some constructive search
algorithm, guided heuristically by theKRsupported heuris-
tic. The search stops when some criterion, such as a time

Find some solutions S to I
using a "simple" method

Produce E of the KR-heuristic from S
Iterate until end criterion met

Adapt KR approximator to E
using LOOCV

Obtain new solutions constructively
with KR-Heuristic

Augment E using new solutions
Return Best Solution

Figure 1. The overall algorithmic schema

limit, is met. The training setE is augmented with informa-
tion extracted from newly found solutions and the process
is repeated. The number of iterations is subject to experi-
mentation. It is important to note that there is no constraint
dictating that solutions obtained in each iteration shouldbe
better than those found in the previous iterations. The ab-
sence of such a constraint contributes to the enrichment of
the training set with feasible solutions of varying qualities,
which contribute to a more detailed picture of the search
space.

3. Design Details and the Heuristic Function

In this section, various aspects of the heuristic algo-
rithm are discussed concerning the instance-based learning
method, the representation of training examples and the dy-
namic KR approximator selection.

3.1. Kernel Regression on Nearest Neighbours

The machine learning methodology exploited within the
proposed framework belongs to the family of memory-
based or instance-based methods [9]. Memory-based learn-
ing methods explicitly store all training examples they are
shown. Only at prediction time do they perform non-trivial
amounts of computation, which is their main disadvantage.
We use theKernel Regression(KR) method for approximat-
ing the value of a real function. TheKR method is also
known asLocally Weighted Averaging. There is a generic
scheme forKR, which might be configured in many dif-
ferent ways as is the case forlocally weightedlearning
methodologies [1].

The exact configuration ofKRused in this work follows.
The KR algorithm is used here for real function value es-
timation. The function being approximated can be consid-
ered as:f : <n 7! <.

The training set for theKR algorithm contains pairs of
input vectors tof and their correspondingf -outputs. Thus,
if ~x 2 <n is an input vector to the function, the respective

training example contained in the training set will be the
pair h~x, f(~x)i.

Let ~xq be a query to theKR algorithm. The predictionf̂(~xq) is calculated by the algorithm as follows:f̂(~xq) = kXi=1K(d(~xi; ~xq))f(~xi)kXi=1K(d(~xi; ~xq)) (1)

In formula (1),d(~xi; ~xq) denotes the Euclidean distance
of the query vector~xq from the i-th training example vector~xi. Thek parameter stands for the number of training ex-
amples nearest to~xq , that contribute their knownf -values
to the predictionf̂(~xq).

The functionK : < 7! < is thekernelfunction, which
assigns a smaller weight to the contribution off(~xi) to the
sum, as much as greater is the distance of~xi from the query
vector ~xq . Thus, the contribution of less significant values,
i.e. values that correspond to more distant vectors, is pun-
ished. The kernel function to be used at each iteration of
the search schema is determined dynamically byLOOCV,
from a repertoire of available kernel functions. Dynamic
selection of kernel function is a part of theKR approxima-
tor’s adjustment, and will be discussed in a following para-
graph in more detail. When the algorithm is presented with
a query, all attributes are scaled down to the[0; 1℄ range.
This normalization helps avoiding the domination of large-
ranged attributes in computations.

3.2. Representation of Training Examples

An important issue for the applicability ofKR is the
implicit definition of thef function, mentioned in para-
graph 3.1, whose value is going to be estimated. The func-
tion input consists of vectors in the Euclidean space<n
which describe feasible solutions to the CO problem. The
function value for each of these vectors is the value of the
objective function of the problem for the corresponding so-
lution.

Each training example for theKRapproximation scheme
is a pair of a solution descriptive vector~F , known as the
features vector, and the respective objective function valueobj(~F). Thus, the training setE can be defined asE = fh~F ; obj(~F)i j ~F : extracted from a solutiong :

The features (i.e. the dimension values) of the features
vectors are real arithmetic values that correspond to specific
properties of the solution to the optimization problem. Each
feature should be an aggregate function on the assignments
of the problem variables. As in every step of the search a

decision variable is selected to be assigned a value, the fea-
tures of each vector should be calculated upon the solution
path. The only limitations on the features that might belong
in a features vector are imposed by the problem structure.
As discussed later, a solution can be described through sta-
tistical information that is considered to be characteristic
of the solution’s quality in terms of the objective function
value.

3.3. Selection ofKR Approximator

TheLeave One Out Cross Validation(LOOCV) test ap-
pears to be quite appropriate for adapting aKR approxima-
tor to the training set of each iteration in Fig. 1. A discus-
sion on cross validation tests can be found in [7]. Within our
study we have limited the selection of a properKRapproxi-
mator to the selection of ak-value and a kernel functionK
from a set of available kernel functions. A brief overview
of commonly used kernel functions can be found in [1].

Each different pair ofk-value (number of nearest neigh-
bours contributing to the estimation) and kernel function
yields a differentKR approximator. For each candidate ap-
proximator, each training example is estimated, as if it wasa
novel example, using as training set the remaining training
examples. The distance of this estimation from the actual
target value is a measure of the error in prediction. The se-
lected approximator is the one that yields the lowest average
prediction error over all training examples.

As the proposed methodology is supposed to solve prob-
lems that enclose properties in a rather statistical than pre-
cisely defined manner, training data collected during the
solving process are expected to be inconsistent. Search
spaces of CO problems are extremely large and different
solutions to a CO problem might belong to different neigh-
bourhoods of the problem’s search space. The features used
for the description of the solutions are chosen empirically
as representative of the problem’s a priori known statisti-
cal properties. However, the selected features might prove
to be insufficient for the discrimination of certain solutions.
It is expected that some solutions might belong to different
neighbourhoods, whereas their discrimination in terms of
distance of features vectors might be impossible. Such in-
consistency of the training data is handled via the dynamic
approximator selection.

3.4. The Heuristic Function

During the construction of a potential solution, the sys-
tem simultaneously constructs a path towards the bottom of
the search tree. On each node of the tree visited, decisions
must be taken, so that the next step down the tree is the
most promising for the solution quality among all available
choices. We describe the heuristic function which guides

getBestAssignment(E ,P,A)
For each assignment � � hxj = vi 2 AP̂ = P [f�g
Calculate ~FP̂val� = KR(E ; ~FP̂)

Choose � 2 A such that val� is optimum
return �

Figure 2. The KRsupported heuristic function

the search by exploiting the previous experience acquired
by the system.

Let P be the so far constructed path during the search.
This is apartial path. Each search step consists of two
choices: the selection of an unassigned decision variable of
the problem and the determination of a value to be assigned
to it. Let A be the set of all possible (i.e. feasibility pre-
serving) such assignments and, consequently, the set of all
possible ways to augment the partial pathP . The heuristic
function should dictate an assignment fromA as the next
step for the extension ofP .

As mentioned in paragraph 3.2, the training examples for
KR are features vectors calculated upon feasible solutions
of the problem, i.e. upon complete paths. However, even
a partial path can be used to calculate such a vector, if the
unassigned decision variables are ignored. If statisticalor
aggregate information is used to describe the partial path
extension by using a features vector, then it is reasonable to
prefer extensions whose features present similarity to these
of the best known solutions contained in the training set. In
this way, portions of the search space that have previously
produced good solutions are explored further. LetP̂ be the
partial path resulting after augmentingP with a choice fromA. The features vector~FP̂ is calculated upon̂P . TheKR
approximation scheme is requested to produce an objective
function value estimation for~FP̂ . The extension ofP which
yields the optimum estimation is preferred over all other
choices. An overview is presented in Fig. 2.

4. Application on Two Problems

The heuristic methodology was tested on two well kno-
wn CO problems, namely theknapsackand theset parti-
tioningproblems. These are described below.

Knapsack. Given the n-dimensional vectors: profits~P
with Pj 2 Z+, weights ~W with Wj 2 Z+, ~X a vector
of binary decision variables and some capacityC 2 Z+,

maximizeZ = nXj=1 Pjxj

subject to
nXj=1Wjxj � C :

Set Partitioning (SP). Given am � n binary matrixA,
a n-dimensional cost vector~C with Cj 2 Z+ and the n-
dimensional vector~X of binary decision variables, we want
to

minimizeZ = nXj=1 Cjxj
subject to

nXj=1Aijxj = 1, i = 1 : : :m :
4.1. Generation of Problem Instances

An important assumption mentioned in the very begin-
ning of this paper is that the CO problems faced have some
a priori known properties. For the previous problems, in-
stances were generated that have such properties. In [11],
a generation method for knapsack instances is briefly dis-
cussed. The~W vector mentioned previously is determined
from a normal distribution, while the fractionPj=Wj is also
calculated from a normal distribution. EachPj element of
the ~P vector is computed asPj = Wj � Pj=Wj . The knap-
sack instances created in this way tend to associate greaterPj values to greaterWj values. These problems have been
shown to be more difficult.

For the SP problem, instances were generated in a sim-
ilar way as for the knapsack problem. The number of 1s
contained in thej column ofAm�n and the ratio of the col-
umn costCj to the number of 1s were determined by two
different normal distributions, while theCj quantity was
computed as a dependent variable. Thus, columns contain-
ing more 1s, tend to have higher cost valuesCj . Because
the 1s in each column are decided via a uniform distribution,
the mentioned property is slightly depressed by the satisfia-
bility of the problem constraints.

For the SP and knapsack instances, optimum solutions
were planted in a simple manner.

4.2. Selection of Features

The selection of features that assemble the features vec-
tors is mostly important for the accuracy of the predictions
of theKRscheme. Features that encapsulate some informa-
tion relevant to the objective function’s value are preferred,
since they are expected to provide a quantitative partitionof
the search space into regions with expected objective func-
tion value. For each of the aforementioned problems, their
features are presented, which were selected intuitively.

Knapsack. Three features constitute the features vector
for the knapsack problem:

1. The mean value of the fractionPj=Wj for js such thatXj = 1 in the solution.

2. The mean value of the profitsPj which participate in
the objective function value, i.e. forjs such thatXj =1.

3. The weighted average of profits that participate in the
objective function value. The contribution of eachPj
profit to the average is weighted by the inverse corre-
spondingWj value.

Set Partitioning. For the SP problem, the features vector
constituted of two features:

1. The mean value of the number of 1s contained in the
columns of the binary matrixA that participate in a
solution.

2. The mean value of the costs of the columns of matrixA that constitute the solution.

Thej-th column of the matrixA is part of a solution ifXj = 1.

5. Experimental Results

Experiments were carried out on 10 instances for each
problem. The instances were of varying sizes.

5.1. Experimental Configuration

For each problem, a heuristic solving method was chosen
among the most commonly used. The chosen method pro-
vided the best results for the corresponding problem, within
the experimentation time interval, and was employed for the
construction of the initial training set. The results obtained
by the proposed methodology were compared to those pro-
vided by the common method in the same time. Only so-
lutions found by the common method within the first 10
minutes were considered for the construction of the initial
training set. The common methods were applied for 4200
seconds. The overall running time of the iterative part of our
methodology was arranged to last for 3600 seconds, so that
summed to the initial training set construction time equals
to 4200 seconds.

The system was provided a set of kernel functions to
choose from, in order to configure aKR approximator,
which would yield a minimum expected prediction er-
ror during theLOOCV test. We let the system choose
among the following kernel functions:Ka(d) = 1=da and

Ea(d) = 1=eda , for a = 1; 2; 3. The formsKa andEa
lie among the most commonly used [1]. Particularly for
theKa form, rared = 0 cases were handled by assigning
the query vector an estimation equal to the known value for
the corresponding nearest (zero distance) neighbour. Values
of a greater than 3 were not considered, since they would
yield very low kernel values, and thus, theKR estimation
would be dominated by the contribution of one unique near-
est neighbour.

The training set expands from one iteration to the next.
In order to avoid cases where theLOOCVtest would decide
large values fork, and thus, slowing down theKR approxi-
mator, the size of the training set was kept stable to, at most,
25 training examples. At the end of each iteration, the train-
ing examples that represent solutions of worse qualities are
removed.

The measurement of success for the experiments pre-
sented in this section is defined as the percentage of im-
provement achieved by our methodology towards the op-
timal solution, in comparison with the performance of the
common method. Thus if
o is the best solution found by
the common method,mlo is the best solution obtained by
our methodology andopt is the optimal solution, perfor-
mance is measured as� = 100�
o �mlo
o � opt :
5.2. Knapsack

For the knapsack problem, the simple heuristic policy
of “try the most profitable choice first”on a DFS proved
to be quite successful in obtaining soon some high quality
solutions.

Twelve iterations, of 5 minutes each, were performed on
each problem instance after the construction of the initial
training set. Limited Discrepancy Search(LDS) [5] was
used as constructive procedure for the proposed method.1

The quality of solutions which were obtained for all in-
stances significantly exceeded the quality of solutions found
by the employed common heuristic method. Table 1 sum-
marizes the results. The characteristics of each problem are
depicted, namely then parameter and an estimation� of
the average number of “items” that fit in the knapsack, cal-
culated as the ratio of the capacityC to the mean value of
the weights in vector~W .

5.3. Set Partitioning

The common method that provided the best results for
the SP problem was the heuristic policy“try the col-

1LDS was also tested with common heuristics on both problem in-
stances but did not outperform DFS.

Instance Performancen �
o mlo opt �
3000 15 53848 54856 57499 27.6
4000 20 73954 77976 78693 84.8
4000 40 140669 143079 151415 22.4
4000 51 179656 186341 189211 69.9
4000 23 82385 83882 88849 23.1
4000 30 107621 109785 113112 39.4
6000 30 108744 111043 116577 29.3
6000 20 70956 71750 76909 13.3
8000 15 56049 57100 60031 26.4
8000 23 90257 91352 96367 17.9

Table 1. Experimental results for the knap-
sack problem

Instance Performancen m
o mlo opt �
4000 15 1175 1063 898 40.4
4000 18 1474 1401 1113 20.2
4000 20 900 481 452 93.5
5000 18 15698 12563 10669 62.3
5000 25 993 910 544 18.5
5000 30 2720 2538 1734 18.4
6000 20 754 580 407 50.1
6000 25 1148 893 593 45.9
6000 30 1133 1088 779 12.7
7000 25 1128 905 569 39.8

Table 2. Experimental results for the SP prob-
lem

umn with the minimum cost first”with DFS. The pro-
posed methodology performed significantly better on all in-
stances. Table 2 depicts the characteristics of the SP in-
stances and the performance of our methodology. The di-
mensions of theAm�n binary matrix are also shown as the
major characteristics for an SP instance.

Six iterations, of 10 minutes each, were performed on
each SP instance. Remarkably better solutions were found
by the proposed methodology using LDS, than those ob-
tained by the common heuristic policy.

5.4. Behaviour of the Methodology

The experimentations on the SP and the knapsack prob-
lems gave a view of the behaviour of the methodology dur-
ing the solving process. Figure 3 gives a low level view of
a solving path followed by the heuristic function of Fig. 2

First Assignment

Solution

knapsack (3000, 15) instance

known solutions
solution construction

113 114 115 116 117 118 119feature 1 2500
3000

3500
4000

4500
5000

feature 3

2500
3000
3500
4000
4500
5000

feature 2

Figure 3. Solution construction path for a
knapsack instance

Best
Solution

850

900

950

1000

1050

1100

1150

0 600 1200 1800 2400 3000 3600

ob
je

ct
iv

e
 fu

nc
tio

n

time (seconds)

Set Partitioning (6000, 25) instance

KR heuristic solving process

Figure 4. Solving process for an SP instance

for a knapsack instance, whereas the overall solving perfor-
mance of the proposed iterative methodology is depicted in
Fig. 4 on an SP instance.

Figure 3 depicts the features vectors for known solutions
to thehn = 3000; � = 15i knapsack instance that belong
to the training set. It also demonstrates the trajectory of
a solution construction using the given training set. Every
cross point in the trajectory represents a features vector cal-
culated upon a partial path, after a new assignment to some
decision variable is performed. At every search step, the
heuristic function chooses the assignment which brings the
features vector of the extended path closer to specific fea-
tures vectors of the best known solutions.

The overall functionality of our methodology is demon-
strated in Fig. 4, on thehn = 6000;m = 25i SP instance.
Each ascending line in the diagram is aborderbetween two
subsequent iterations of the schema in Fig. 1, because only
then a solution might be of worse quality than the previous
one. Within the iterations each solution should be better
than the previous found. The best solution is found in the
last iteration, but this was not the case for all SP instances.
This fact confirms the need for information acquisition and
exploitation regarding the search space, in order to explore

its most promising portions.

6. Conclusions and Further Work

In this paper, we propose a heuristic methodology for
combinatorial optimization, which employs instance-based
learning and function approximation through kernel regres-
sion, for guiding any constructive search procedure. This
work is not concerned with the achievement of feasible so-
lutions to a problem (this issue is addressed successfully by
sophisticated implementations of constructive search meth-
ods, e.g. backtracking), but with the guidance of search to
promising regions of the search space, as far as optimality
is concerned.

Problem models grown from real world applications usu-
ally enclose vast contents of numerical information, which
can be statistically handled for the construction of opti-
mized solutions. The objective functions of such prob-
lems are generally designed upon desirable facts and dic-
tate the intuitive policy for their optimization. We sug-
gest that known solutions to these problems are represented
via statistical information calculated upon each solution’s
structural constituents. The proposed policy constructs a
solution by minimizing its distance (in terms of its statisti-
cal properties) from the best (in terms of objective function
value) known solutions, which lie nearby.

Experimental results were carried out on two widely
used models of real world combinatorial problems, namely
the knapsack and the set partitioning problems. These prob-
lems model important real world applications, such as nu-
clear waste packing and crew scheduling. The methodology
performed satisfactory on these problems and obtained so-
lutions whose quality exceeded the quality of solutions ob-
tained by other heuristic methods, common for each of the
problems.

Some directions for further research are drawn from
questions that arise quite naturally. In our experiments,
the proposed framework performs satisfactory for an ini-
tial training set created by some simple methods.However,
which is the proper way for systematically sampling initial
solutions of a useful quality distribution from the problem’s
search space?This is an important issue, which could pos-
sibly boost the performance of the heuristic function, since
an initial set of solutions with known quality distributionis
actually a detailed picture of the search space.

The complexity of the heuristic function depends on the
size of the training set. Using big training sets slows down
the search, while small sets provide little information about
the search space. We have started to examine the option of
partitioning the training set into consistent clusters, each of
which represents a small portion of the search space. Each
of these clusters is meant to be used as a separate training
set, for searching the corresponding sections of the search

space in a locally exhaustive manner.
As an aspect of future work, extended experimentation

on a variety of optimization problems is expected to reveal
valuable statistical features, strongly informative and repre-
sentative of the corresponding search spaces.

References

[1] C. G. Atkeson, A. W. Moore, and S. Schaal. Locally
weighted learning. Artificial Intelligence Review, 11(1–
5):11–73, February 1997.

[2] J. Boyan, W. Buntime, and A. Jagota (eds.). Statistical ma-
chine learning for large-scale optimization.Neural Comput-
ing Surveys, 3:1–58, 2000.

[3] J. A. Boyan and A. W. Moore. Learning evaluation functions
for global optimization and boolean satisfiability. InPro-
ceedings of the 15th National Conference on Artificial In-
telligence AAAI-98, pages 3–10, Madison, Wisconsin, July
1998. AAAI Press.

[4] D. J. Cook and R. C. Varnell. Maximizing the benefits
of parallel search using machine learning. InProceedings
of the 14th National Conference on Artificial Intelligence
AAAI-97, pages 559–564, Providence, Rhode Island, July
1997. AAAI Press.

[5] W. D. Harvey and M. L. Ginsberg. Limited discrepancy
search. InProceedings of the 14th International Joint Con-
ference on Artificial Intelligence IJCAI-95, pages 607–613,
Montréal, Québec, Canada, August 1995. Morgan Kauf-
mann.

[6] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforce-
ment learning: A survey.Journal of Artificial Intelligence
Research, 4:237–285, 1996.

[7] R. Kohavi. A study of cross-validation and bootstrap for
accuracy estimation and model selection. InProceedings
of the 14th International Joint Conference on Artificial In-
telligence IJCAI-95, pages 1137–1145, Montréal, Québec,
Canada, August 1995. Morgan Kaufmann.

[8] S. Minton. An analytic learning system for specializing
heuristics. InProceedings of the 13th International Joint
Conference on Artificial Intelligence IJCAI-93, pages 922–
929, Chambéry, France, August 1993. Morgan Kaufmann.

[9] T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.
[10] K. Miyashita. Learning scheduling control knowledge

through reinforcements.International Transactions in Op-
erational Research, 7(2):125–138, March 2000.

[11] M. J. Realff, P. H. Kvam, and W. E. Taylor. Combined an-
alytical and empirical learning framework for branch and
bound algorithms: The knapsack problem.Artificial Intelli-
gence in Engineering, 13(3):287–300, July 1999.

[12] W. Zhang and T. G. Dietterich. A reinforcement learn-
ing approach to job-shop scheduling. InProceedings of
the 14th International Joint Conference on Artificial In-
telligence IJCAI-95, pages 1114–1120, Montréal, Québec,
Canada, August 1995. Morgan Kaufmann.

